1
|
Cheng W, Zhi Y, Chen F, Xiao X, Lu H, Li R, Zhu H, Wang Q, Fang X, Xu Z, Deng Z, Liu T, Lu L. Characterization and functional reconstruction of a highly productive germacrene A synthase from Liriodendron chinense. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1927-1937. [PMID: 40011225 PMCID: PMC12120886 DOI: 10.1111/pbi.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Plants produce a large array of natural products which play important roles in flavours, fragrances and medicines. However, some high-value plant intermediate metabolites cannot be directly extracted from plants. The tulip tree (Liriodendron chinense) in the Magnoliaceae family is rich in sesquiterpenes. Upon characterizing the functions of 11 Liriodendron chinense terpene synthases, we discovered that LcTPS3 could produce high yields of (+)-germacrene A, which was shown to be a central scaffold in sesquiterpene biosynthesis. This compound can be completely transformed into β-elemene at high temperature, a broad-spectrum antitumor drug widely used in clinical treatment. By expressing LcTPS3 in a precursor-providing Saccharomyces cerevisiae chassis and with the aid of metabolic engineering, the fermentation yield of (+)-germacrene A has been achieved at 14.71 g/L. Site-directed mutagenesis experiments and molecular dynamics simulations revealed that the A280V suppresses the cyclization of substrate by influencing the conformation of the enzyme-substrate. The Y282L facilitates secondary cyclization to produce α-guaiene by shortening the distance between the catalytic residue Y531 and the substrate. These insights underscore the high plasticity of LcTPS3 and suggest that its targeted engineering could unlock the synthesis of a wider array of valuable sesquiterpenes.
Collapse
Affiliation(s)
- Weijia Cheng
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Department of Pharmacy, Renmin HospitalWuhan UniversityWuhanChina
| | - Yao Zhi
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Wuhan Hesheng Technology Co., Ltd.WuhanChina
| | - Fangfang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Xiaochun Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Hui Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Ranjun Li
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Hangzhi Zhu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Qiuxia Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Xueting Fang
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Zhenni Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Zixin Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
| | - Tiangang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Wuhan Hesheng Technology Co., Ltd.WuhanChina
| | - Li Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical SciencesWuhan UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Urological Diseases, Hubei Clinical Research Center for Laparoscopic/Endoscopic Urologic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
2
|
Chen Y, Zhou T, Zhong J, Xu Y, Zhang P, Yue X, Zhang H, Sun M, Fu X. Genome-wide identification and expression analyses of CYP450 genes in Chrysanthemum indicum. BMC Genomics 2025; 26:494. [PMID: 40375135 PMCID: PMC12083041 DOI: 10.1186/s12864-025-11664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 05/01/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND The cytochrome P450 superfamily comprises a large group of enzymes crucial for the biosynthesis and metabolism of diverse endogenous and exogenous secondary metabolites in plants. Chrysanthemum, an ornamental genus with considerable medicinal value, is one of the most economically important floricultural crops in the world. The characteristics and functions of CYP450 genes in Chrysanthemum species, however, remain largely unknown. RESULTS In this study, we identified 371 CYP450 genes in the Chrysanthemum indicum genome, and categorized them into 8 clans and 44 families through phylogenetic analysis. Gene duplication analysis revealed 111 genes in 47 tandem duplicated clusters and 28 genes in 15 syntenic blocks, suggesting that extensive duplication events may account for the rapid expansion of CiCYP450 superfamily. Additionally, extensive variations in gene structure, motif composition, and cis-regulatory element likely enhance the functional diversity of CiCYP450 proteins. Volatile metabolomic analysis detected a total of 53 distinct volatile organic compounds across the leaves, stems, and roots of C. indicum, with 19 and 16 compounds being exclusive to leaves and stems, respectively. Transcriptomic analysis identified 248 expressed CiCYP450 genes, with 31, 40, and 88 specifically or preferentially expressed in leaves, stems, and roots, respectively. Further correlation analyses between gene expression levels and compound contents highlighted 36 candidate CiCYP450 genes potentially responsible for the biosynthesis of 47 volatile organic compounds. CONCLUSIONS The genome-wide analyses of cytochrome P450 superfamily offers essential genomic resources for functional studies of CiCYP450 genes, and is significant for the molecular breeding of Chrysanthemum.
Collapse
Affiliation(s)
- Yuyuan Chen
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tongjun Zhou
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jian Zhong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, China
| | - Yuxian Xu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Peng Zhang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyu Yue
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Hua Zhang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ming Sun
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Xuehao Fu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Li Y, Zheng L, Chen M, Li R, Yu Y, Qiao L, Liu J, Zhang X, Zhang Y, Zhang Y, Zheng W. Nootkatone Alleviates Type 2 Diabetes in db/db Mice Through AMPK Activation and ERK Inhibition: An Integrated In Vitro and In Vivo Study. Molecules 2025; 30:2111. [PMID: 40430283 PMCID: PMC12114572 DOI: 10.3390/molecules30102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common chronic metabolic disorder that imposes a substantial healthcare burden globally. Recent advances highlight the potential of natural products in ameliorating T2DM. In this study, we investigated the therapeutic efficacy of nootkatone (Nok), a natural sesquiterpene ketone, in T2DM and elucidated its underlying mechanisms. In vivo experiments demonstrated that Nok administration markedly improved dysregulated glucose metabolism and ameliorated serum biochemical abnormalities in db/db mice. Leveraging a network pharmacology-based approach, we identified putative molecular targets of Nok. Subsequent in vitro analyses revealed that Nok significantly enhanced glucose consumption in cultured cells. Mechanistically, Nok robustly activated AMP-activated protein kinase (AMPK) while suppressing mitogen-activated protein kinase (MAPK) signaling. Western blot validation further indicated that Nok downregulated the phosphorylation of MAPK1/3 (ERK2/1), attenuating MAPK pathway activation and thereby alleviating metabolic dysfunction-associated fatty liver disease (MAFLD) progression in the diabetic model. Collectively, our findings suggest that Nok exerts anti-diabetic effects via dual modulation of AMPK activation and MAPK inhibition, effectively restoring metabolic homeostasis and mitigating inflammation in T2DM. This study positions Nok as a promising natural compound for therapeutic intervention in T2DM and associated metabolic disorders.
Collapse
Affiliation(s)
- Yingjie Li
- School of Pharmacy, Harbin University of Commerce, Harbin 150028, China;
| | - Linlin Zheng
- Department of Pharmacology, College of Basic Medicine and Life Sciences, Hainan Medical College, Haikou 571199, China
| | - Mimi Chen
- Hainan Academy of Medical Sciences, Haikou 571199, China
| | - Ruodi Li
- Department of Pharmacology, College of Basic Medicine and Life Sciences, Hainan Medical College, Haikou 571199, China
| | - Yansu Yu
- Department of Pharmacology, College of Basic Medicine and Life Sciences, Hainan Medical College, Haikou 571199, China
| | - Lu Qiao
- Department of Pharmacology, College of Basic Medicine and Life Sciences, Hainan Medical College, Haikou 571199, China
| | - Jialu Liu
- School of Pharmacy, Hainan Medical College, Haikou 571199, China
| | - Xiaopo Zhang
- School of Pharmacy, Hainan Medical College, Haikou 571199, China
| | - Yong Zhang
- Department of Pharmacology, College of Basic Medicine and Life Sciences, Hainan Medical College, Haikou 571199, China
- Hainan Academy of Medical Sciences, Haikou 571199, China
| | - Yuxin Zhang
- Hainan Academy of Medical Sciences, Haikou 571199, China
| | - Wei Zheng
- School of Pharmacy, Harbin University of Commerce, Harbin 150028, China;
| |
Collapse
|
4
|
Pan K, Qu Y, Liu J, Yu X, Jia Y, Gao B, Liu S, Zheng X, Yang T. Integrated analysis of transcriptome and metabolome reveals the molecular basis of quality differences in Alpinia oxyphylla Miq. From geo-authentic and non-authentic areas. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109755. [PMID: 40073739 DOI: 10.1016/j.plaphy.2025.109755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Alpinia oxyphylla Miq., a well-accepted medicinal and edible plant in south China. The primary ingredients of this medicine vary significantly depending on their origin, which profoundly impacts its quality. In this study, a principal component analysis was performed on 17 different planting areas of A. oxyphylla, with nootkatone and kaempferol identified as representative sesquiterpenoids and flavonoids, respectively. To investigate the genes involved in nootkatone and kaempferol biosynthesis, a combined transcriptome and metabolome profiling was carried out on materials sourced from geo-authentic and non-authentic areas. The transcriptome analysis of these two types of accessions identified 96,691 unigenes, with 13,589 genes showing differential expression in both regions. Metabolome analysis revealed 2859 differentially accumulated metabolites across the four pairwise comparisons. Correlation analysis uncovered a number of genes, that associated with the differential biosynthesis of nootkatone and kaempferol in A. oxyphylla fruits from geo-authentic and non-authentic areas. Further investigation highlighted the candidate gene AoFMO1's ability to heterologously biosynthesize nootkatone in Arabidopsis thaliana leaves. This research lays the groundwork for a deeper understanding of the molecular mechanisms behind the authentication of A. oxyphylla's quality synthesis, and presents a comprehensive list of candidate genes for future functional studies to enhance the development of high-quality A. oxyphylla varieties rich in medicinal ingredients.
Collapse
Affiliation(s)
- Kun Pan
- School of Pharmacy, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, 571199, China; Hainan Provincial Traditional Chinese Medicine Raw Materials Monitoring and Technical Service Center, Haikou, 571199, China
| | - Yunping Qu
- School of Pharmacy, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, 571199, China
| | - Jiaqi Liu
- School of Pharmacy, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, 571199, China
| | - Xiaodan Yu
- School of Pharmacy, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, 571199, China
| | - Yuping Jia
- School of Pharmacy, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, 571199, China
| | - Bingmiao Gao
- School of Pharmacy, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, 571199, China
| | - Shoubai Liu
- College of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China.
| | - Xilong Zheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Tao Yang
- School of Pharmacy, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
5
|
Wang M, Zhang Z, Liu X, Liu Z, Liu R. Biosynthesis of Edible Terpenoids: Hosts and Applications. Foods 2025; 14:673. [PMID: 40002116 PMCID: PMC11854313 DOI: 10.3390/foods14040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Microbial foods include microbial biomass, naturally fermented foods, and heterologously synthesized food ingredients derived from microbial fermentation. Terpenoids, using isoprene as the basic structure, possess various skeletons and functional groups. They exhibit diverse physicochemical properties and physiological activities, such as unique flavor, anti-bacterial, anti-oxidant, anti-cancer, and hypolipemic, making them extensively used in the food industry, such as flavor, fragrance, preservatives, dietary supplements, and medicinal health food. Compared to traditional strategies like direct extraction from natural species and chemical synthesis, microbial cell factories for edible terpenoids have higher titers and yields. They can utilize low-cost raw materials and are easily scaling-up, representing a novel green and sustainable production mode. In this review, we briefly introduce the synthetic pathway of terpenoids and the applications of microbial cell factories producing edible terpenoids. Secondly, we highlight several typical and non-typical microbial chassis in edible terpenoid-producing cell factories. In addition, we reviewed the recent advances of representative terpenoid microbial cell factories with a gram-scale titer in food flavor, food preservation, nutritional enhancers, and medicinal health foods. Finally, we predict the future directions of microbial cell factories for edible terpenoids and their commercialization process.
Collapse
Affiliation(s)
- Mengyu Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (Z.Z.); (X.L.); (Z.L.); (R.L.)
| | | | | | | | | |
Collapse
|
6
|
Cheng S, Wang X, Deng Z, Liu T. Innovative approaches in the discovery of terpenoid natural products. Curr Opin Microbiol 2025; 83:102575. [PMID: 39708423 DOI: 10.1016/j.mib.2024.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024]
Abstract
As a class of natural compounds ubiquitous in nature, diverse terpenoids exhibit a broad spectrum of applications in human endeavors. The efficient discovery of novel terpenoids and the establishment of a terpene library for broad utilization represent pressing challenges in terpenoid natural product research. Various microbial platforms offer abundant precursors for terpene biosynthesis from diverse sources. Leveraging artificial intelligence for enzyme function prediction and screening can facilitate the identification of terpenoid synthesis components with innovative mechanisms. Automated high-throughput bio-foundry workstations can expedite the construction of terpenoid libraries, providing substantial time and labor savings. The integration of multiple strategies promises to yield substantial advancements in the exploration of valuable terpenoids.
Collapse
Affiliation(s)
- Shu Cheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Biological Repositories, Human Genetic Resource Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical-Research Institute, Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiangang Liu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China; Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Wuhan Hesheng Technology Co., Ltd, Wuhan, China.
| |
Collapse
|
7
|
Chen X, Yang Y, Wang M, Tian Q, Jiang Q, Hu X, Ye W, Shen W, Luo X, Chen X, Yuan C, Wang D, Wu T, Li Y, Fu W, Guan L, Li X, Zhang L, Wang Z, Pan Y, Yan X, Yu F. Spatiotemporal analysis of microstructure, sensory attributes, and full-spectrum metabolomes reveals the relationship between bitterness and nootkatone in Alpinia oxyphylla miquel fruit peel and seeds. Food Res Int 2024; 191:114718. [PMID: 39059915 DOI: 10.1016/j.foodres.2024.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The Alpinia oxyphylla fruit (AOF) is a popular condiment and traditional Chinese medicine in Asia, known for its neuroprotective compound nootkatone. However, there has not been a comprehensive study of its flavor or the relationship between sensory and bioactive compounds. To address this issue, we examined AOF's microstructure, flavor, and metabolomic profiles during fruit maturation. The key markers used to distinguish samples included fruit expansion, testa pigmentation, aril liquefaction, oil cell expansion, peel spiciness, aril sweetness, and seed bitterness. A full-spectrum metabolomic analysis, combining a nontargeted metabolomics approach for volatile compounds and a widely targeted metabolomics approach for nonvolatile compounds, identified 1,448 metabolites, including 1,410 differentially accumulated metabolites (DAMs). Notably, 31 DAMs, including nootkatone, were associated with spicy peel, sweet aril, and bitter seeds. Correlational analysis indicated that bitterness intensity is an easy-to-use biomarker for nootkatone content in seeds. KEGG enrichment analysis linked peel spiciness to phenylpropanoid and capsaicin biosynthesis, seed bitterness to terpenoid (especially nootkatone) biosynthesis, and aril sweetness to starch and sucrose metabolism. This investigation advances the understanding of AOF's complex flavor chemistry and underlying bioactive principle, encapsulating the essence of the adage: "no bitterness, no intelligence" within the realm of phytochemistry.
Collapse
Affiliation(s)
- Xiaolu Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Yong Yang
- College of Food Science and Engineering, Hainan University/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Maoyuan Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Qin Tian
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Qian Jiang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Xuan Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Weiguo Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Wanyun Shen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xueting Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China; The College of Tropical Crops, Yunnan Agricultural University, Puer 665000, China
| | - Xueyan Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chao Yuan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Dan Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Tianrong Wu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China; The College of Tropical Crops, Yunnan Agricultural University, Puer 665000, China
| | - Yulan Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Wenna Fu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China; The College of Tropical Crops, Yunnan Agricultural University, Puer 665000, China
| | - Lingliang Guan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Xingfei Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Lingyan Zhang
- The College of Tropical Crops, Yunnan Agricultural University, Puer 665000, China
| | - Zhunian Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Yonggui Pan
- College of Food Science and Engineering, Hainan University/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China.
| | - Xiaoxia Yan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China.
| | - Fulai Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China.
| |
Collapse
|
8
|
Song Y, Liu H, Quax WJ, Zhang Z, Chen Y, Yang P, Cui Y, Shi Q, Xie X. Application of valencene and prospects for its production in engineered microorganisms. Front Microbiol 2024; 15:1444099. [PMID: 39171255 PMCID: PMC11335630 DOI: 10.3389/fmicb.2024.1444099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Valencene, a sesquiterpene with the odor of sweet and fresh citrus, is widely used in the food, beverage, flavor and fragrance industry. Valencene is traditionally obtained from citrus fruits, which possess low concentrations of this compound. In the past decades, the great market demand for valencene has attracted considerable attention from researchers to develop novel microbial cell factories for more efficient and sustainable production modes. This review initially discusses the biosynthesis of valencene in plants, and summarizes the current knowledge of the key enzyme valencene synthase in detail. In particular, we highlight the heterologous production of valencene in different hosts including bacteria, fungi, microalgae and plants, and focus on describing the engineering strategies used to improve valencene production. Finally, we propose potential engineering directions aiming to further increase the production of valencene in microorganisms.
Collapse
Affiliation(s)
- Yafeng Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huizhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Zhiqing Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yiwen Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yinhua Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
9
|
Han J, Miller EP, Li S. Cutting-edge plant natural product pathway elucidation. Curr Opin Biotechnol 2024; 87:103137. [PMID: 38677219 PMCID: PMC11192039 DOI: 10.1016/j.copbio.2024.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Plant natural products (PNPs) play important roles in plant physiology and have been applied across diverse fields of human society. Understanding their biosynthetic pathways informs plant evolution and meanwhile enables sustainable production through metabolic engineering. However, the discovery of PNP biosynthetic pathways remains challenging due to the diversity of enzymes involved and limitations in traditional gene mining approaches. In this review, we will summarize state-of-the-art strategies and recent examples for predicting and characterizing PNP biosynthetic pathways, respectively, with multiomics-guided tools and heterologous host systems and share our perspectives on the systematic pipelines integrating these various bioinformatic and biochemical approaches.
Collapse
Affiliation(s)
- Jianing Han
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Emma Parker Miller
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Sijin Li
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|