1
|
Guo L, Zhang X, Liu Y, Zhang A, Song W, Li L, Zhao J, Pang Q. Salt-alkali-tolerant growth-promoting Streptomyces sp. Jrh8-9 enhances alfalfa growth and resilience under saline-alkali stress through integrated modulation of photosynthesis, antioxidant defense, and hormone signaling. Microbiol Res 2025; 296:128158. [PMID: 40164013 DOI: 10.1016/j.micres.2025.128158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/26/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Streptomyces is a group of plant growth-promoting microorganisms with considerable potential for enhancing plant tolerance to environmental stress. However, the mechanisms by which Streptomyces strains induce systemic tolerance to saline-alkaline stress remain unclear. Here, we evaluated the properties of Streptomyces sp. Jrh8-9, isolated from the halophyte rhizosphere soil, and its effects on alfalfa growth and response to saline-alkali stress. Jrh8-9 exhibited multiple plant-beneficial traits, including phosphate solubilization, nitrogen fixation, indole-3-acetic acid production, and high saline-alkali tolerance. Jrh8-9 inoculation considerably promoted growth in stressed alfalfa by increasing shoot fresh weight, root fresh weight, leaf area, plant height, root length, and root vigor by 46.7 %, 250.8 %, 36.0 %, 31.8 %, 47.4 %, and 103.0 %, respectively. It also improved the chlorophyll content, maximum photochemical efficiency of photosystem II, and the net photosynthetic rate. Physiological and biochemical analyses revealed that Jrh8-9 facilitated ion homeostasis by reducing Na+ and increasing Mg2+ levels, improving osmotic regulation by increasing soluble sugar and relative water contents, and enhancing antioxidant defenses by increasing superoxide dismutase, catalase, and ascorbate peroxidase activities. Transcriptomic profiling identified key differentially expressed genes associated with auxin and jasmonic acid signaling in response to Jrh8-9 inoculation, with auxin- and jasmonic acid-related genes linked to antioxidant pathways. Further analysis showed that increased auxin and jasmonic acid levels induced by Jrh8-9 mitigated reactive oxygen species accumulation and supported photosynthetic function. These findings highlight the multifaceted mechanisms underlying Streptomyces-induced saline-alkali tolerance and provide a potential strategy for improving forage crop resilience in saline-alkali soils.
Collapse
Affiliation(s)
- Lifeng Guo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xuchen Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yaning Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Aiqin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Wenshuai Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China.
| | - Qiuying Pang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Kang Y, Yang Y, Sun P, Li M, Wang H, Sun X, Jin W. Characterization of the heat shock factor RcHsfA6 in Rosa chinensis and function in the thermotolerance of Arabidopsis. BMC PLANT BIOLOGY 2025; 25:673. [PMID: 40399821 DOI: 10.1186/s12870-025-06652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/30/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Environmental stresses, especially high temperatures, severely limit the growth and development of many horticultural plants. As a woody ornamental flower with rich flower colors and flower types, rose (R. chinensis) leaves wilt and shriveled petals at high temperatures, which severely affects its growth and ornamental value. The defense mechanism of rose plants against high-temperature stress has not been fully elucidated. RESULTS In the present study, the transcriptomes of rose petals at normal (25 °C) and high (35 °C) temperature were compared. A total of 2519 differentially expressed genes (DEGs) were identified, including 1491 upregulated DEGs and 1028 downregulated DEGs. The plant hormone signal transduction pathway, especially the abscisic acid (ABA) signaling pathway, was the most enriched signaling pathway for DEGs in rose at high temperature. Heat shock factors (Hsfs), especially class A Hsfs, have been confirmed to be involved in thermotolerance mechanisms. Among the DEGs, eight genes were annotated as Hsfs, including 5 upregulated Hsfs at high temperature. RcHsfA6 is rapidly induced by high temperatures and is a candidate regulatory factor in the plant ABA signaling pathway. Therefore, we focused on RcHsfA6. RcHsfA6 encodes a protein containing 308 amino acids and contains typical Hsf domains, such as the DNA-binding domain (DBD), the N-terminal oligomerization domain (OD), the nuclear localization signal (NLS) and AHA motifs at the C-terminal activator domain (CTAD). The heterologous overexpression of RcHsfA6 in Arabidopsis increased the thermotolerance of Arabidopsis seeds. In addition, RcHsfA6 overexpression increased the ABA content and the expression of ABA biosynthetic gene AtABI5 and signal transduction gene AtPYL12, thereby inhibiting the germination of Arabidopsis seeds under exogenous ABA conditions. CONCLUSIONS Taken together, our results suggest that RcHsfA6 is involved in the high-temperature response of rose and its heterologous overexpression in Arabidopsis increased the thermotolerance of Arabidopsis at high temperatures via the ABA signaling pathway.
Collapse
Affiliation(s)
- Yanhui Kang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China
| | - Yuan Yang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P. R. China
| | - Pei Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China
| | - Maofu Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China
| | - Hua Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China
| | - Xiangyi Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China
| | - Wanmei Jin
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100093, P. R. China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P. R. China.
- Engineering Research Center of Functional Floriculture, Beijing, 100093, P. R. China.
| |
Collapse
|
3
|
Liu R, Wang Y, Shu B, Xin J, Yu B, Gan Y, Liang Y, Qiu Z, Yan S, Cao B. SmHSFA8 Enhances the Heat Tolerance of Eggplant by Regulating the SmEGY3-SmCSD1 Module and Promoting SmF3H-mediated Flavonoid Biosynthesis. PLANT, CELL & ENVIRONMENT 2025; 48:3085-3104. [PMID: 39690517 DOI: 10.1111/pce.15339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/13/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024]
Abstract
High temperature (HT) is a major environmental factor that restrains eggplant growth and production. Heat shock factors (HSFs) play a vital role in the response of plants to high-temperature stress (HTS). However, the molecular mechanism by which HSFs regulate heat tolerance in eggplants remains unclear. Previously, we reported that SmEGY3 enhanced the heat tolerance of eggplant. Herein, SmHSFA8 activated SmEGY3 expression and interacted with SmEGY3 protein to enhance the activation function of SmEGY3 on SmCSD1. Virus-induced gene silencing (VIGS) and overexpression assays suggested that SmHSFA8 positively regulated heat tolerance in plants. SmHSFA8 enhanced the heat tolerance of tomato plants by promoting SlEGY3 expression, H2O2 production and H2O2-mediated retrograde signalling pathway. DNA affinity purification sequencing (DAP-seq) analysis revealed that SmHSPs (SmHSP70, SmHSP70B and SmHSP21) and SmF3H were candidate downstream target genes of SmHSFA8. SmHSFA8 regulated the expression of HSPs and F3H and flavonoid content in plants. The silencing of SmF3H by VIGS reduced the flavonoid content and heat tolerance of eggplant. In addition, exogenous flavonoid treatment alleviated the HTS damage to eggplants. These results indicated that SmHSFA8 enhanced the heat tolerance of eggplant by activating SmHSPs exprerssion, mediating the SmEGY3-SmCSD1 module, and promoting SmF3H-mediated flavonoid biosynthesis.
Collapse
Affiliation(s)
- Renjian Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Yuyuan Wang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Bingbing Shu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Jinyang Xin
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Bingwei Yu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Yuwei Gan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Yonggui Liang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Zhengkun Qiu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Shuangshuang Yan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Bihao Cao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Ali S, Tahir S, Hassan SS, Lu M, Wang X, Quyen LTQ, Zhang W, Chen S. The Role of Phytohormones in Mediating Drought Stress Responses in Populus Species. Int J Mol Sci 2025; 26:3884. [PMID: 40332819 PMCID: PMC12027658 DOI: 10.3390/ijms26083884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
Drought stress substantially impacts the development and viability of Populus spp., which are essential for forestry and bioenergy production. This review summarizes and describes the functions of phytohormones, such as abscisic acid, auxins, and ethylene, in modulating physiological and molecular responses to water scarcity. Drought-induced ABA-mediated stomatal closure and root extension are essential adaptation processes. Furthermore, auxin-ABA (abscisic acid) interactions augment root flexibility, whereas ethylene regulates antioxidant defenses to alleviate oxidative stress. The advantageous function of endophytic bacteria, specifically plant growth-promoting rhizobacteria (PGPR), can augment drought resistance in spruce trees by enhancing nutrient absorption and stimulating root development. Structural adaptations encompass modifications in root architecture, including enhanced root length and density, which augment water uptake efficiency. Similarly, Arbuscular Mycorrhizal Fungi (AMF) significantly enhance stress resilience in forest trees. AMF establishes symbiotic relationships with plant roots, improving water and nutrient uptake, particularly phosphorus, during drought conditions. Furthermore, morphological alterations at the root-soil interface enhance interaction with soil moisture reserves. This review examines the complex mechanisms by which these hormones influence plant responses to water shortage, aiming to offer insights into prospective techniques for improving drought tolerance in common tree species and highlights the importance of hormone control in influencing the adaptive responses of prominent trees to drought stress, providing significant implications for research and practical applications in sustainable forestry and agriculture. These findings lay the groundwork for improving drought tolerance in Populus spp. by biotechnological means and by illuminating the complex hormonal networks that confer drought resistance.
Collapse
Affiliation(s)
- Sajid Ali
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China; (S.A.); (S.T.); (X.W.)
| | - Sana Tahir
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China; (S.A.); (S.T.); (X.W.)
| | - Syed Shaheer Hassan
- Heilongjiang Province Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China;
| | - Meiqi Lu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China; (S.A.); (S.T.); (X.W.)
| | - Xinyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China; (S.A.); (S.T.); (X.W.)
| | - Lai Thi Quynh Quyen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China; (S.A.); (S.T.); (X.W.)
| | - Wenbo Zhang
- International Center for Bamboo and Rattan, No. 8, Futong Eastern Avenue, Wangjing Area, Chaoyang District, Beijing 100102, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China; (S.A.); (S.T.); (X.W.)
| |
Collapse
|
5
|
Long L, Meng X, Yu X, Wang S, Wang J, Yang M. Genome-wide identification of the papaya-like cysteine protease family in poplar and determination of the functional role of PeRD19A in conferring salt tolerance. Int J Biol Macromol 2025; 294:139361. [PMID: 39743096 DOI: 10.1016/j.ijbiomac.2024.139361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Papain-like cysteine proteases (PLCPs) are a large class of proteolytic enzymes involved in plant growth and development as well as plant responses to biological and abiotic stresses. However, there is no detailed characterization of PLCPs genes in poplar. In this study, a genome-wide analysis of the poplar PtrPLCPs family revealed 47 PtrPLCPs, which were classified into nine subfamilies according to their phylogeny: RD21, CEP, XCP, XBCP3, SAG12, RD19 (5), ALP, CTB, and the lost THI subgroups. SAG12 was the largest subfamily, with 22 members, and had the largest number of tandem repeats and homologous gene pairs. The PtrPLCPs family seems to have undergone whole-genome duplication (WGD), with the SAG12 subfamily as the main driving force in evolutionary amplification. An analysis of the abiotic stress expression profile showed that the 47 PtrPLCPs genes were induced by stresses such as cold, drought, and, especially, salt. Overexpression of the PeRD19A gene enhanced the scavenging ability of reactive oxygen species (ROS) in poplar, regulated several major metabolic pathways such as glyoxylate and dicarboxylate metabolic pathways, and provided energy for the synthesis of flavonoids and lignin compounds, thereby improving the antioxidant capacity of cells and increasing the mechanical strength of cell wall to prevent cell damage, and further helping poplar to cope with stress and improve the salt tolerance of poplar. Our study provides valuable insights that can be applied in future functional genome studies of poplar, and specifically studies of the PtrPLCPs gene family.
Collapse
Affiliation(s)
- Lianxiang Long
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Xin Meng
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Xiaoyue Yu
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Shijie Wang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China
| | - Jinmao Wang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China.
| | - Minsheng Yang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China.
| |
Collapse
|
6
|
Yang X, Zhang Y, Bhat JA, Wang M, Zheng H, Bu M, Zhao B, Yang S, Feng X. Deciphering of Genomic Loci Associated with Alkaline Tolerance in Soybean [ Glycine max (L.) Merr.] by Genome-Wide Association Study. PLANTS (BASEL, SWITZERLAND) 2025; 14:357. [PMID: 39942919 PMCID: PMC11820895 DOI: 10.3390/plants14030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Alkaline stress is one of the major abiotic constraints that limits plant growth and development. However, the genetic basis underlying alkaline tolerance in soybean [Glycine max (L.) Merr.] remains largely unexplored. In this study, an integrated genomic analysis approach was employed to elucidate the genetic architecture of alkaline tolerance in a diverse panel of 326 soybean cultivars. Through association mapping, we detected 28 single nucleotide polymorphisms (SNPs) significantly associated with alkaline tolerance. By examining the genomic distances around these significant SNPs, five genomic regions were characterized as stable quantitative trait loci (QTLs), which were designated as qAT1, qAT4, qAT14, qAT18, and qAT20. These QTLs are reported here for the first time in soybean. Seventeen putative candidate genes were identified within the physical intervals of these QTLs. Haplotype analysis indicated that four of these candidate genes exhibited significant allele variation associated with alkaline tolerance-related traits, and the haplotype alleles for these four genes varied in number from two to four. The findings of this study may have important implications for soybean breeding programs aimed at enhancing alkaline tolerance.
Collapse
Affiliation(s)
- Xinjing Yang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.Y.); (Y.Z.); (H.Z.); (M.B.); (B.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Zhang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.Y.); (Y.Z.); (H.Z.); (M.B.); (B.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Mingjing Wang
- Zhejiang Lab, Hangzhou 310012, China; (J.A.B.); (M.W.)
| | - Huanbin Zheng
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.Y.); (Y.Z.); (H.Z.); (M.B.); (B.Z.)
| | - Moran Bu
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.Y.); (Y.Z.); (H.Z.); (M.B.); (B.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beifang Zhao
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.Y.); (Y.Z.); (H.Z.); (M.B.); (B.Z.)
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.Y.); (Y.Z.); (H.Z.); (M.B.); (B.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, National Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.Y.); (Y.Z.); (H.Z.); (M.B.); (B.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Agati G, Brunetti C, dos Santos Nascimento LB, Gori A, Lo Piccolo E, Tattini M. Antioxidants by nature: an ancient feature at the heart of flavonoids' multifunctionality. THE NEW PHYTOLOGIST 2025; 245:11-26. [PMID: 39434218 PMCID: PMC11617662 DOI: 10.1111/nph.20195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Giovanni Agati
- Institute of Applied Physics ‘Carrara’ (IFAC)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection (IPSP)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| | | | - Antonella Gori
- Department of Agri‐Food Production and Environmental Sciences (DAGRI)University of FlorenceViale delle Idee 30I‐50019Sesto Fiorentino, FlorenceItaly
| | - Ermes Lo Piccolo
- Department of Agri‐Food Production and Environmental Sciences (DAGRI)University of FlorenceViale delle Idee 30I‐50019Sesto Fiorentino, FlorenceItaly
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection (IPSP)National Research Council of ItalyVia Madonna del Piano 10I‐50019Sesto Fiorentino, FlorenceItaly
| |
Collapse
|
8
|
Kang Y, Sun P, Yang Y, Li M, Wang H, Sun X, Jin W. Genome-Wide Analysis of the Hsf Gene Family in Rosa chinensis and RcHsf17 Function in Thermotolerance. Int J Mol Sci 2024; 26:287. [PMID: 39796142 PMCID: PMC11719701 DOI: 10.3390/ijms26010287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
Heat shock transcription factors (Hsfs) play an important role in response to high temperatures by binding to the promoter of the heat shock protein gene to promote its expression. As an important ornamental plant, the rose often encounters heat stress during the flowering process. However, there are few studies on the Hsf family in roses (Rosa. chinensis). In the current study, 19 Hsf genes were identified from R. chinensis and grouped into three main subfamilies (A, B, and C) according to their structural characteristics and phylogenetic analysis. The expression patterns of RcHsf genes were detected in different tissues by quantitative real-time PCR. The RcHsf genes exhibited distinct expression patterns at high temperatures, with RcHsf17 having the highest expression level. RcHsf17 was localized in the nucleus and had transcriptional activity. The overexpression of RcHsf17 increased thermotolerance in Arabidopsis, suggesting the potential role of RcHsf17 in the regulation of the high-temperature response. In addition, RcHsf17 overexpressed in Arabidopsis could enhance the response of transgenic Arabidopsis to methyl jasmonate. Collectively, this study identified and screened RcHsfs in response to high temperatures in roses, providing new insights into the functional divergence of RcHsfs and a basis for screening new varieties of rose.
Collapse
Affiliation(s)
- Yanhui Kang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (Y.K.); (P.S.); (Y.Y.); (M.L.); (H.W.); (X.S.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing 100093, China
| | - Pei Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (Y.K.); (P.S.); (Y.Y.); (M.L.); (H.W.); (X.S.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing 100093, China
| | - Yuan Yang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (Y.K.); (P.S.); (Y.Y.); (M.L.); (H.W.); (X.S.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China
| | - Maofu Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (Y.K.); (P.S.); (Y.Y.); (M.L.); (H.W.); (X.S.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing 100093, China
| | - Hua Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (Y.K.); (P.S.); (Y.Y.); (M.L.); (H.W.); (X.S.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing 100093, China
| | - Xiangyi Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (Y.K.); (P.S.); (Y.Y.); (M.L.); (H.W.); (X.S.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing 100093, China
| | - Wanmei Jin
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (Y.K.); (P.S.); (Y.Y.); (M.L.); (H.W.); (X.S.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing 100093, China
- Beijing Engineering Research Center of Functional Floriculture, Beijing 100093, China
| |
Collapse
|
9
|
Cao YH, Lü ZL, Li YH, Jiang Y, Zhang JL. Integrated metabolomic and transcriptomic analysis reveals the role of root phenylpropanoid biosynthesis pathway in the salt tolerance of perennial ryegrass. BMC PLANT BIOLOGY 2024; 24:1225. [PMID: 39709354 DOI: 10.1186/s12870-024-05961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Perennial ryegrass (Lolium perenne) is a widely cultivated forage and turf grass species. Salt stress can severely damage the growth of grass plants. The genome-wide molecular mechanisms of salt tolerance have not been well understood in perennial grass species. In this study, the salt sensitive genotype P1 (PI265351, Chile) and the salt tolerant genotype P2 (PI368892, Algeria) of perennial ryegrass were subjected to 200 mM NaCl, and transcriptomics and metabolomics analyses were performed. A total of 5,728 differentially expressed genes (DEGs) were identified through pairwise comparisons. Antioxidant enzyme encoding genes (LpSOD1, LpCAT1), ion channel gene LpCaC1 and transcription factors (LpERFs, LpHSF1 and LpMYB1) were significantly upregulated in P2, suggesting their involvement in regulating expression of salt-responsive genes for salt tolerance. Functional analysis of DEGs revealed that biosynthesis of secondary metabolites, carbohydrate metabolism and signal transduction were the main pathways in response to salt stress. Weighted gene co-expression network analysis (WGCNA) based on RNA-Seq data showed that membrane transport and ABC transporters were significantly correlated with salt tolerance-related traits. The combined transcriptomics and metabolomics analysis demonstrated that the phenylpropanoid biosynthesis pathway was a major secondary metabolic pathway in the salt response of perennial ryegrass. Especially, the tolerant genotype P2 had greater amounts of upregulated phenylpropanoids, flavonoids and anthocyanins and higher expressions of relevant genes in the pathway than the sensitive genotype P1, indicating a role of phenylpropanoid biosynthesis for perennial ryegrass to adapt to salt stress. The results provided insights into the molecular mechanisms of perennial ryegrass adaptation to salinity and laid a base for genetic improvement of salt tolerance in perennial grass species.
Collapse
Affiliation(s)
- Yan-Hua Cao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Zhao-Long Lü
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Yuan-Hong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Yiwei Jiang
- College of Grassland Sciences, Beijing Forestry University, Beijing, 100083, P.R. China.
| | - Jin-Lin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, P.R. China.
| |
Collapse
|
10
|
Ma G, Liu Z, Song S, Gao J, Liao S, Cao S, Xie Y, Cao L, Hu L, Jing H, Chen L. The LpHsfA2-molecular module confers thermotolerance via fine tuning of its transcription in perennial ryegrass (Lolium perenne L.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2346-2361. [PMID: 39422287 PMCID: PMC11583844 DOI: 10.1111/jipb.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Temperature sensitivity and tolerance play a key role in plant survival and production. Perennial ryegrass (Lolium perenne L.), widely cultivated in cool-season for forage supply and turfgrass, is extremely susceptible to high temperatures, therefore serving as an excellent grass for dissecting the genomic and genetic basis of high-temperature adaptation. In this study, expression analysis revealed that LpHsfA2, an important gene associated with high-temperature tolerance in perennial ryegrass, is rapidly and substantially induced under heat stress. Additionally, heat-tolerant varieties consistently display elevated expression levels of LpHsfA2 compared with heat-sensitive ones. Comparative haplotype analysis of the LpHsfA2 promoter indicated an uneven distribution of two haplotypes (HsfA2Hap1 and HsfA2Hap2) across varieties with differing heat tolerance. Specifically, the HsfA2Hap1 allele is predominantly present in heat-tolerant varieties, while the HsfA2Hap2 allele exhibits the opposite pattern. Overexpression of LpHsfA2 confers enhanced thermotolerance, whereas silencing of LpHsfA2 compromises heat tolerance. Furthermore, LpHsfA2 orchestrates its protective effects by directly binding to the promoters of LpHSP18.2 and LpAPX1 to activate their expression, preventing the non-specific misfolding of intracellular protein and the accumulation of reactive oxygen species in cells. Additionally, LpHsfA4 and LpHsfA5 were shown to engage directly with the promoter of LpHsfA2, upregulating its expression as well as the expression of LpHSP18.2 and LpAPX1, thus contributing to enhanced heat tolerance. Markedly, LpHsfA2 possesses autoregulatory ability by directly binding to its own promoter to modulate the self-transcription. Based on these findings, we propose a model for modulating the thermotolerance of perennial ryegrass by precisely regulating the expression of LpHsfA2. Collectively, these findings provide a scientific basis for the development of thermotolerant perennial ryegrass cultivars.
Collapse
Affiliation(s)
- Guangjing Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Liu
- Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China
| | - Shurui Song
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujie Liao
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Shilong Cao
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Liwen Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Longxing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Haichun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| |
Collapse
|
11
|
Song W, Wang J, Wang X, Xi J, Cai W, Ma X, Zhang J, Fu B, Gao X. Exogenous melatonin promotes salt tolerance in smooth bromegrass seedlings: physiological, transcriptomic, and metabolomic evidence. PHYSIOLOGIA PLANTARUM 2024; 176:e14592. [PMID: 39506145 DOI: 10.1111/ppl.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024]
Abstract
Soil salinization, which severely limits crop yield and quality, has become a global environmental and resource issue. Melatonin plays an important role in plant responses to salt stress. Smooth bromegrass is an important forage with excellent feed value and is widely grown in northern and north-west China for pasture and sand binding. However, the physiological and molecular mechanisms underlying exogenous melatonin regulation of salt stress in smooth bromegrass are not clear. This study compared the phenotype, physiological, transcriptome, and metabolome profiles of two varieties with contrasting salt tolerance attributes under salt and melatonin treatment. After melatonin treatment, the catalase (CAT) and ascorbate peroxidase (APX) activity, proline content, actual photochemical efficiency (Y(II)), relative water content, and fresh weight above ground were significantly higher than under salt treatment, while relative conductivity, H2O2 content, and Na+/K+ ratio were significantly lower than salt treatment. The transcriptome and metabolite profiling analysis of smooth bromegrass seedlings treated without melatonin under salt stress identified the presence of 22522 differentially expressed genes (DEGs) and 862 differentially expressed metabolites (DEMs) in SS, 17809 DEGs and 812 DEMs in ST, while treated with melatonin under salt stress identified the presence of 7033 DEGs and 177 DEMs in SS, 2951 DEGs and 545 DEMs in ST. Furthermore, in response to salt stress, melatonin may be involved in regulating the correlation between DEGs and DEMs in flavonoid biosynthesis, proline biosynthesis, and melatonin biosynthesis. Moreover, melatonin participated in mediating melatonin biosynthesis pathways and affected the expression of ASMT in response to salt stress.
Collapse
Affiliation(s)
- Wenxue Song
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Jing Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Xing Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Jianan Xi
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Wenqi Cai
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Xiaomei Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Jinqing Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Bingzhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| | - Xueqin Gao
- College of Forestry and Prataculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| |
Collapse
|
12
|
Hong Z, Xu H, Shen Y, Liu C, Guo F, Muhammad S, Zhang Y, Niu H, Li S, Zhou W, Wu L. Bioengineering for robust tolerance against cold and drought stresses via co-overexpressing three Cu-miRNAs in major food crops. Cell Rep 2024; 43:114828. [PMID: 39368086 DOI: 10.1016/j.celrep.2024.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/03/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024] Open
Abstract
Environmental stresses threaten global food security by reducing major crop productivity. MicroRNAs (miRNAs), a class of small non-coding RNAs, function as master regulators of gene expression in plants. In this study, we co-overexpressed three copper-miRNAs (miR397, miR408, and miR528) in three major food crops (referred to as 3miR-OE), which simultaneously silenced several target laccase genes, resulting in reduced lignin contents but increased flavonoid metabolites. Importantly, we observed that, compared to wild-type and single miRNA overexpression lines, the 3miR-OE transgenic Japonica and Indica rice exhibited significantly enhanced tolerance against cold and drought stresses throughout the growth period. In addition, 3miR-OE transgenic maize and wheat also exhibited robust resistance to cold and water-deficit conditions, suggesting that co-overexpressing three Cu-miRNAs is a powerful tool for improving resilience to abiotic stresses across diverse crops. Altogether, we have developed a bioengineering strategy to maintain crop growth and yield under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Zheyuan Hong
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hang Xu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yuxin Shen
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanjia Liu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fu Guo
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China
| | - Sajid Muhammad
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaqi Zhang
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hongbin Niu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weijun Zhou
- National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liang Wu
- Hainan Yazhou Bay Seed Laboratory, Hainan Institute, Zhejiang University, Sanya, Hainan 572000, China; National Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
13
|
Ma D, Guo Y, Ali I, Lin J, Xu Y, Yang M. Accumulation characteristics of plant flavonoids and effects of cultivation measures on their biosynthesis: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108960. [PMID: 39079230 DOI: 10.1016/j.plaphy.2024.108960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 09/15/2024]
Abstract
Flavonoids, a kind of secondary metabolites with both edible, medicinal and antioxidant purposes, could be widely used in food, drug processing, forest products, chemical industry and many other fields. Flavonoid production in plant organs were influenced by numerous internal and external factors at various stages, leading to differential gene expression and transcription factors activity. This study reviews the characteristics of major flavonoids categories, their distribution and accumulation in different plant parts and analyzing their molecular mechanisms. The results showed that: (1) Flavonoids exhibited wide distribution in all parts of the plants, with higher concentrations found in shoots system compared to roots sytem, across most species (predominantly accumulated in leaves and flowers). Plant sex, specific growth and development stages are both impacting indicators; (2) Cultivation methods and abiotic stress could affect plants flavonoid biosynthesis, while inappropriate physical treatments and cultivation methods induced stress in plants, prompting the activation of antioxidant mechanisms for flavonoid synthesis as a defence strategy via indirect pathways; (3) Various key genes and transcription factors collaboratively influenced key enzymes activities and regulate flavonoid biosynthesis, forming a complex regulatory network among these genes and transcription factors; (4) Further studies are required to elucidate whether flavonoid synthesis under various cultivation measures follows direct or indirect pathways. Furthermore, exploring methods for flavonoid biosynthesis and accumulation in specific organs or tissues, as well as identifying plant tissues and microorganisms with high efficiency in flavonoid biosynthesis, is essential for achieving targeted cultivation of plants and quantitative flavonoid production.
Collapse
Affiliation(s)
- Daocheng Ma
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yanmei Guo
- Guangxi State-Owned Qipo Forest Farm, Nanning, Guangxi, 530225, China
| | - Izhar Ali
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Jireng Lin
- Guangxi State-Owned Qipo Forest Farm, Nanning, Guangxi, 530225, China
| | - Yuanyuan Xu
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
| | - Mei Yang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
14
|
Bakery A, Vraggalas S, Shalha B, Chauhan H, Benhamed M, Fragkostefanakis S. Heat stress transcription factors as the central molecular rheostat to optimize plant survival and recovery from heat stress. THE NEW PHYTOLOGIST 2024; 244:51-64. [PMID: 39061112 DOI: 10.1111/nph.20017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Heat stress transcription factors (HSFs) are the core regulators of the heat stress (HS) response in plants. HSFs are considered as a molecular rheostat: their activities define the response intensity, incorporating information about the environmental temperature through a network of partner proteins. A prompted activation of HSFs is required for survival, for example the de novo synthesis of heat shock proteins. Furthermore, a timely attenuation of the stress response is necessary for the restoration of cellular functions and recovery from stress. In an ever-changing environment, the balance between thermotolerance and developmental processes such as reproductive fitness highlights the importance of a tightly tuned response. In many cases, the response is described as an ON/OFF mode, while in reality, it is very dynamic. This review compiles recent findings to update existing models about the HSF-regulated HS response and address two timely questions: How do plants adjust the intensity of cellular HS response corresponding to the temperature they experience? How does this adjustment contribute to the fine-tuning of the HS and developmental networks? Understanding these processes is crucial not only for enhancing our basic understanding of plant biology but also for developing strategies to improve crop resilience and productivity under stressful conditions.
Collapse
Affiliation(s)
- Ayat Bakery
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Botany Department, Faculty of Science, Ain Shams University, 11517, Cairo, Egypt
| | - Stavros Vraggalas
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Boushra Shalha
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Harsh Chauhan
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Moussa Benhamed
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), F-91190, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
- Institut Universitaire de France (IUF), Orsay, 91405, France
| | - Sotirios Fragkostefanakis
- Institute of Molecular Biosciences, Plant Cell and Molecular Biology, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Ouyang L, Chen S, Yang W, Zheng J, Ye L, Liu Q, Yang J. Organic fertilizer improved the lead and cadmium metal tolerance of Eucalyptus camaldulensis by enhancing the uptake of potassium, phosphorus, and calcium. FRONTIERS IN PLANT SCIENCE 2024; 15:1444227. [PMID: 39376235 PMCID: PMC11456457 DOI: 10.3389/fpls.2024.1444227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024]
Abstract
Phytoremediation is a strategy for the amelioration of soil heavy metal contamination that aligns with ecological sustainability principles. Among the spectrum of phytoremediation candidates, woody plants are considered particularly adept for their substantial biomass, profound root systems, and non-participation in the food chain. This study used Eucalyptus camaldulensis-a tree species characterized for its high biomass and rapid growth rate-to assess its growth and metal uptake in mining tailings. The results were as follows: exposure to heavy metals reduced the E. camaldulensis uptake of potassium (K), phosphorus (P), and calcium (Ca). Heavy metal stress negatively affected the biomass of E. camaldulensis. Lead (Pb) primarily accumulated in the roots, while cadmium (Cd) predominantly accumulated in the stems. The application of organic fertilizers bolstered the stress tolerance of E. camaldulensis, mitigating the adverse impacts of heavy metal stress. A synergistic effect occurred when organic fertilizers were combined with bacterial fertilizers. The plant's enrichment capacity for Cd and its tolerance to Pb was augmented through the concurrent application of bacterial and organic fertilizers. Collectively, the application of organic fertilizers improved the heavy metal tolerance of E. camaldulensis by enhancing the uptake of K, P, and Ca and elevating the content of glutathione peroxidase (GPX) and gibberellin acid (GA) in roots. These findings provided nascent groundwork for breeding E. camaldulensis with enhanced heavy metal tolerance. Moreover, this proved the potentiality of E. camaldulensis for the management of heavy metal-contaminated tailings and offers a promising avenue for future environmental restoration.
Collapse
Affiliation(s)
- Linnan Ouyang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang, China
| | - Shaoxiong Chen
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Jiaqi Zheng
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang, China
| | - Lingshuai Ye
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang, China
| | - Qiang Liu
- College of Life and Environment Science, Central South University of Forestry and Technology, Changsha, China
| | - Jiaqi Yang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang, China
| |
Collapse
|
16
|
Cao Y, Mei Y, Zhang R, Zhong Z, Yang X, Xu C, Chen K, Li X. Transcriptional regulation of flavonol biosynthesis in plants. HORTICULTURE RESEARCH 2024; 11:uhae043. [PMID: 38623072 PMCID: PMC11017525 DOI: 10.1093/hr/uhae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/02/2024] [Indexed: 04/17/2024]
Abstract
Flavonols are a class of flavonoids that play a crucial role in regulating plant growth and promoting stress resistance. They are also important dietary components in horticultural crops due to their benefits for human health. In past decades, research on the transcriptional regulation of flavonol biosynthesis in plants has increased rapidly. This review summarizes recent progress in flavonol-specific transcriptional regulation in plants, encompassing characterization of different categories of transcription factors (TFs) and microRNAs as well as elucidation of different transcriptional mechanisms, including direct and cascade transcriptional regulation. Direct transcriptional regulation involves TFs, such as MYB, AP2/ERF, and WRKY, which can directly target the key flavonol synthase gene or other early genes in flavonoid biosynthesis. In addition, different regulation modules in cascade transcriptional regulation involve microRNAs targeting TFs, regulation between activators, interaction between activators and repressors, and degradation of activators or repressors induced by UV-B light or plant hormones. Such sophisticated regulation of the flavonol biosynthetic pathway in response to UV-B radiation or hormones may allow plants to fine-tune flavonol homeostasis, thereby balancing plant growth and stress responses in a timely manner. Based on orchestrated regulation, molecular design strategies will be applied to breed horticultural crops with excellent health-promoting effects and high resistance.
Collapse
Affiliation(s)
- Yunlin Cao
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Yuyang Mei
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Ruining Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Zelong Zhong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|