1
|
Werner J, Zuo W, Winkler T, Doehlemann G. A recombinant hybrid provides insights into gene regulation, pathogenesis, and tumorigenesis of phytopathogenic smut fungi. Cell Rep 2025; 44:115772. [PMID: 40516050 DOI: 10.1016/j.celrep.2025.115772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/09/2025] [Accepted: 05/12/2025] [Indexed: 06/16/2025] Open
Abstract
The closely related maize smut fungi Ustilago maydis and Sporisorium reilianum share genome structures but differ in their pathogenic behavior. U. maydis causes local tumors, while S. reilianum spreads systemically and affects inflorescences. To investigate the genetic basis of these differences, we generate an interspecific recombinant hybrid (recombinant U. maydis x S. reilianum hybrid [rUSH]) carrying the S. reilianum mating type. rUSH exhibits in planta proliferation and an S. reilianum-like phenotype, except for teliospore formation. Transcriptome profiling reveals that pathogenicity-related effector orthologs are induced in rUSH but not in a wild-type hybrid control. Comparative transcriptomics identifies 253 differentially expressed one-to-one effector orthologs with cis-, trans-, and a rUSH-specific phenomenon of cis/trans. CRISPR-Cas9 uncovers three novel virulence factors among the rUSH-specific expressed effectors. Ultimately, we pinpoint the transcription factor UmHdp2 as a key regulator of U. maydis-induced tumorigenesis. Our findings highlight the utility of a recombinant, interspecific hybrid in unraveling the molecular mechanisms underlying pathogenic differences in closely related fungal pathogens.
Collapse
Affiliation(s)
- Janina Werner
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Weiliang Zuo
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Tom Winkler
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Xiang H, Stojilkovic B, Gheysen G. Decoding Plant-Pathogen Interactions: A Comprehensive Exploration of Effector-Plant Transcription Factor Dynamics. MOLECULAR PLANT PATHOLOGY 2025; 26:e70057. [PMID: 39854033 PMCID: PMC11757022 DOI: 10.1111/mpp.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
In the coevolutionary process between plant pathogens and hosts, pathogen effectors, primarily proteinaceous, engage in interactions with host proteins, such as plant transcription factors (TFs), during the infection process. This review delves into the intricate interplay between TFs and effectors, a key aspect in the prolonged and complex battle between plants and pathogens. Effectors strategically manipulate TFs using diverse tactics. These include modulating activity of TFs, influencing their incorporation into multimeric complexes, directly changing TF expression levels, promoting their degradation via the ubiquitin-proteasome system, and inducing their subcellular relocalization. The review systematically presents documented interactions, elucidating key mechanisms and their profound impact on host-pathogen dynamics. It emphasises the central role of TFs in plant defence and investigates the convergent evolution of effectors targeting TFs. By providing this overview, we offer valuable insights into this dynamic interaction landscape and suggest potential directions for future research.
Collapse
Affiliation(s)
- Hui Xiang
- Faculty of Bioscience EngineeringGhent UniversityGentBelgium
| | - Boris Stojilkovic
- Faculty of Bioscience EngineeringGhent UniversityGentBelgium
- John Innes CentreNorwichUK
| | | |
Collapse
|
3
|
Gregory J, Liu X, Chen Z, Gallardo C, Punskovsky J, Koslow G, Galli M, Gallavotti A. Transcriptional corepressors in maize maintain meristem development. PLANT PHYSIOLOGY 2024; 197:kiae476. [PMID: 39255069 PMCID: PMC11663565 DOI: 10.1093/plphys/kiae476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Abstract
The formation of the plant body proceeds in a sequential postembryonic manner through the action of meristems. Tightly coordinated meristem regulation is required for development and reproductive success, eventually determining yield in crop species. In maize (Zea mays), the RAMOSA1 ENHANCER LOCUS2 (REL2) family of transcriptional corepressors includes four members, REL2, RELK1 (REL2-LIKE1), RELK2, and RELK3. In a screen for rel2 enhancers, we identified shorter double mutants with enlarged ear inflorescence meristems (IMs) carrying mutations in RELK1. Expression and genetic analysis indicated that REL2 and RELK1 cooperatively regulate ear IM development by controlling genes involved in redox balance, hormone homeostasis, and differentiation, ultimately tipping the meristem toward an environment favorable to expanded expression of the ZmWUSCHEL1 gene, which encodes a key stem-cell promoting transcription factor. We further demonstrated that RELK genes have partially redundant yet diverse functions in the maintenance of various meristem types during development. By exploiting subtle increases in ear IM size in rel2 heterozygous plants, we also showed that extra rows of kernels are formed across a diverse set of F1 hybrids. Our findings reveal that the REL2 family maintains development from embryonic initiation to reproductive growth and can potentially be harnessed for increasing seed yield in a major crop species.
Collapse
Affiliation(s)
- Jason Gregory
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Xue Liu
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Cecilia Gallardo
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Jason Punskovsky
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Gabriel Koslow
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
4
|
Khan M, Uhse S, Bindics J, Kogelmann B, Nagarajan N, Tabassum R, Ingole KD, Djamei A. Tip of the iceberg? Three novel TOPLESS-interacting effectors of the gall-inducing fungus Ustilago maydis. THE NEW PHYTOLOGIST 2024; 244:949-961. [PMID: 39021059 DOI: 10.1111/nph.19967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Ustilago maydis is a biotrophic pathogen causing smut disease in maize. It secretes a cocktail of effector proteins, which target different host proteins during its biotrophic stages in the host plant. One such class of proteins we identified previously is TOPLESS (TPL) and TOPLESS-RELATED (TPR) transcriptional corepressors. Here, we screened 297 U. maydis effector candidates for their ability to interact with maize TPL protein RAMOSA 1 ENHANCER LOCUS 2 LIKE 2 (RELK2) and their ability to induce auxin signaling and thereby identified three novel TPL-interacting protein effectors (Tip6, Tip7, and Tip8). Structural modeling and mutational analysis allowed the identification of TPL-interaction motifs of Tip6 and Tip7. In planta interaction between Tip6 and Tip7 with RELK2 occurs mainly in nuclear compartments, whereas Tip8 colocalizes with RELK2 in a compartment outside the nucleus. Overexpression of Tip8 in nonhost plants leads to cell death, indicating recognition of the effector or its activity. By performing infection assays with single and multideletion mutants of U. maydis, we demonstrate a positive role of Tip6 and Tip7 in U. maydis virulence. Transcriptional profiling of maize leaves infected with Tip effector mutants in comparison with SG200 strain suggests Tip effector activities are not merely redundant.
Collapse
Affiliation(s)
- Mamoona Khan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Simon Uhse
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Janos Bindics
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Benjamin Kogelmann
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| | - Nithya Nagarajan
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Riaz Tabassum
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Kishor D Ingole
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
| | - Armin Djamei
- Department of Plant Pathology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 9, Bonn, 53115, Germany
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences (OEAW), Vienna Bio Center (VBC), Dr. Bohr-Gasse 3, Vienna, 1030, Austria
| |
Collapse
|
5
|
Lei C, Dang Z, Zhu M, Zhang M, Wang H, Chen Y, Zhang H. Identification of the ERF gene family of Mangifera indica and the defense response of MiERF4 to Xanthomonas campestris pv. mangiferaeindicae. Gene 2024; 912:148382. [PMID: 38493974 DOI: 10.1016/j.gene.2024.148382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
An important regulatory role for ethylene-responsive transcription factors (ERFs) is in plant growth and development, stress response, and hormone signaling. However, AP2/ERF family genes in mango have not been systematically studied. In this study, a total of 113 AP2/ERF family genes were identified from the mango genome and phylogenetically classified into five subfamilies: AP2 (28 genes), DREB (42 genes), ERF (33 genes), RAV (6 genes), and Soloist (4 genes). Of these, the ERF family, in conjunction with Arabidopsis and rice, forms a phylogenetic tree divided into seven groups, five of which have MiERF members. Analysis of gene structure and cis-elements showed that each MiERF gene contains only one AP2 structural domain, and that MiERF genes contain a large number of cis-elements associated with hormone signaling and stress response. Collinearity tests revealed a high degree of homology between MiERFs and CsERFs. Tissue-specific and stress-responsive expression profiling revealed that MiERF genes are primarily involved in the regulation of reproductive growth and are differentially and positively expressed in response to external hormones and pathogenic bacteria. Physiological results from a gain-of-function analysis of MiERF4 transiently overexpressed in tobacco and mango showed that transient expression of MiERF4 resulted in decreased colony count and callose deposition, as well as varying degrees of response to hormonal signals such as ETH, JA, and SA. Thus, MiERF4 may be involved in the JA/ETH signaling pathway to enhance plant defense against pathogenic bacteria. This study provides a basis for further research on the function and regulation of MiERF genes and lays a foundation for the selection of disease-resistant genes in mango.
Collapse
Affiliation(s)
- Chen Lei
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhiguo Dang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Min Zhu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Mengting Zhang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Huiliang Wang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yeyuan Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China.
| | - He Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
6
|
Schuster M, Schweizer G, Reißmann S, Happel P, Aßmann D, Rössel N, Güldener U, Mannhaupt G, Ludwig N, Winterberg S, Pellegrin C, Tanaka S, Vincon V, Presti LL, Wang L, Bender L, Gonzalez C, Vranes M, Kämper J, Seong K, Krasileva K, Kahmann R. Novel Secreted Effectors Conserved Among Smut Fungi Contribute to the Virulence of Ustilago maydis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:250-263. [PMID: 38416124 DOI: 10.1094/mpmi-09-23-0139-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Fungal pathogens deploy a set of molecules (proteins, specialized metabolites, and sRNAs), so-called effectors, to aid the infection process. In comparison to other plant pathogens, smut fungi have small genomes and secretomes of 20 Mb and around 500 proteins, respectively. Previous comparative genomic studies have shown that many secreted effector proteins without known domains, i.e., novel, are conserved only in the Ustilaginaceae family. By analyzing the secretomes of 11 species within Ustilaginaceae, we identified 53 core homologous groups commonly present in this lineage. By collecting existing mutants and generating additional ones, we gathered 44 Ustilago maydis strains lacking single core effectors as well as 9 strains containing multiple deletions of core effector gene families. Pathogenicity assays revealed that 20 of these 53 mutant strains were affected in virulence. Among the 33 mutants that had no obvious phenotypic changes, 13 carried additional, sequence-divergent, structurally similar paralogs. We report a virulence contribution of seven previously uncharacterized single core effectors and of one effector family. Our results help to prioritize effectors for understanding U. maydis virulence and provide genetic resources for further characterization. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mariana Schuster
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Gabriel Schweizer
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Independent Data Lab UG, 80937 Munich, Germany
| | - Stefanie Reißmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Petra Happel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Daniela Aßmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Nicole Rössel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Ulrich Güldener
- Deutsches Herzzentrum München, Technische Universität München, 80636 München, Germany
| | - Gertrud Mannhaupt
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Nicole Ludwig
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Research & Development, Weed Control Bayer AG, Crop Science Division, 65926 Frankfurt am Main, Germany
| | - Sarah Winterberg
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Clément Pellegrin
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Shigeyuki Tanaka
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Volker Vincon
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Libera Lo Presti
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lei Wang
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lena Bender
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Pharmaceutics and Biopharmaceutics, Phillips-University Marburg, 35037 Marburg, Germany
| | - Carla Gonzalez
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Miroslav Vranes
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, 76131 Karlsruhe, Germany
| | - Jörg Kämper
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, 76131 Karlsruhe, Germany
| | - Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Ksenia Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|