1
|
Yuan Y, Feng Z, Yan S, Zhang J, Song H, Zou Y, Jin D. The Effect of the Application of Chemical Fertilizer and Arbuscular MyCorrhizal Fungi on Maize Yield and Soil Microbiota in Saline Agricultural Soil. J Fungi (Basel) 2025; 11:319. [PMID: 40278139 PMCID: PMC12028491 DOI: 10.3390/jof11040319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
The overuse of chemical fertilizers not only leads to resource wastage but also causes problems such as environmental pollution and soil degradation. In particular, crop growth in saline-sodic soils is severely restricted due to high salinity and alkalinity, further exacerbating challenges in agricultural production. The aim of this study was to investigate different fertilization strategies that combine chemical fertilizer reduction with arbuscular mycorrhizal fungi (AMF) for improving saline-sodic soils and to assess the effects of these protocols on crop yield, soil properties, and microbial communities. Field experiments across two sites (BeiWuLao and XuJiaZhen) demonstrated that integrating AMF with CF reduction (AHCF treatment) significantly enhanced maize yield by 23.5% at BeiWuLao (from 11,475 to 14,175 kg/ha) and 81.2% at XuJiaZhen (from 7245 to 13,125 kg/ha) compared to conventional fertilization (CK) (p < 0.01). Soil nutrient analysis revealed substantial improvements: available potassium (AK) increased by 77.7% (61.35 vs. 39.33 mg/kg), available phosphorus (AP) by 33.9% (20.50 vs. 15.50 mg/kg), ammonium nitrogen (AN) by 57.3% (64.17 vs. 40.83 mg/kg), and soil organic matter (SOM) by 96.4% (46.98 vs. 23.91 mg/kg) under AHCF treatment (p < 0.05). Although pH and electrical conductivity (ECe) remained unaffected, AMF inoculation shifted microbial composition, elevating salinity-tolerant taxa such as Actinobacteria (+24.7%) and Anabaena. Beta diversity analysis (PCoA) confirmed distinct microbial community structures between treatments, with ECe and AN identified as primary drivers of bacterial (RDA variance: 74.08%) and fungal (RDA variance: 54.63%) communities, respectively. Overall, the combination of chemical fertilizer reduction and AMF effectively improved soil fertility, microbial community structure, and crop yield. These findings have important implications for improving saline soils and promoting environmental sustainability.
Collapse
Affiliation(s)
- Ye Yuan
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (Y.Y.); (S.Y.); (J.Z.); (H.S.)
| | - Zhengjun Feng
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (Y.Y.); (S.Y.); (J.Z.); (H.S.)
- Engineering Research Center of Resource Efficiency Enhancing and Carbon Emission Reduction in Yellow River Basin, Ministry of Education of the People’s Republic of China, Taiyuan 030006, China
- Shanxi Yellow River Laboratory, Taiyuan 030006, China
| | - Shengxin Yan
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (Y.Y.); (S.Y.); (J.Z.); (H.S.)
| | - Junjie Zhang
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (Y.Y.); (S.Y.); (J.Z.); (H.S.)
| | - Huiping Song
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China; (Y.Y.); (S.Y.); (J.Z.); (H.S.)
- Engineering Research Center of Resource Efficiency Enhancing and Carbon Emission Reduction in Yellow River Basin, Ministry of Education of the People’s Republic of China, Taiyuan 030006, China
- Shanxi Yellow River Laboratory, Taiyuan 030006, China
| | - Yan Zou
- Shanxi Qinghuan Nengchuang Environmental Protection Technology Co., Ltd., Taiyuan 030006, China; (Y.Z.); (D.J.)
| | - Dapeng Jin
- Shanxi Qinghuan Nengchuang Environmental Protection Technology Co., Ltd., Taiyuan 030006, China; (Y.Z.); (D.J.)
| |
Collapse
|
2
|
Jia R, Zhou J, Yang L, Blagodatskaya E, Jones DL, Razavi BS, Yang Y, Kuzyakov Y, Zeng Z, Zang H. Trade-off between soil enzyme activities and hotspots area depends on long-term fertilization: In situ field zymography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176386. [PMID: 39304160 DOI: 10.1016/j.scitotenv.2024.176386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Mineral fertilizers and livestock manure have been found to impact soil enzyme activities and distributions, but their trade-off and subsequent effects on soil functioning related to nutrient cycling are rarely evaluated. Here, we investigated the long-term effects of manure and mineral fertilization on the spatial distribution of enzyme activities related to carbon, nitrogen, and phosphorus cycling under field-grown maize. We found that the legacy of mineral fertilizers increased the rhizosphere extension for β-glucosidase and N-acetylglucosaminidase by 16-170 %, and the hotspots area by 37-151 %, compared to manure. The legacy of manure, especially combined with mineral fertilizers, increased enzyme activities and formed non-rhizosphere hotspots. Furthermore, we found a trade-off between hotspots area and enzyme activities under the legacy effect of long-term fertilization. This suggested that plants and microorganisms regulate nutrient investments by altering spatial distribution of enzyme activities. The positive correlation between hotspots area and nutrient contents highlights the importance of non-rhizosphere hotspots induced by manure in maintaining soil fertility. Compared to mineral fertilization, the legacy effect of manure expanded the soil functions for nutrient cycling in both rhizosphere and non-rhizosphere by >1.7 times. In conclusion, the legacy of manure expands non-rhizosphere hotspots and enhances soil functioning, while mineral fertilization expands rhizosphere extension and intensifies hotspots area for nutrient exploitation.
Collapse
Affiliation(s)
- Rong Jia
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Yang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Evgenia Blagodatskaya
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Centre for Sustainable Farming Systems, Food Futures Institute, 90 South St, Murdoch, WA 6150, Australia
| | - Bahar S Razavi
- Dept. Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Yadong Yang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, Georg August University of Göttingen, Göttingen, Germany; Peoples' Friendship University of Russia, RUDN University, 117198 Moscow, Russia; Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia
| | - Zhaohai Zeng
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huadong Zang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Scientific Observing and Experimental Station of Crop High Efficient Use of Water in Wuqiao, the Ministry of Agriculture and Rural Affairs, Wuqiao 061802, China.
| |
Collapse
|
3
|
Teng J, Hou R, Dungait JAJ, Zhou G, Kuzyakov Y, Zhang J, Tian J, Cui Z, Zhang F, Delgado-Baquerizo M. Conservation agriculture improves soil health and sustains crop yields after long-term warming. Nat Commun 2024; 15:8785. [PMID: 39389978 PMCID: PMC11467207 DOI: 10.1038/s41467-024-53169-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Climate warming threatens global food security by exacerbating pressures on degraded soils under intensive crop production. Conservation agriculture is promoted as a sustainable solution that improves soil health and sustains crop yields in a changing climate, but these benefits may be affected by long-term warming. Here, we investigate the effects of conservation agriculture compared to conventional agriculture on 17 soil properties, microbial diversity and crop yields, during eight-years' experimental warming. An overall positive effect of warming on soil health over time under conservation agriculture is characterized by linear increases in soil organic carbon and microbial biomass carbon. Warming-triggered shifts in microbial biomass carbon and fungal diversity (saprogen richness) are directly linked to a 9.3% increase in wheat yields over eight years, but only under conservation agriculture. Overall, conservation agriculture results in an average 21% increase in soil health and supports similar levels of crop production after long-term warming compared to conventional agriculture. Our work provides insights into the potential benefits of conservation agriculture for long-term sustainable food production because improved soil health improves resilience to the effects of climate warming.
Collapse
Affiliation(s)
- Jialing Teng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, PR China
| | - Ruixing Hou
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), 100101, Beijing, PR China
| | - Jennifer A J Dungait
- Geography, College of Life and Environmental Sciences, University of Exeter, Rennes Drive, Exeter, EX4 4RJ, UK
- Carbon Management Centre, SRUC-Scotland's Rural College, Edinburgh, EH9 3JG, UK
| | - Guiyao Zhou
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Sevilla, Spain
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, 37077, Göttingen, Germany
| | - Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, PR China
| | - Jing Tian
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, PR China.
| | - Zhenling Cui
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, PR China.
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, 100193, Beijing, PR China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Sevilla, Spain.
| |
Collapse
|
4
|
Park SH, Kang BR, Kim J, Lee Y, Nam HS, Lee TK. Enhanced Soil Fertility and Carbon Dynamics in Organic Farming Systems: The Role of Arbuscular Mycorrhizal Fungal Abundance. J Fungi (Basel) 2024; 10:598. [PMID: 39330358 PMCID: PMC11433305 DOI: 10.3390/jof10090598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are critical for soil ecosystem services as they enhance plant growth and soil quality via nutrient cycling and carbon storage. Considering the growing emphasis on sustainable agricultural practices, this study investigated the effects of conventional and organic farming practices on AMF diversity, abundance, and ecological functions in maize, pepper, and potato-cultivated soils. Using next-generation sequencing and quantitative PCR, we assessed AMF diversity and abundance in addition to soil health indicators such as phosphorus content, total nitrogen, and soil organic carbon. Our findings revealed that, while no significant differences in soil physicochemical parameters or AMF diversity were observed across farming systems when all crop data were combined, organic farming significantly enhances AMF abundance and fosters beneficial microbial ecosystems. These ecosystems play vital roles in nutrient cycling and carbon storage, underscoring the importance of organic practices in promoting robust AMF communities that support ecosystem services. This study not only deepens our understanding of AMF's ecological roles but also highlights the potential of organic farming to leverage these benefits for improving sustainability in agricultural practices.
Collapse
Affiliation(s)
- So Hee Park
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Bo Ram Kang
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Jinsook Kim
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Youngmi Lee
- Organic Agriculture Division, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea
| | - Hong Shik Nam
- Organic Agriculture Division, National Institute of Agricultural Sciences, Wanju 55365, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
5
|
Martin FM, Öpik M, Dickie IA. Mycorrhizal research now: from the micro- to the macro-scale. THE NEW PHYTOLOGIST 2024; 242:1399-1403. [PMID: 38659112 DOI: 10.1111/nph.19758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Affiliation(s)
- Francis M Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, INRAE Grand Est-Nancy, Champenoux, 54280, France
- College of Plant Science and Technology, Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, 50409, Estonia
| | - Ian A Dickie
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|