Weiner E, Berryman E, González Solís A, Shi Y, Otegui MS. The green ESCRTs: Newly defined roles for ESCRT proteins in plants.
J Biol Chem 2025;
301:108465. [PMID:
40157538 PMCID:
PMC12051064 DOI:
10.1016/j.jbc.2025.108465]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025] Open
Abstract
Endocytosis and endosomal trafficking of plasma membrane proteins for degradation regulate cellular homeostasis and development. As part of these processes, ubiquitinated plasma membrane proteins (cargo) are recognized, clustered, and sorted into intraluminal vesicles of multivesicular endosomes by endosomal sorting complexes required for transport (ESCRT) proteins. At endosomes, ESCRT proteins recognize ubiquitinated cargo and mediate the deformation of the endosomal membrane in a negative geometry, away from the cytosol. ESCRTs are organized in five major complexes that are sequentially recruited to the endosomal membrane where they mediate its vesiculation and cargo sequestration. ESCRTs also participate in other membrane remodeling events and are widely conserved across organisms, both eukaryotes and prokaryotes. Plants contain both conserved and unique ESCRT components and show a general trend toward gene family expansion. Plant endosomes show a wide range of membrane budding patterns with potential implications in cargo sequestration efficiency, plant development, and hormone signaling. Understanding the diversification and specialization of plant ESCRT proteins can provide valuable insights in the mechanisms of ESCRT-mediated membrane bending. In this review, we discuss the endosomal function of ESCRT proteins, their unique features in plants, and the potential connections to the modes of plant endosomal vesiculation.
Collapse