1
|
Wang W, Wu Q, Wang N, Ye S, Wang Y, Zhang J, Lin C, Zhu Q. Advances in bamboo genomics: Growth and development, stress tolerance, and genetic engineering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40317920 DOI: 10.1111/jipb.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/10/2025] [Indexed: 05/07/2025]
Abstract
Bamboo is a fast-growing and ecologically significant plant with immense economic value due to its applications in construction, textiles, and bioenergy. However, research on bamboo has been hindered by its long vegetative period, unpredictable flowering cycles, and challenges in genetic transformation. Recent developments in advanced sequencing and genetic engineering technologies have provided new insights into bamboo's evolutionary history, developmental biology, and stress resilience, paving the way for improved conservation and sustainable utilization. This review synthesizes the latest findings on bamboo's genomics, biotechnology, and the molecular mechanisms governing its growth, development, and stress response. Key genes and regulatory pathways controlling its rapid growth, internode elongation, rhizome development, culm lignification, flowering, and abiotic stress responses have been identified through multi-omics and functional studies. Complex interactions among transcription factors, epigenetic regulators, and functionally important genes shape bamboo's unique growth characteristics. Moreover, progress in genetic engineering techniques, including clustered regularly interspaced short palindromic repeats-based genome editing, has opened new avenues for targeted genetic improvements. However, technical challenges, particularly the complexity of polyploid bamboo genomes and inefficient regeneration systems, remain significant barriers to functional studies and large-scale breeding efforts. By integrating recent genomic discoveries with advancements in biotechnology, this review proposes potential strategies to overcome existing technological limitations and to accelerate the development of improved bamboo varieties. Continued efforts in multi-omics research, gene-editing applications, and sustainable cultivation practices will be essential for harnessing bamboo as a resilient and renewable resource for the future. The review presented here not only deepens our understanding of bamboo's genetic architecture but also provides a foundation for future research aimed at optimizing its ecological and industrial potential.
Collapse
Affiliation(s)
- Wenjia Wang
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Qiyao Wu
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Nannan Wang
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shanwen Ye
- Fujian Academy of Forestry, 35 Shangchiqiao, Xindian, Fuzhou, 350012, China
| | - Yujun Wang
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiang Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Chentao Lin
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
2
|
Mahmood MA, Sajjad MW, Imran I, Naqvi RZ, Amin I, Shafiq M, Aslam MQ, Mansoor S. Attaining the Promise of Geminivirus-Based Vectors in Plant Genome Editing. Viruses 2025; 17:631. [PMID: 40431643 PMCID: PMC12116149 DOI: 10.3390/v17050631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Over the last 40 years, several studies have provided evidence demonstrating that viral vectors can result in effective gene targeting/insertions in a host's genome. The traditional approaches of gene knock-down, -out, or -in involve an intensive transgenesis process that is plagued by extensive timescales. Plant viruses have the potential to target specific genes and integrate exogenous DNA molecules at the target locus. Their ability to manipulate a host's genetic material and become a part of it makes them remarkable agents and helpful for molecular and synthetic biology. In this review, we describe how geminivirus-based vectors can be utilized to overcome traditional transgenesis. We highlight the progress that has been made so far and also discuss the hurdles that hinder the employment of geminivirus-based vectors. Furthermore, we conclude with a comparison of geminivirus-based vectors with other plant-derived vectors. Geminivirus-based vectors stand poised to revolutionize plant genome editing by making nucleic acid manipulation cheaper and easier to deploy, thus lessening the major technical constraints, including homology-directed repair (HDR)-mediated genome editing and time-inefficient tissue culture procedures. The insights given in this review illustrate a broader picture of geminiviral vectors, with an emphasis on engineering plant viruses to ease genome editing practices for crop improvements as well as boost experimental timescales from years to months.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Department of Biological Sciences, University of Sialkot, Sialkot 51040, Pakistan
| | - Muhammad Waseem Sajjad
- National Institute for Biotechnology and Genetic Engineering, College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad 38000, Pakistan
| | - Ifrah Imran
- National Institute for Biotechnology and Genetic Engineering, College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad 38000, Pakistan
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic Engineering, College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad 38000, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad 38000, Pakistan
| | - Muhammad Shafiq
- Department of Biotechnology, University of Management and Technology, Sialkot Campus, Sialkot 51310, Pakistan
| | - Muhammad Qasim Aslam
- Department of Biotechnology, Riphah International University Faisalabad Campus, Faisalabad 44000, Pakistan
| | - Shahid Mansoor
- Jamil ur Rehman Center for Genome Research, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|