1
|
Gao Y, Jin SZ. Strategies for treating oesophageal diseases with stem cells. World J Stem Cells 2020; 12:488-499. [PMID: 32742566 PMCID: PMC7360987 DOI: 10.4252/wjsc.v12.i6.488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
There is a wide range of oesophageal diseases, the most general of which are inflammation, injury and tumours, and treatment methods are constantly being developed and updated. With an increasingly comprehensive understanding of stem cells and their characteristics of multilineage differentiation, self-renewal and homing as well as the combination of stem cells with regenerative medicine, tissue engineering and gene therapy, stem cells are playing an important role in the treatment of a variety of diseases. Mesenchymal stem cells have many advantages and are most commonly applied; however, most of these applications have been in experimental studies, with few related clinical trials for comparison. Therefore, the methods, positive significance and limitations of stem cells in the treatment of oesophageal diseases remain incompletely understood. Thus, the purpose of this paper is to review the current literature and summarize the efficacy of stem cells in the treatment of oesophageal diseases, including oesophageal ulceration, acute radiation-induced oesophageal injury, corrosive oesophageal injury, oesophageal stricture formation after endoscopic submucosal dissection and oesophageal reconstruction, as well as gene therapy for oesophageal cancer.
Collapse
Affiliation(s)
- Yang Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Shi-Zhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
2
|
Baba Y, Baba H. Gene-expression signature may be useful for the prediction of lymph node metastasis in esophageal cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:230. [PMID: 30023393 DOI: 10.21037/atm.2018.05.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Shahin MI, Roy J, Hanafi M, Wang D, Luesakul U, Chai Y, Muangsin N, Lasheen DS, Abou El Ella DA, Abouzid KA, Neamati N. Synthesis and biological evaluation of novel 2-oxo-1,2-dihydroquinoline-4-carboxamide derivatives for the treatment of esophageal squamous cell carcinoma. Eur J Med Chem 2018; 155:516-530. [PMID: 29908444 DOI: 10.1016/j.ejmech.2018.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 01/07/2023]
Abstract
No new and effective treatments have been approved for the treatment of esophageal squamous cell carcinoma (ESCC) in the past decade. Cisplatin and 5-fluoruracil are the most commonly used drugs for this disease. In order to develop a new class of drugs effective in our ESCC phenotypic screens, we began a systematic approach to generate novel compounds based on the 2-oxo-1,2-dihydroquinoline-4-carboxamide fragment. Herein, we report on the synthesis and initial assessment of 55 new analogues in two ESCC cell lines. Some of the active analogues with IC50 values around 10 μM were tested in three additional cell lines. Our structure-activity relationships revealed remarkable alterations in the anti proliferative activities upon modest chemical modifications and autophagy modulation is a suggested mechanism of action.
Collapse
Affiliation(s)
- Mai I Shahin
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, United States; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Joyeeta Roy
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, United States
| | - Maha Hanafi
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, United States; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Dongyao Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, United States; School of Pharmacy, Second Military Medical University, 200433, Shanghai, China
| | - Urarika Luesakul
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, United States; Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, 200433, Shanghai, China
| | - Nongnuj Muangsin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Deena S Lasheen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Dalal A Abou El Ella
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, 62511, Beni Suef, Egypt
| | - Khaled A Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, North Campus Research Complex, 1600 Huron Parkway, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
4
|
Niemeier RC, Etoz S, Gil DA, Skala MC, Brace CL, Rogers JD. Quantifying optical properties with visible and near-infrared optical coherence tomography to visualize esophageal microwave ablation zones. BIOMEDICAL OPTICS EXPRESS 2018; 9:1648-1663. [PMID: 29675308 PMCID: PMC5905912 DOI: 10.1364/boe.9.001648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 05/02/2023]
Abstract
Microwave ablation is a minimally invasive image guided thermal therapy for cancer that can be adapted to endoscope use in the gastrointestinal (GI) tract. Microwave ablation in the GI tract requires precise control over the ablation zone that could be guided by high resolution imaging with quantitative contrast. Optical coherence tomography (OCT) provides ideal imaging resolution and allows for the quantification of tissue scattering properties to characterize ablated tissue. Visible and near-infrared OCT image analysis demonstrated increased scattering coefficients (μs ) in ablated versus normal tissues (Vis: 347.8%, NIR: 415.0%) and shows the potential for both wavelength ranges to provide quantitative contrast. These data suggest OCT could provide quantitative image guidance and valuable information about antenna performance in vivo.
Collapse
Affiliation(s)
- Ryan C. Niemeier
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sevde Etoz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel A. Gil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christopher L. Brace
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeremy D. Rogers
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Triadafilopoulos G, Clarke J, Hawn M. Whole greater than the parts: integrated esophageal centers (IEC) and advanced training in esophageal diseases. Dis Esophagus 2017; 30:1-9. [PMID: 28859396 DOI: 10.1093/dote/dox084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
An integrated esophageal center (IEC) is a multidisciplinary team with expertise, skill, range, and facilities necessary to achieve optimal outcomes in patients with esophageal diseases efficiently and expeditiously. Within IEC, patients presenting with esophageal symptoms undergo a detailed clinical, functional and structural evaluation of their esophagus prior to implementation of tailored medical, endoscopic or surgical therapy. Serving as a core, the IEC clinical practice also supports research and innovation in esophageal diseases as well as public and physician education. Referrals to the unit may be primary, either from primary care or self-initiated, or secondary from other specialty practices, to reassess patients who have previously failed therapies and to manage complex or complicated cases. The fundamental goals of the IEC are to provide value for patients with esophageal diseases, streamlining complex diagnostic investigations and expediting therapies aiming at reducing costs while improving clinical outcomes, and to accelerate knowledge generation through robust interaction and cross-training across disciplines. The organization of the IEC goes beyond traditional academic and clinical silos and involves a director and administrative team coordinating faculty and fellows from both medical and surgical disciplines and supported by other clinical lines, such as radiology, pathology, etc., while it interfaces with physicians, the public, basic, translational and clinical research groups, and related industry partners.
Collapse
|