1
|
Martínez-Perafán F, Fromm A, van der Veen RE, Waldow A, Lehmann M, Krug SM, Günzel D, Rosenthal R, Fromm M, Piontek J. Effect of claudin-1 or -3 expression on cation and water channel properties of claudin-2. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119930. [PMID: 40068709 DOI: 10.1016/j.bbamcr.2025.119930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Claudin-2 (Cldn2) is a typical tight junction protein of leaky epithelia that forms paracellular channels for small cations and water. Claudin-3 (Cldn3) and claudin-1 (Cldn1) are barrier formers and may interact with Cldn2. We aimed to investigate whether this interaction affects the permeability of Cldn2 channels to ions and/or water. To achieve this, two knockout kidney cell lines (MDCK C7/Cldn3KO and MDCK II/quinKO) were used to express Cldn2 and Cldn2/Cldn3. Furthermore, MDCK II/quinKO/Cldn2/Cldn1 cells were generated for comparison. Electrophysiological assays were performed to evaluate the function and properties of Cldn2 channels in these cell models. Cis- and trans-interaction of Cldn2 with Cldn1 or Cldn3 was assessed in MDCK II/quinKO cells by FRET and enrichment assays, respectively. At the tight junction, Cldn2 had a closer cis-proximity to Cldn1 than to Cldn3, but a stronger trans-interaction with the latter. In comparison to cells expressing Cldn2 alone, co-expression with Cldn3 (in both cell models) or Cldn1 (in MDCK II/quinKO cells) resulted in lower cation permeabilities without altering the Eisenman sequences. Other than ion permeability, water flux showed no differences between MDCK C7/Cldn3KO cells expressing Cldn2 and those co-expressing Cldn2/Cldn3. Based on these results, we propose a model in which Cldn2-Cldn1 cis- and Cldn2-Cldn3 trans-interaction leads to a mixture of homo-oligomeric Cldn2 and hetero-oligomeric Cldn2/Cldn1 or Cldn2/Cldn3 channels. The latter would have a pore center where charges are neutralized, by this impairing cation permeability while still allowing water to pass.
Collapse
Affiliation(s)
- Fabián Martínez-Perafán
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Anja Fromm
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | | | - Ayk Waldow
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany.
| | - Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Rita Rosenthal
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Michael Fromm
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany.
| |
Collapse
|
2
|
Pouyiourou I, Fromm A, Piontek J, Rosenthal R, Furuse M, Günzel D. Ion permeability profiles of renal paracellular channel-forming claudins. Acta Physiol (Oxf) 2025; 241:e14264. [PMID: 39821681 PMCID: PMC11740656 DOI: 10.1111/apha.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
AIM Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins. METHODS MDCK II cells, in which the five major claudins had been knocked out (claudin quintupleKO), were stably transfected with individual mouse Cldn2, -4, -8, -10a, -10b, or -15, or with dog Cldn16 or -19, or with a combination of mouse Cldn4 and Cldn8, or dog Cldn16 and Cldn19. Permeation properties were investigated in the Ussing chamber and claudin interactions by FRET assays. RESULTS Claudin-4 and -19 formed barriers against solute permeation. However, at low pH values and in the absence of HCO3 -, claudin-4 conveyed a weak chloride and nitrate permeability. Claudin-8 needed claudin-4 for assembly into TJ strands and abolished this anion preference. Claudin-2, -10a, -10b, -15, -16+19 formed highly permeable channels with distinctive permeation profiles for different monovalent and divalent anions or cations, but barriers against the permeation of ions of opposite charge and of the paracellular tracer fluorescein. CONCLUSION Paracellular ion permeabilities along the nephron are strictly determined by claudin expression patterns. Paracellular channel-forming claudins are specific for certain ions and thus lower transepithelial resistance, yet form barriers against the transport of other solutes.
Collapse
Affiliation(s)
- Ioanna Pouyiourou
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Anja Fromm
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Rita Rosenthal
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| | - Mikio Furuse
- Division of Cell StructureNational Institute for Physiological SciencesOkazakiJapan
- Physiological Sciences ProgramGraduate Institute for Advanced Studies, SOKENDAIOkazakiJapan
- Nagoya University Graduate School of MedicineNagoyaJapan
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, RheumatologyCharité–Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
3
|
Busatto S, Song T, Kim HJ, Hallinan C, Lombardo MN, Stemmer‐Rachamimov AO, Lee K, Moses MA. Breast Cancer-Derived Extracellular Vesicles Modulate the Cytoplasmic and Cytoskeletal Dynamics of Blood-Brain Barrier Endothelial Cells. J Extracell Vesicles 2025; 14:e70038. [PMID: 39868462 PMCID: PMC11770372 DOI: 10.1002/jev2.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Extracellular vesicles (EVs) from brain-seeking breast cancer cells (Br-EVs) breach the blood-brain barrier (BBB) via transcytosis and promote brain metastasis. Here, we defined the mechanisms by which Br-EVs modulate brain endothelial cell (BEC) dynamics to facilitate their BBB transcytosis. BEC treated with Br-EVs show significant downregulation of Rab11fip2, known to promote vesicle recycling to the plasma membrane and significant upregulation of Rab11fip3 and Rab11fip5, which support structural stability of the endosomal compartment and facilitate vesicle recycling and transcytosis, respectively. Using machine learning and quantitative global proteomic, we identified novel Br-EV-induced changes in BECs morphology, motility, and proteome that correlate with decreased BEC cytoplasm and cytoskeletal organization and dynamics. These results define early steps leading to breast-to-brain metastasis and identify molecules that could serve as targets for therapeutic strategies for brain metastasis.
Collapse
Affiliation(s)
- Sara Busatto
- Vascular Biology ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Tzu‐Hsi Song
- Vascular Biology ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Hyung Joon Kim
- Vascular Biology ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Caleb Hallinan
- Vascular Biology ProgramBoston Children's HospitalBostonMassachusettsUSA
| | - Michael N. Lombardo
- Vascular Biology ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Kwonmoo Lee
- Vascular Biology ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Marsha A. Moses
- Vascular Biology ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of SurgeryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
4
|
Moraes FCAD, Rodrigues Sobreira LE, Cavalcanti Souza ME, Burbano RMR. The role of CLDN18.2 in gastric cancer prognosis: a systematic review and meta-analysis. Biomarkers 2024; 29:528-538. [PMID: 39461890 DOI: 10.1080/1354750x.2024.2422965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a major global cause of cancer mortality, with a median overall survival of just 12 months. CLDN18.2, a specific isoform of Claudin18 normally expressed in the gastric mucosa, has emerged as a potential therapeutic target and prognostic biomarker due to its exposure on the surface of tumor cells following malignant transformation. This exposure allows CLDN18.2's extracellular loops to bind monoclonal antibodies, presenting new opportunities for targeted therapy and improved prognostic assessment. METHODS A comprehensive search of PubMed, EMBASE, Cochrane Library, and Web of Science databases was conducted for studies that addressed the correlation of CLDN18.2 with: (1) Progression-free survival (PFS) and (2) Overall Survival (OS). Hazard ratio (HR) and odds ratio (OR) with 95% confidence intervals (CIs) were calculated using a fixed-effects model. Heterogeneity was examined with I2 statistics. P values of ≤ 0.05 were considered statistically significant. Statistical analyses were performed using RStudio, version 4.2.3. RESULTS A total of 15 studies encompassing a total of 4,085 patients were included. There were 2,691 (65.8%) male and 1,394 (34.2%) female patients. In the histologic GC analysis, there were 1,582 (38.7%) patients that had intestinal type and 1,280 (31.3%) with diffuse type. Patients with CLDN18.2 negative status exhibited a non-significant trend towards prolonged PFS (HR: 1.25; 95% CI: 0.98-1.61; p = 0.07; I2 = 18%) and a significant prolonged OS (HR: 1.20; 95% CI: 1.07-1.34; p < 0.01; I2 = 37%) when compared to CLDN18.2-positive patients. CONCLUSION Our findings establish CLDN18.2 as a robust negative prognostic indicator for overall survival in GC patients. While its impact on PFS was not statistically significant, the association with OS suggests CLDN18.2 may serve as a marker for complex biological processes underlying tumor advancement.
Collapse
|
5
|
Basirinia G, Ali M, Comelli A, Sperandeo A, Piana S, Alongi P, Longo C, Di Raimondo D, Tuttolomondo A, Benfante V. Theranostic Approaches for Gastric Cancer: An Overview of In Vitro and In Vivo Investigations. Cancers (Basel) 2024; 16:3323. [PMID: 39409942 PMCID: PMC11476023 DOI: 10.3390/cancers16193323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Gastric cancer (GC) is the second most common cause of cancer-related death worldwide and a serious public health concern. This high death rate is mostly caused by late-stage diagnoses, which lead to poor treatment outcomes. Radiation immunotherapy and targeted therapies are becoming increasingly popular in GC treatment, in addition to surgery and systemic chemotherapy. In this review, we have focused on both in vitro and in vivo research, which presents a summary of recent developments in targeted therapies for gastric cancer. We explore targeted therapy approaches, including integrin receptors, HER2, Claudin 18, and glutathione-responsive systems. For instance, therapies targeting the integrin receptors such as the αvβ3 and αvβ5 integrins have shown promise in enhancing diagnostic precision and treatment efficacy. Furthermore, nanotechnology provides novel approaches to targeted drug delivery and imaging. These include glutathione-responsive nanoplatforms and cyclic RGD peptide-conjugated nanoparticles. These novel strategies seek to reduce systemic toxicity while increasing specificity and efficacy. To sum up, the review addresses the significance of personalized medicine and advancements in gastric cancer-targeted therapies. It explores potential methods for enhancing gastric cancer prognosis and treatment in the future.
Collapse
Affiliation(s)
- Ghazal Basirinia
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (G.B.); (M.A.)
| | - Muhammad Ali
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (G.B.); (M.A.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy; (G.B.); (M.A.)
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| | - Alessandro Sperandeo
- Pharmaceutical Factory, La Maddalena S.P.A., Via San Lorenzo Colli, 312/d, 90146 Palermo, Italy; (A.S.); (S.P.)
| | - Sebastiano Piana
- Pharmaceutical Factory, La Maddalena S.P.A., Via San Lorenzo Colli, 312/d, 90146 Palermo, Italy; (A.S.); (S.P.)
| | - Pierpaolo Alongi
- Nuclear Medicine Unit, A.R.N.A.S. Civico Di Cristina e Benfratelli Hospitals, P.zza N. Leotta 4, 90127 Palermo, Italy; (P.A.); (C.L.)
- Advanced Diagnostic Imaging-INNOVA Project, Department of Radiological Sciences, A.R.N.A.S. Civico Di Cristina e Benfratelli Hospitals, P.zza N. Leotta 4, 90127 Palermo, Italy
| | - Costanza Longo
- Nuclear Medicine Unit, A.R.N.A.S. Civico Di Cristina e Benfratelli Hospitals, P.zza N. Leotta 4, 90127 Palermo, Italy; (P.A.); (C.L.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
- Advanced Diagnostic Imaging-INNOVA Project, Department of Radiological Sciences, A.R.N.A.S. Civico Di Cristina e Benfratelli Hospitals, P.zza N. Leotta 4, 90127 Palermo, Italy
| |
Collapse
|
6
|
Marsch P, Rajagopal N, Nangia S. Biophysics of claudin proteins in tight junction architecture: Three decades of progress. Biophys J 2024; 123:2363-2378. [PMID: 38859584 PMCID: PMC11365114 DOI: 10.1016/j.bpj.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.
Collapse
Affiliation(s)
- Patrick Marsch
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York.
| |
Collapse
|
7
|
Mathias-Machado MC, de Jesus VHF, Jácome A, Donadio MD, Aruquipa MPS, Fogacci J, Cunha RG, da Silva LM, Peixoto RD. Claudin 18.2 as a New Biomarker in Gastric Cancer-What Should We Know? Cancers (Basel) 2024; 16:679. [PMID: 38339430 PMCID: PMC10854563 DOI: 10.3390/cancers16030679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer (GC) remains a formidable global health challenge, ranking among the top-five causes of cancer-related deaths worldwide. The majority of patients face advanced stages at diagnosis, with a mere 6% five-year survival rate. First-line treatment for metastatic GC typically involves a fluoropyrimidine and platinum agent combination; yet, predictive molecular markers have proven elusive. This review navigates the evolving landscape of GC biomarkers, with a specific focus on Claudin 18.2 (CLDN18.2) as an emerging and promising target. Recent phase III trials have unveiled the efficacy of Zolbetuximab, a CLDN18.2-targeting antibody, in combination with oxaliplatin-based chemotherapy for CLDN18.2-positive metastatic GC. As this novel therapeutic avenue unfolds, understanding the nuanced decision making regarding the selection of anti-CLDN18.2 therapies over other targeted agents in metastatic GC becomes crucial. This manuscript reviews the evolving role of CLDN18.2 as a biomarker in GC and explores the current status of CLDN18.2-targeting agents in clinical development. The aim is to provide concise insights into the potential of CLDN18.2 as a therapeutic target and guide future clinical decisions in the management of metastatic GC.
Collapse
Affiliation(s)
- Maria Cecília Mathias-Machado
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, São Paulo 04538-132, Brazil; (M.D.D.); (M.P.S.A.); (R.D.P.)
| | | | - Alexandre Jácome
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, Belo Horizonte 30360-680, Brazil;
| | - Mauro Daniel Donadio
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, São Paulo 04538-132, Brazil; (M.D.D.); (M.P.S.A.); (R.D.P.)
| | | | - João Fogacci
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, Rio de Janeiro 22775-003, Brazil;
| | - Renato Guerino Cunha
- Cellular Therapy Program, Division of Hematology, Oncoclínicas, São Paulo 04538-132, Brazil;
| | | | - Renata D’Alpino Peixoto
- Division of Gastrointestinal Medical Oncology, Oncoclínicas, São Paulo 04538-132, Brazil; (M.D.D.); (M.P.S.A.); (R.D.P.)
| |
Collapse
|
8
|
Su K, Yao X, Guo C, Qian C, Wang Y, Ma X, Wang X, Yang Y. Solasodine suppresses the metastasis of gastric cancer through claudin-2 via the AMPK/STAT3/NF-κB pathway. Chem Biol Interact 2023; 379:110520. [PMID: 37121296 DOI: 10.1016/j.cbi.2023.110520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/02/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancies, and it has become the third most common malignant tumour in the world. Targeting metastasis has also become a key and difficult point in the treatment of GC. Solasodine is an active ingredient isolated from Solanum nigrumL. for the treatment of various cancers, such as breast cancer, pancreatic cancer and lung cancer. In the present study, we investigated the role and mechanism of solasodine in inhibiting GC. In vitro, we found that solasodine not only promoted cell death but also inhibited the migration and invasion of HGC27 and AGS cells. Solasodine regulated epithelial-mesenchymal transition (EMT) and reduced the expression of claudin-2 (CLDN2). Moreover, overexpression of CLDN2 inhibited the prometastatic phenotype and EMT of GC, and solasodine recovered this phenotype. Furthermore, the knockdown of CLDN2 had the opposite effect. We also found that the AMPK activators metformin and AICAR activated phosphorylation of AMPK and downregulated the expression of RhoA and CLDN2, indicating that AMPK was the upstream regulator of CLDN2. Solasodine could also activate AMP-activated protein kinase (AMPK) and inhibit the phosphorylation of STAT3 and the nuclear translocation of NF-κB. Therefore, solasodine may have prevented EMT by modulating the AMPK/STAT3/NF-κB/CLDN2 signalling pathway. In vivo, we established a xenograft model to investigate the phosphorylation of AMPK and the expression of CLDN2 from tumour tissues, and we found that solasodine inhibited tumour growth through AMPK-CLDN2 pathway. To sum up, solasodine prevented EMT by modulating the AMPK/STAT3/NF-κB/CLDN2 signalling pathway, becoming a new solution for inhibiting GC metastasis.
Collapse
Affiliation(s)
- Kexin Su
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xuan Yao
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Jingxin Bio-pharmaceutical Co., Ltd, Shanghai, 201203, China.
| | - Chenxu Guo
- Eastern Hepatobiliary Surgery Hospital, Shanghai, 201805, China.
| | - Chunmei Qian
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yiying Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaoqi Ma
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaoyu Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yifu Yang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Wuttke M, König E, Katsara MA, Kirsten H, Farahani SK, Teumer A, Li Y, Lang M, Göcmen B, Pattaro C, Günzel D, Köttgen A, Fuchsberger C. Imputation-powered whole-exome analysis identifies genes associated with kidney function and disease in the UK Biobank. Nat Commun 2023; 14:1287. [PMID: 36890159 PMCID: PMC9995463 DOI: 10.1038/s41467-023-36864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Genome-wide association studies have discovered hundreds of associations between common genotypes and kidney function but cannot comprehensively investigate rare coding variants. Here, we apply a genotype imputation approach to whole exome sequencing data from the UK Biobank to increase sample size from 166,891 to 408,511. We detect 158 rare variants and 105 genes significantly associated with one or more of five kidney function traits, including genes not previously linked to kidney disease in humans. The imputation-powered findings derive support from clinical record-based kidney disease information, such as for a previously unreported splice allele in PKD2, and from functional studies of a previously unreported frameshift allele in CLDN10. This cost-efficient approach boosts statistical power to detect and characterize both known and novel disease susceptibility variants and genes, can be generalized to larger future studies, and generates a comprehensive resource ( https://ckdgen-ukbb.gm.eurac.edu/ ) to direct experimental and clinical studies of kidney disease.
Collapse
Affiliation(s)
- Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
- Renal Division, Department of Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
| | - Eva König
- Eurac Research, Institute for Biomedicine (affiliated to the University of Lübeck), Bolzano, Italy
| | - Maria-Alexandra Katsara
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | | | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Martin Lang
- Eurac Research, Institute for Biomedicine (affiliated to the University of Lübeck), Bolzano, Italy
| | - Burulca Göcmen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine (affiliated to the University of Lübeck), Bolzano, Italy
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christian Fuchsberger
- Eurac Research, Institute for Biomedicine (affiliated to the University of Lübeck), Bolzano, Italy.
| |
Collapse
|
10
|
Houillier P, Lievre L, Hureaux M, Prot-Bertoye C. Mechanisms of paracellular transport of magnesium in intestinal and renal epithelia. Ann N Y Acad Sci 2023; 1521:14-31. [PMID: 36622354 DOI: 10.1111/nyas.14953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Magnesium is the fourth most abundant cation in the body. It plays a critical role in many biological processes, including the process of energy release. Paracellular transport of magnesium is mandatory for magnesium homeostasis. In addition to intestinal absorption that occurs in part across the paracellular pathway, magnesium is reabsorbed by the kidney tubule. The bulk of magnesium is reabsorbed through the paracellular pathway in the proximal tubule and the thick ascending limb of the loop of Henle. The finding that rare genetic diseases due to pathogenic variants in genes encoding specific claudins (CLDNs), proteins located at the tight junction that determine the selectivity and the permeability of the paracellular pathway, led to an awareness of their importance in magnesium homeostasis. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is caused by a loss of function of CLDN16 or CLDN19. Pathogenic CLDN10 variants cause HELIX syndrome, which is associated with a severe renal loss of sodium chloride and hypermagnesemia. The present review summarizes the current knowledge of the mechanisms and factors involved in paracellular magnesium permeability. The review also highlights some of the unresolved questions that need to be addressed.
Collapse
Affiliation(s)
- Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Marguerite Hureaux
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
- Paris Centre de Recherche Cardio-vasculaire, INSERM, Université Paris Cité, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
11
|
Berselli A, Benfenati F, Maragliano L, Alberini G. Multiscale modelling of claudin-based assemblies: a magnifying glass for novel structures of biological interfaces. Comput Struct Biotechnol J 2022; 20:5984-6010. [DOI: 10.1016/j.csbj.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/03/2022] Open
|
12
|
Fuladi S, McGuinness S, Khalili-Araghi F. Role of TM3 in claudin-15 strand flexibility: A molecular dynamics study. Front Mol Biosci 2022; 9:964877. [PMID: 36250014 PMCID: PMC9557151 DOI: 10.3389/fmolb.2022.964877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Claudins are cell-cell adhesion proteins within tight junctions that connect epithelial cells together. Claudins polymerize into a network of strand-like structures within the membrane of adjoining cells and create ion channels that control paracellular permeability to water and small molecules. Tight junction morphology and barrier function is tissue specific and regulated by claudin subtypes. Here, we present a molecular dynamics study of claudin-15 strands within lipid membranes and the role of a single-point mutation (A134P) on the third transmembrane helix (TM3) of claudin-15 in determining the morphology of the strand. Our results indicate that the A134P mutation significantly affects the lateral flexibility of the strands, increasing the persistence length of claudin-15 strands by a factor of three. Analyses of claudin-claudin contact in our μsecond-long trajectories show that the mutation does not alter the intermolecular contacts (interfaces) between claudins. However, the dynamics and frequency of interfacial contacts are significantly affected. The A134P mutation introduces a kink in TM3 of claudin-15 similar to the one observed in claudin-3 crystal structure. The kink on TM3 skews the rotational flexibility of the claudins in the strands and limits their fluctuation in one direction. This asymmetric movement in the context of the double rows reduces the lateral flexibility of the strand and leads to higher persistence lengths of the mutant.
Collapse
Affiliation(s)
- Shadi Fuladi
- Department of Physics, University of Illinois at Chicago, Chicago, IL, United States
| | - Sarah McGuinness
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | | |
Collapse
|
13
|
Rajagopal N, Nangia S. Unique structural features of claudin‐5 and claudin‐15 lead to functionally distinct tight junction strand architecture. Ann N Y Acad Sci 2022; 1517:225-233. [DOI: 10.1111/nyas.14891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering Syracuse University Syracuse New York USA
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering Syracuse University Syracuse New York USA
| |
Collapse
|
14
|
Defective claudin-10 causes a novel variation of HELIX syndrome through compromised tight junction strand assembly. Genes Dis 2022; 9:1301-1314. [PMID: 35873018 PMCID: PMC9293720 DOI: 10.1016/j.gendis.2021.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/28/2022] Open
Abstract
Formation of claudin-10 based tight junctions (TJs) is paramount to paracellular Na+ transport in multiple epithelia. Sequence variants in CLDN10 have been linked to HELIX syndrome, a salt-losing tubulopathy with altered handling of divalent cations accompanied by dysfunctional salivary, sweat, and lacrimal glands. Here, we investigate molecular basis and phenotypic consequences of a newly identified homozygous CLDN10 variant that translates into a single amino acid substitution within the fourth transmembrane helix of claudin-10. In addition to hypohidrosis (H), electrolyte (E) imbalance with impaired urine concentrating ability, and hypolacrimia (L), phenotypic findings include altered salivary electrolyte composition and amelogenesis imperfecta but neither ichthyosis (I) nor xerostomia (X). Employing cellular TJ reconstitution assays, we demonstrate perturbation of cis- and trans-interactions between mutant claudin-10 proteins. Ultrastructures of reconstituted TJ strands show disturbed continuity and reduced abundance in the mutant case. Throughout, both major isoforms, claudin-10a and claudin-10b, are differentially affected with claudin-10b showing more severe molecular alterations. However, expression of the mutant in renal epithelial cells with endogenous TJs results in wild-type-like ion selectivity and conductivity, indicating that aberrant claudin-10 is generally capable of forming functional paracellular channels. Thus, mutant proteins prove pathogenic by compromising claudin-10 TJ strand assembly. Additional ex vivo investigations indicate their insertion into TJs to occur in a tissue-specific manner.
Collapse
|
15
|
Hempel C, Rosenthal R, Fromm A, Krug SM, Fromm M, Günzel D, Piontek J. Tight junction channels claudin-10b and claudin-15: Functional mapping of pore-lining residues. Ann N Y Acad Sci 2022; 1515:129-142. [PMID: 35650657 DOI: 10.1111/nyas.14794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although functional and structural models for paracellular channels formed by claudins have been reported, mechanisms regulating charge and size selectivity of these channels are unknown in detail. Here, claudin-15 and claudin-10b cation channels showing high-sequence similarity but differing channel properties were analyzed. Mutants of pore-lining residues were expressed in MDCK-C7 cells. In claudin-15, proposed ion interaction sites (D55 and E64) conserved between both claudins were neutralized. D55N and E64Q substitutions decreased ion permeabilities, and D55N/E64Q had partly additive effects. D55N increased cation dehydration capability and decreased pore diameter. Additionally, residues differing between claudin-15 and -10b close to pore center were analyzed. Claudin-10b-mimicking W63K affected neither assembly nor function of claudin-15 channels. In contrast, in claudin-10b, corresponding (claudin-15b-mimicking) K64W and K64M substitutions disturbed integration into tight junction and slightly altered relative permeabilities for differently sized monovalent cations. Removal of claudin-10b-specific negative charge (D36A substitution) was without effect. The data suggest that a common tetra-aspartate ring (D55/D56) in pore center of claudin-15/-10b channels directly attracts cations, while E64/D65 may be at least partly shielded by W63/K64. Charge at position W63/K64 affects assembly and properties for claudin-10b but not for claudin-15 channels. Our findings add to the mechanistic understanding of the determinants of paracellular cation permeability.
Collapse
Affiliation(s)
- Caroline Hempel
- Clinical Physiology/Nutritional Medicine, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rita Rosenthal
- Clinical Physiology/Nutritional Medicine, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Fromm
- Clinical Physiology/Nutritional Medicine, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Fromm
- Clinical Physiology/Nutritional Medicine, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Cao W, Xing H, Li Y, Tian W, Song Y, Jiang Z, Yu J. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res 2022; 10:38. [PMID: 35642043 PMCID: PMC9153115 DOI: 10.1186/s40364-022-00385-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
The claudin18.2 (CLDN18.2) protein, an isoform of claudin18, a member of the tight junction protein family, is a highly selective biomarker with limited expression in normal tissues and often abnormal expression during the occurrence and development of various primary malignant tumors, such as gastric cancer/gastroesophageal junction (GC/GEJ) cancer, breast cancer, colon cancer, liver cancer, head and neck cancer, bronchial cancer and non-small-cell lung cancer. CLDN18.2 participates in the proliferation, differentiation and migration of tumor cells. Recent studies have identified CLDN18.2 expression as a potential specific marker for the diagnosis and treatment of these tumors. With its specific expression pattern, CLDN18.2 has become a unique molecule for targeted therapy in different cancers, especially in GC; for example, agents such as zolbetuximab (claudiximab, IMAB362), a monoclonal antibody (mAb) against CLDN18.2, have been developed. In this review, we outline recent advances in the development of immunotherapy strategies targeting CLDN18.2, including monoclonal antibodies (mAbs), bispecific antibodies (BsAbs), chimeric antigen receptor T (CAR-T) cells redirected to target CLDN18.2, and antibody–drug conjugates (ADCs).
Collapse
Affiliation(s)
- Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenliang Tian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
17
|
Moonwiriyakit A, Pathomthongtaweechai N, Steinhagen PR, Chantawichitwong P, Satianrapapong W, Pongkorpsakol P. Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers 2022; 11:2077620. [PMID: 35621376 PMCID: PMC10161963 DOI: 10.1080/21688370.2022.2077620] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Intestinal epithelium functions as a tissue barrier to prevent interaction between the internal compartment and the external milieu. Intestinal barrier function also determines epithelial polarity for the absorption of nutrients and the secretion of waste products. These vital functions require strong integrity of tight junction proteins. In fact, intestinal tight junctions that seal the paracellular space can restrict mucosal-to-serosal transport of hostile luminal contents. Tight junctions can form both an absolute barrier and a paracellular ion channel. Although defective tight junctions potentially lead to compromised intestinal barrier and the development and progression of gastrointestinal (GI) diseases, no FDA-approved therapies that recover the epithelial tight junction barrier are currently available in clinical practice. Here, we discuss the impacts and regulatory mechanisms of tight junction disruption in the gut and related diseases. We also provide an overview of potential therapeutic targets to restore the epithelial tight junction barrier in the GI tract.
Collapse
Affiliation(s)
- Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Peter R Steinhagen
- Department of Hepatology and Gastroenterology, Charité Medical School, Berlin, Germany
| | | | | | - Pawin Pongkorpsakol
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
18
|
Claudins and Gastric Cancer: An Overview. Cancers (Basel) 2022; 14:cancers14020290. [PMID: 35053454 PMCID: PMC8773541 DOI: 10.3390/cancers14020290] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Gastric cancer (GC) is one of the most common cancers and the third leading cause of cancer deaths worldwide, with a high frequency of recurrence and metastasis, and a poor prognosis. This review presents novel biological and clinical significance of claudin (CLDN) expression in GC, especially CLDN18, and clinical trials centered around CLDN18.2. It also presents new findings for other CLDNs. Abstract Despite recent improvements in diagnostic ability and treatment strategies, advanced gastric cancer (GC) has a high frequency of recurrence and metastasis, with poor prognosis. To improve the treatment results of GC, the search for new treatment targets from proteins related to epithelial–mesenchymal transition (EMT) and cell–cell adhesion is currently being conducted. EMT plays an important role in cancer metastasis and is initiated by the loss of cell–cell adhesion, such as tight junctions (TJs), adherens junctions, desmosomes, and gap junctions. Among these, claudins (CLDNs) are highly expressed in some cancers, including GC. Abnormal expression of CLDN1, CLDN2, CLDN3, CLDN4, CLDN6, CLDN7, CLDN10, CLDN11, CLDN14, CLDN17, CLDN18, and CLDN23 have been reported. Among these, CLDN18 is of particular interest. In The Cancer Genome Atlas, GC was classified into four new molecular subtypes, and CLDN18–ARHGAP fusion was observed in the genomically stable type. An anti-CLDN18.2 antibody drug was recently developed as a therapeutic drug for GC, and the results of clinical trials are highly predictable. Thus, CLDNs are highly expressed in GC as TJs and are expected targets for new antibody drugs. Herein, we review the literature on CLDNs, focusing on CLDN18 in GC.
Collapse
|
19
|
Pellino A, Brignola S, Riello E, Niero M, Murgioni S, Guido M, Nappo F, Businello G, Sbaraglia M, Bergamo F, Spolverato G, Pucciarelli S, Merigliano S, Pilati P, Cavallin F, Realdon S, Farinati F, Dei Tos AP, Zagonel V, Lonardi S, Loupakis F, Fassan M. Association of CLDN18 Protein Expression with Clinicopathological Features and Prognosis in Advanced Gastric and Gastroesophageal Junction Adenocarcinomas. J Pers Med 2021; 11:1095. [PMID: 34834447 PMCID: PMC8624955 DOI: 10.3390/jpm11111095] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
The tight junction protein claudin-18 (CLDN18), is often expressed in various cancer types including gastric (GC) and gastroesophageal adenocarcinomas (GECs). In the last years, the isoform CLDN18.2 emerged as a potential drug target in metastatic GCs, leading to the development of monoclonal antibodies against this protein. CLDN18.2 is the dominant isoform of CLDN18 in normal gastric and gastric cancer tissues. In this work, we evaluated the immunohistochemical (IHC) profile of CLDN18 and its correlation with clinical and histopathological features including p53, E-cadherin, MSH2, MSH6, MLH1, PMS2, HER2, EBER and PD-L1 combined positive score, in a large real-world and mono-institutional series of advanced GCs (n = 280) and GECs (n = 70). The association of IHC results with survival outcomes was also investigated. High membranous CLDN18 expression (2+ and 3+ intensity ≥75%) was found in 117/350 (33.4%) samples analyzed. CLDN18 expression correlated with age <70 (p = 0.0035), positive EBV status (p = 0.002), high stage (III, IV) at diagnosis (p = 0.003), peritoneal involvement (p < 0.001) and lower incidence of liver metastases (p = 0.013). CLDN18 did not correlate with overall survival. The predictive value of response of CLDN18 to targeted agents is under investigation in several clinical trials and further studies will be needed to select patients who could benefit from these therapies.
Collapse
Affiliation(s)
- Antonio Pellino
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Stefano Brignola
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
- Department of Pathology, Azienda ULSS 2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Erika Riello
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
| | - Monia Niero
- Department of Pathology, Azienda ULSS 2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Sabina Murgioni
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Maria Guido
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
- Department of Pathology, Azienda ULSS 2 Marca Trevigiana, 31100 Treviso, Italy;
| | - Floriana Nappo
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Gianluca Businello
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
| | - Marta Sbaraglia
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
| | - Francesca Bergamo
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Gaya Spolverato
- 1st Surgery Unit, Department of Surgical, Oncological, and Gastroenterological Sciences (DISCOG), University of Padua, 35122 Padua, Italy; (G.S.); (S.P.)
| | - Salvatore Pucciarelli
- 1st Surgery Unit, Department of Surgical, Oncological, and Gastroenterological Sciences (DISCOG), University of Padua, 35122 Padua, Italy; (G.S.); (S.P.)
| | - Stefano Merigliano
- 3rd Surgery Unit, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, 35122 Padua, Italy;
| | - Pierluigi Pilati
- Surgery Unit, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 31033 Castelfranco Veneto, Italy;
| | | | - Stefano Realdon
- Gastroenterology Unit, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy;
| | - Fabio Farinati
- Gastroenterology Unit, Department of Surgical, Oncological, and Gastroenterological Sciences (DISCOG), University of Padua, 35122 Padua, Italy;
| | - Angelo Paolo Dei Tos
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
| | - Vittorina Zagonel
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Sara Lonardi
- Oncology Unit 3, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy;
| | - Fotios Loupakis
- Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy; (A.P.); (S.M.); (F.N.); (F.B.); (V.Z.); (F.L.)
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35122 Padua, Italy; (S.B.); (E.R.); (M.G.); (G.B.); (M.S.); (A.P.D.T.)
- Veneto Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 35128 Padua, Italy
| |
Collapse
|
20
|
Alzahrani AS, Hussein M, Alswailem M, Mouna A, Albalawi L, Moria Y, Jabbar MA, Shi Y, Günzel D, Dasouki M. A novel claudin-10 mutation with a unique mechanism in two unrelated families with HELIX syndrome. Kidney Int 2021; 100:415-429. [PMID: 33675844 DOI: 10.1016/j.kint.2021.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 02/05/2023]
Abstract
HELIX syndrome, characterized by hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia due to claudin-10 (CLDN10) mutations, was recognized in 2017. Here we describe two unrelated Saudi families with this syndrome due to a novel CLDN10 mutation with a unique mechanism of CLDN10 inactivation. The two consanguineous families include 12 affected individuals (three siblings in family 1 and nine members in family 2). They presented with hypokalemia and the above-mentioned features of HELIX syndrome. The underlying mutation was detected by whole exome sequencing, confirmed by Sanger sequencing and functionally indicated by RT-PCR, electrophysiological studies and immunohistochemical staining of transfected HEK293 and MDCK C7 cells, and skin and kidney biopsy tissues. A novel biallelic single nucleotide deletion was identified in exon 5 of CLDN10 (NM_182848.3: c.647delC, p.P216Lfs∗19 for CLDN10a or NM_006984.4: c.653delC, p.P218Lfs∗21 for CLDN10b). The mutation led to frameshift and extension of the original termination codon by nine amino acids with loss of the C-terminus pdz-binding motif. Functional studies showed mRNA degradation and protein retention in intracellular compartments and that the pdz-binding motif is crucial for proper localization of claudin-10 in tight junctions. In the kidney, claudin-10 was replaced by translocation of claudin-2 (proximal tubule) and claudin-19 (thick ascending limb), and in the sweat gland by claudin-3 and occludin. However, these claudins did not functionally compensate for loss of claudin-10. Thus, this novel CLDN10 mutation identified in these two families disrupted the C-terminus pdz-binding motif of claudin-10 causing HELIX syndrome.
Collapse
Affiliation(s)
- Ali S Alzahrani
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Maged Hussein
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Meshael Alswailem
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ahmad Mouna
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Lina Albalawi
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; Department of Medicine, Al Majma'ah University, Al Majma'ah, Saudi Arabia
| | - Yosra Moria
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mai Abdel Jabbar
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Yufei Shi
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Schilpp C, Lochbaum R, Braubach P, Jonigk D, Frick M, Dietl P, Wittekindt OH. TGF-β1 increases permeability of ciliated airway epithelia via redistribution of claudin 3 from tight junction into cell nuclei. Pflugers Arch 2021; 473:287-311. [PMID: 33386991 PMCID: PMC7835204 DOI: 10.1007/s00424-020-02501-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/31/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
TGF-β1 is a major mediator of airway tissue remodelling during atopic asthma and affects tight junctions (TJs) of airway epithelia. However, its impact on TJs of ciliated epithelia is sparsely investigated. Herein we elaborated effects of TGF-β1 on TJs of primary human bronchial epithelial cells. We demonstrate that TGF-β1 activates TGF-β1 receptors TGFBR1 and TGFBR2 resulting in ALK5-mediated phosphorylation of SMAD2. We observed that TGFBR1 and -R2 localize specifically on motile cilia. TGF-β1 activated accumulation of phosphorylated SMAD2 (pSMAD2-C) at centrioles of motile cilia and at cell nuclei. This triggered an increase in paracellular permeability via cellular redistribution of claudin 3 (CLDN3) from TJs into cell nuclei followed by disruption of epithelial integrity and formation of epithelial lesions. Only ciliated cells express TGF-β1 receptors; however, nuclear accumulations of pSMAD2-C and CLDN3 redistribution were observed with similar time course in ciliated and non-ciliated cells. In summary, we demonstrate a role of motile cilia in TGF-β1 sensing and showed that TGF-β1 disturbs TJ permeability of conductive airway epithelia by redistributing CLDN3 from TJs into cell nuclei. We conclude that the observed effects contribute to loss of epithelial integrity during atopic asthma.
Collapse
Affiliation(s)
- Carolin Schilpp
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Robin Lochbaum
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Peter Braubach
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Oliver H Wittekindt
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
22
|
Uc PY, Miranda J, Raya-Sandino A, Alarcón L, Roldán ML, Ocadiz-Delgado R, Cortés-Malagón EM, Chávez-Munguía B, Ramírez G, Asomoza R, Shoshani L, Gariglio P, González-Mariscal L. E7 oncoprotein from human papillomavirus 16 alters claudins expression and the sealing of epithelial tight junctions. Int J Oncol 2020; 57:905-924. [PMID: 32945372 PMCID: PMC7473757 DOI: 10.3892/ijo.2020.5105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/16/2020] [Indexed: 11/24/2022] Open
Abstract
Tight junctions (TJs) are cell-cell adhesion structures frequently altered by oncogenic transformation. In the present study the role of human papillomavirus (HPV) 16 E7 oncoprotein on the sealing of TJs was investigated and also the expression level of claudins in mouse cervix and in epithelial Madin-Darby Canine Kidney (MDCK) cells. It was found that there was reduced expression of claudins -1 and -10 in the cervix of 7-month-old transgenic K14E7 mice treated with 17β-estradiol (E2), with invasive cancer. In addition, there was also a transient increase in claudin-1 expression in the cervix of 2-month-old K14E7 mice, and claudin-10 accumulated at the border of cells in the upper layer of the cervix in FvB mice treated with E2, and in K14E7 mice treated with or without E2. These changes were accompanied by an augmented paracellular permeability of the cervix in 2- and 7-monthold FvB mice treated with E2, which became more pronounced in K14E7 mice treated with or without E2. In MDCK cells the stable expression of E7 increased the space between adjacent cells and altered the architecture of the monolayers, induced the development of an acute peak of transepithelial electrical resistance accompanied by a reduced expression of claudins -1, -2 and -10, and an increase in claudin-4. Moreover, E7 enhances the ability of MDCK cells to migrate through a 3D matrix and induces cell stiffening and stress fiber formation. These observations revealed that cell transformation induced by HPV16 E7 oncoprotein was accompanied by changes in the pattern of expression of claudins and the degree of sealing of epithelial TJs.
Collapse
Affiliation(s)
- Perla Yaceli Uc
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Arturo Raya-Sandino
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - María Luisa Roldán
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Rodolfo Ocadiz-Delgado
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Enoc Mariano Cortés-Malagón
- Research Unit on Genetics and Cancer, Research Division, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Georgina Ramírez
- Department of Electrical Engineering, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - René Asomoza
- Department of Electrical Engineering, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Liora Shoshani
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Patricio Gariglio
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Mexico City 07360, Mexico
| |
Collapse
|
23
|
Li J, Zhang Y, Hu D, Gong T, Xu R, Gao J. Analysis of the expression and genetic alteration of CLDN18 in gastric cancer. Aging (Albany NY) 2020; 12:14271-14284. [PMID: 32668412 PMCID: PMC7425459 DOI: 10.18632/aging.103457] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Claudin 18 (CLDN18) is a transmembrane protein that localizes to apical regions to form tight junction complexes. Abnormal expression of CLDN18 has been reported in gastric cancer (GC). The expression, genetic alterations, and prognostic role of CLDN18 were analyzed using public data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Human Protein Atlas (HPA) databases using multiple online tools. The biological network of CLDN18 was determined using GeneMANIA. Expression of CLDN18 was restricted to lung and stomach in normal tissues, was significantly downregulated in GC, but was ectopically overexpressed in some other cancer types. There was no correlation between mRNA expression of CLDN18 and the clinicopathology of GC, although expression was higher in the Epstein-Barr virus (EBV)-positive subgroup than other subgroups. Genetic alteration of CLDN18 was not a common event in GC; the main alteration was gene fusion with ARHGAP26. CLDN18 expression did not predict the overall survival (OS) of GC patients. This study summarizes the expression features of CLDN18 in GC and suggests it may serve as a biomarker and therapy target for GC.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| | - Yao Zhang
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| | - Dengmin Hu
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| | - Tuping Gong
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| | - Run Xu
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| | - Jun Gao
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, Sichuan, China
| |
Collapse
|
24
|
Piontek J, Krug SM, Protze J, Krause G, Fromm M. Molecular architecture and assembly of the tight junction backbone. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183279. [PMID: 32224152 DOI: 10.1016/j.bbamem.2020.183279] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022]
Abstract
The functional and structural concept of tight junctions has developed after discovery of claudin and TAMP proteins. Many of these proteins contribute to epi- and endothelial barrier but some, in contrast, form paracellular channels. Claudins form the backbone of tight junction (TJ) strands whereas other proteins regulate TJ dynamics. The current joined double-row model of TJ strands and channels is crucially based on the linear alignment of claudin-15 in the crystal. Molecular dynamics simulations, protein docking, mutagenesis, cellular TJ reconstitution, and electron microscopy studies largely support stability and functionality of the model. Here, we summarize in silico and in vitro data about TJ strand assembly including comparison of claudin crystal structures and alternative models. Sequence comparisons, experimental and structural data substantiate differentiation of classic and non-classic claudins differing in motifs related to strand assembly. Classic claudins seem to share a similar mechanism of strand formation. Interface variations likely contribute to TJ strand flexibility. Combined in vitro/in silico studies are expected to elucidate mechanistic keys determining TJ regulation.
Collapse
Affiliation(s)
- Jörg Piontek
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Susanne M Krug
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Jonas Protze
- Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany.
| |
Collapse
|
25
|
Prot-Bertoye C, Houillier P. Claudins in Renal Physiology and Pathology. Genes (Basel) 2020; 11:genes11030290. [PMID: 32164158 PMCID: PMC7140793 DOI: 10.3390/genes11030290] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Claudins are integral proteins expressed at the tight junctions of epithelial and endothelial cells. In the mammalian kidney, every tubular segment express a specific set of claudins that give to that segment unique properties regarding permeability and selectivity of the paracellular pathway. So far, 3 claudins (10b, 16 and 19) have been causally traced to rare human syndromes: variants of CLDN10b cause HELIX syndrome and variants of CLDN16 or CLDN19 cause familial hypomagnesemia with hypercalciuria and nephrocalcinosis. The review summarizes our current knowledge on the physiology of mammalian tight junctions and paracellular ion transport, as well as on the role of the 3 above-mentioned claudins in health and disease. Claudin 14, although not having been causally linked to any rare renal disease, is also considered, because available evidence suggests that it may interact with claudin 16. Some single-nucleotide polymorphisms of CLDN14 are associated with urinary calcium excretion and/or kidney stones. For each claudin considered, the pattern of expression, the function and the human syndrome caused by pathogenic variants are described.
Collapse
Affiliation(s)
- Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Service de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Service de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, F-75015 Paris, France
- CNRS, ERL8228, F-75006 Paris, France
- Correspondence:
| |
Collapse
|
26
|
Assembly of Tight Junction Strands: Claudin-10b and Claudin-3 Form Homo-Tetrameric Building Blocks that Polymerise in a Channel-Independent Manner. J Mol Biol 2020; 432:2405-2427. [DOI: 10.1016/j.jmb.2020.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/12/2020] [Accepted: 02/28/2020] [Indexed: 02/03/2023]
|
27
|
Fuladi S, Jannat RW, Shen L, Weber CR, Khalili-Araghi F. Computational Modeling of Claudin Structure and Function. Int J Mol Sci 2020; 21:ijms21030742. [PMID: 31979311 PMCID: PMC7037046 DOI: 10.3390/ijms21030742] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
Tight junctions form a barrier to control passive transport of ions and small molecules across epithelia and endothelia. In addition to forming a barrier, some of claudins control transport properties of tight junctions by forming charge- and size-selective ion channels. It has been suggested claudin monomers can form or incorporate into tight junction strands to form channels. Resolving the crystallographic structure of several claudins in recent years has provided an opportunity to examine structural basis of claudins in tight junctions. Computational and theoretical modeling relying on atomic description of the pore have contributed significantly to our understanding of claudin pores and paracellular transport. In this paper, we review recent computational and mathematical modeling of claudin barrier function. We focus on dynamic modeling of global epithelial barrier function as a function of claudin pores and molecular dynamics studies of claudins leading to a functional model of claudin channels.
Collapse
Affiliation(s)
- Shadi Fuladi
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA; (S.F.); (R.-W.J.)
| | - Ridaka-Wal Jannat
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA; (S.F.); (R.-W.J.)
| | - Le Shen
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| | - Christopher R. Weber
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
- Correspondence: (C.R.W.); (F.K.-A.)
| | - Fatemeh Khalili-Araghi
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA; (S.F.); (R.-W.J.)
- Correspondence: (C.R.W.); (F.K.-A.)
| |
Collapse
|
28
|
Heinemann U, Schuetz A. Structural Features of Tight-Junction Proteins. Int J Mol Sci 2019; 20:E6020. [PMID: 31795346 PMCID: PMC6928914 DOI: 10.3390/ijms20236020] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Tight junctions are complex supramolecular entities composed of integral membrane proteins, membrane-associated and soluble cytoplasmic proteins engaging in an intricate and dynamic system of protein-protein interactions. Three-dimensional structures of several tight-junction proteins or their isolated domains have been determined by X-ray crystallography, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy. These structures provide direct insight into molecular interactions that contribute to the formation, integrity, or function of tight junctions. In addition, the known experimental structures have allowed the modeling of ligand-binding events involving tight-junction proteins. Here, we review the published structures of tight-junction proteins. We show that these proteins are composed of a limited set of structural motifs and highlight common types of interactions between tight-junction proteins and their ligands involving these motifs.
Collapse
Affiliation(s)
- Udo Heinemann
- Macromolecular Structure and Interaction Laboratory, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Anja Schuetz
- Protein Production & Characterization Platform, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
29
|
Coati I, Lotz G, Fanelli GN, Brignola S, Lanza C, Cappellesso R, Pellino A, Pucciarelli S, Spolverato G, Guzzardo V, Munari G, Zaninotto G, Scarpa M, Mastracci L, Farinati F, Realdon S, Pilati P, Lonardi S, Valeri N, Rugge M, Kiss A, Loupakis F, Fassan M. Claudin-18 expression in oesophagogastric adenocarcinomas: a tissue microarray study of 523 molecularly profiled cases. Br J Cancer 2019; 121:257-263. [PMID: 31235864 PMCID: PMC6738069 DOI: 10.1038/s41416-019-0508-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Claudin-18 (CLDN18) is a highly specific tight junction protein of the gastric mucosa. An isoform of CLDN18, the Claudin 18.2, has recently emerged as an innovative drug target for metastatic gastric cancer. METHODS We investigated the immunohistochemical profile of CLDN18, p53, p16, E-cadherin, MSH2, MSH6, MLH1, PSM2, HER2, and PDL-1 in a large series of 523 primary gastric carcinomas (GCs; n = 408) and gastro-oesophageal carcinomas (GECs; n = 115) and 135 matched and synchronous nodal metastases. The status of HER2 and EBER by means of chromogenic in situ hybridisation (CISH) was also evaluated. RESULTS High membranous CLDN18 expression was present in 150/510 (29.4%) primary cases and in 45/132 (34.1%) metastases. An abnormal expression (i.e. nuclear and/or cytoplasmic) was observed in 115 (22.5%) primary cases and in 33 (25.0%) metastases. A 38.8% of the cases showed significant CLDN18 intratumoural variability among the different tissue microarray cores obtained from the same tumour. Positive membrane CLDN18 expression was statistically associated with non-antral GCs (p = 0.016), Lauren diffuse type (p = 0.009), and with EBV-associated cancers (p < 0.001). CONCLUSIONS CLDN18 is frequently expressed in gastric and gastro-oesophageal cancers; further studies should investigate the prognostic significance of CLDN18 heterogeneity in order to implement its test into clinical practice.
Collapse
Affiliation(s)
- Irene Coati
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Gábor Lotz
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Giuseppe Nicolò Fanelli
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Stefano Brignola
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Cristiano Lanza
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Rocco Cappellesso
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Antonio Pellino
- Unit of Oncology 1, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Salvatore Pucciarelli
- Department of Surgical Oncology and Gastroenterology Sciences (DiSCOG), Surgery Unit, University of Padua, Padua, Italy
| | - Gaya Spolverato
- Department of Surgical Oncology and Gastroenterology Sciences (DiSCOG), Surgery Unit, University of Padua, Padua, Italy
| | - Vincenza Guzzardo
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Giada Munari
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
- Unit of Oncology 1, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | | | - Marco Scarpa
- Department of Surgical Oncology and Gastroenterology Sciences (DiSCOG), Surgery Unit, University of Padua, Padua, Italy
| | - Luca Mastracci
- Department of Surgical Sciences and Integrated Diagnostics (DISC), Pathology Unit, University of Genova, Genova, Italy
| | - Fabio Farinati
- Department of Surgical Oncology and Gastroenterology Sciences (DiSCOG), Gastroenterology Unit, University of Padua, Padua, Italy
| | - Stefano Realdon
- Unit of Gastroenterology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Pierluigi Pilati
- Unit of Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Sara Lonardi
- Unit of Oncology 1, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Nicola Valeri
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Department of Medicine, Royal Marsden Hospital, London, UK
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
- Veneto Cancer Registry, Padua, Italy
| | - Andras Kiss
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Fotios Loupakis
- Unit of Oncology 1, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.
| |
Collapse
|
30
|
Nakamura S, Irie K, Tanaka H, Nishikawa K, Suzuki H, Saitoh Y, Tamura A, Tsukita S, Fujiyoshi Y. Morphologic determinant of tight junctions revealed by claudin-3 structures. Nat Commun 2019; 10:816. [PMID: 30778075 PMCID: PMC6379431 DOI: 10.1038/s41467-019-08760-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/28/2019] [Indexed: 01/07/2023] Open
Abstract
Tight junction is a cell adhesion apparatus functioning as barrier and/or channel in the paracellular spaces of epithelia. Claudin is the major component of tight junction and polymerizes to form tight junction strands with various morphologies that may correlate with their functions. Here we present the crystal structure of mammalian claudin-3 at 3.6 Å resolution. The third transmembrane helix of claudin-3 is clearly bent compared with that of other subtypes. Structural analysis of additional two mutants with a single mutation representing other subtypes in the third helix indicates that this helix takes a bent or straight structure depending on the residue. The presence or absence of the helix bending changes the positions of residues related to claudin-claudin interactions and affects the morphology and adhesiveness of the tight junction strands. These results evoke a model for tight junction strand formation with different morphologies – straight or curvy strands – observed in native epithelia. The main components of tight junctions (TJ) are claudins that polymerize and form meshwork architectures called TJ strands. Here the authors present the 3.6 Å crystal structure of murine claudin-3 and show that residue P134 causes a bending of the third transmembrane helix which affects the morphology and adhesiveness of the TJ strands.
Collapse
Affiliation(s)
- Shun Nakamura
- Cellular and Structural Physiology Institute, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Katsumasa Irie
- Cellular and Structural Physiology Institute, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Hiroo Tanaka
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kouki Nishikawa
- Cellular and Structural Physiology Institute, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Hiroshi Suzuki
- Cellular and Structural Physiology Institute, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan.,Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, 10065, USA
| | - Yasunori Saitoh
- Cellular and Structural Physiology Institute, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan.,Research Institute for Interdisciplinary Science, Okayama University, Tsushima Naka 3-1-1, Kita, Okayama, 700-8530, Japan
| | - Atsushi Tamura
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Sachiko Tsukita
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Institute, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan. .,CeSPIA Inc., 2-1-1 Otemachi, Chiyoda, Tokyo, 100-0004, Japan.
| |
Collapse
|
31
|
Chen H, Lu R, Zhang YG, Sun J. Vitamin D Receptor Deletion Leads to the Destruction of Tight and Adherens Junctions in Lungs. Tissue Barriers 2018; 6:1-13. [PMID: 30409076 DOI: 10.1080/21688370.2018.1540904] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vitamin D deficiency has been linked to various inflammatory diseases in lungs, including pneumonia, asthma and chronic obstructive pulmonary disease. However, the mechanisms by which vitamin D and vitamin D receptor reduce inflammation in lung diseases remain poorly understood. In this study, we investigated the expression and cell-specific distribution of tight and adherens junctions in the lungs of vitamin D receptor-deficient (VDR-/-) mice. Our results demonstrated that mRNA and protein levels of claudin-2, claudin-4 and claudin-12 were significantly decreased in the lungs of VDR-/- mice. Other tight and adherens junction proteins, such as ZO-1, occludin, claudin-10, β-catenin, and VE-cadherin, showed significant differences in expression in the lungs of VDR-/- and wild-type mice. These data suggest that altered expression of tight and adherens junction molecules, especially of claudin-2, -4, -10, -12, and -18, after chronic pneumonia caused by VDR deletion could increase lung permeability.Therefore, VDR may play an important role in maintaining pulmonary barrier integrity. Further studies should confirm whether vitamin D/VDR is beneficial for the prevention or treatment of lung diseases.
Collapse
Affiliation(s)
- Honglei Chen
- a Department of Biochemistry , Rush University , Chicago , IL , USA
| | - Rong Lu
- b Division of Gastroenterology and Hepatology, Department of Medicine , University of Illinois at Chicago , Chicago , IL , USA
| | - Yong-Guo Zhang
- b Division of Gastroenterology and Hepatology, Department of Medicine , University of Illinois at Chicago , Chicago , IL , USA
| | - Jun Sun
- b Division of Gastroenterology and Hepatology, Department of Medicine , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
32
|
Samanta P, Wang Y, Fuladi S, Zou J, Li Y, Shen L, Weber C, Khalili-Araghi F. Molecular determination of claudin-15 organization and channel selectivity. J Gen Physiol 2018; 150:949-968. [PMID: 29915162 PMCID: PMC6028499 DOI: 10.1085/jgp.201711868] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/08/2018] [Accepted: 05/04/2018] [Indexed: 12/28/2022] Open
Abstract
Members of the claudin family form tight junctions between adjacent epithelial and endothelial cells. Samanta et al. build an atomic model of claudin-15 using molecular dynamics simulations and conclude that four claudin-15 molecules each contribute an aspartic acid residue to form a selectivity filter. Tight junctions are macromolecular structures that traverse the space between adjacent cells in epithelia and endothelia. Members of the claudin family are known to determine tight junction permeability in a charge- and size-selective manner. Here, we use molecular dynamics simulations to build and refine an atomic model of claudin-15 channels and study its transport properties. Our simulations indicate that claudin-15 forms well-defined channels for ions and molecules and otherwise “seals” the paracellular space through hydrophobic interactions. Ionic currents, calculated from simulation trajectories of wild-type as well as mutant channels, reflect in vitro measurements. The simulations suggest that the selectivity filter is formed by a cage of four aspartic acid residues (D55), contributed by four claudin-15 molecules, which creates a negative electrostatic potential to favor cation flux over anion flux. Charge reversal or charge ablation mutations of D55 significantly reduce cation permeability in silico and in vitro, whereas mutations of other negatively charged pore amino acid residues have a significantly smaller impact on channel permeability and selectivity. The simulations also indicate that water and small ions can pass through the channel, but larger cations, such as tetramethylammonium, do not traverse the pore. Thus, our model provides an atomic view of claudin channels, their transport function, and a potential three-dimensional organization of its selectivity filter.
Collapse
Affiliation(s)
| | - Yitang Wang
- Department of Pathology, The University of Chicago, Chicago, IL.,Department of Surgery, The University of Chicago, Chicago, IL
| | - Shadi Fuladi
- Department of Physics, University of Illinois, Chicago, IL
| | - Jinjing Zou
- Department of Pathology, The University of Chicago, Chicago, IL
| | - Ye Li
- Department of Pathology, The University of Chicago, Chicago, IL
| | - Le Shen
- Department of Pathology, The University of Chicago, Chicago, IL .,Department of Surgery, The University of Chicago, Chicago, IL
| | | | | |
Collapse
|
33
|
Freeze fracture: new avenues for the ultrastructural analysis of cells in vitro. Histochem Cell Biol 2017; 149:3-13. [PMID: 29134300 DOI: 10.1007/s00418-017-1617-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2017] [Indexed: 01/02/2023]
Abstract
The ultrastructural analysis of biological membranes by freeze fracture has a 60-year tradition. In this review, we summarize the benefits of the freeze-fracture technique and review special structures analyzed by freeze fracture and by combined freeze-fracture replica immunogold labeling (FRIL) of cell cultures. In principle, every cellular membrane whether of cell suspensions, mono- or bilayers of cell cultures can be analyzed in freeze fracture. The combination of freeze fracture and immunogold labeling of the replica allows the ultrastructural identification of protein assemblies in combination with the molecular identification of their constituent proteins using specific antibodies. The analysis of fractured and labeled intramembrane particles enables determination of the arrangement and organization of proteins within the membrane due to the high resolution of the transmission electron microscope. Because of cell-specific ultrastructural features such as square arrays, identification of cell types can be performed in parallel. This review is aimed at presenting the possibilities of freeze fracture and FRIL in the high-resolution ultrastructural analysis of membrane proteins and their assembly in naïve, transfected or otherwise treated cultured cells. At the interface of molecular approaches and morphology, the application of FRIL in genetically modified cells provides a novel and intriguing aspect for their analysis.
Collapse
|
34
|
Klar J, Piontek J, Milatz S, Tariq M, Jameel M, Breiderhoff T, Schuster J, Fatima A, Asif M, Sher M, Mäbert K, Fromm A, Baig SM, Günzel D, Dahl N. Altered paracellular cation permeability due to a rare CLDN10B variant causes anhidrosis and kidney damage. PLoS Genet 2017; 13:e1006897. [PMID: 28686597 PMCID: PMC5521874 DOI: 10.1371/journal.pgen.1006897] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/21/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023] Open
Abstract
Claudins constitute the major component of tight junctions and regulate paracellular permeability of epithelia. Claudin-10 occurs in two major isoforms that form paracellular channels with ion selectivity. We report on two families segregating an autosomal recessive disorder characterized by generalized anhidrosis, severe heat intolerance and mild kidney failure. All affected individuals carry a rare homozygous missense mutation c.144C>G, p.(N48K) specific for the claudin-10b isoform. Immunostaining of sweat glands from patients suggested that the disease is associated with reduced levels of claudin-10b in the plasma membranes and in canaliculi of the secretory portion. Expression of claudin-10b N48K in a 3D cell model of sweat secretion indicated perturbed paracellular Na+ transport. Analysis of paracellular permeability revealed that claudin-10b N48K maintained cation over anion selectivity but with a reduced general ion conductance. Furthermore, freeze fracture electron microscopy showed that claudin-10b N48K was associated with impaired tight junction strand formation and altered cis-oligomer formation. These data suggest that claudin-10b N48K causes anhidrosis and our findings are consistent with a combined effect from perturbed TJ function and increased degradation of claudin-10b N48K in the sweat glands. Furthermore, affected individuals present with Mg2+ retention, secondary hyperparathyroidism and mild kidney failure that suggest a disturbed reabsorption of cations in the kidneys. These renal-derived features recapitulate several phenotypic aspects detected in mice with kidney specific loss of both claudin-10 isoforms. Our study adds to the spectrum of phenotypes caused by tight junction proteins and demonstrates a pivotal role for claudin-10b in maintaining paracellular Na+ permeability for sweat production and kidney function.
Collapse
Affiliation(s)
- Joakim Klar
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jörg Piontek
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, Charité, Berlin, Germany
| | - Susanne Milatz
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, Charité, Berlin, Germany
| | - Muhammad Tariq
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Muhammad Jameel
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Tilman Breiderhoff
- Department of Pediatric Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Schuster
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ambrin Fatima
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Maria Asif
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Muhammad Sher
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Katrin Mäbert
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anja Fromm
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, Charité, Berlin, Germany
| | - Shahid M Baig
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Dorothee Günzel
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, Charité, Berlin, Germany
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Tight junctions of the proximal tubule and their channel proteins. Pflugers Arch 2017; 469:877-887. [DOI: 10.1007/s00424-017-2001-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022]
|