1
|
Zou Y, Shi Q, Khandia R, Kumar U, Al-Hussain SA, Gurjar P, Zaki MEA. Codon usage bias and nucleotide bias are not influenced by the 5' flanking but by 3' and intronic region composition in SCID-associated genes. Int J Biol Macromol 2025; 308:142182. [PMID: 40107556 DOI: 10.1016/j.ijbiomac.2025.142182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/14/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Compositional constraints, selectional and mutational forces, nucleotide skews, RNA folding free energy, gene expression, protein properties, and differential expression are a few attributes that define the molecular signatures of any gene. The absence of information regarding these attributes for genes associated with severe combined immunodeficiency disorder (SCID) prompted us to take up this study. The compositional bias influenced codon bias. Overall percent T composition is the lowest among all nucleotides. However, its distribution varies markedly across different codon positions and is not lowest at all codon positions. We, for the first time, determined the influence of intergenic elements and introns on nucleotide and codon bias on genes and found that in SCID-associated genes, the 5' flanking region neither influences the nucleotide nor codon bias, contrary to the intronic and 3' flanking region, which both influence nucleotide and codon bias in SCID associated genes. Codon usage in the SCID-associated gene set significantly differs from the codon usage present in overall human codon usage for 33 out of 59 codons (excluding start, stop, and trp encoding). Analysis of differentially expressed genes revealed that out of the 10 most differentially expressed genes, 07 genes are Zn finger proteins (ZNF728, ZNF726, ZNF676, ZNF667, ZNF439, ZNF257, and ZNF208). Applying the knowledge of codon bias, rare codons, minimum free energy, and codon adaptation index, codon deoptimization was carried out, and ZNF208 was the best suitable candidate. The study opened the area for the identification of peculiar molecular features and the development of more candidates for gene therapy purposes.
Collapse
Affiliation(s)
- Yichun Zou
- Department of Clinical Laboratory, Huangshi Central Hospital, Edong Healthcare Group (Affiliated Hospital of Hubei Polytechnic University), Huangshi Key Laboratory of Molecular Diagnosis and Treatment of Tumors, No. 141 Tianjin Road, Huangshi City, Hubei 435000, China
| | - Quan Shi
- Department of Dermatology, Hubei Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan 430061, Hubei, China; Department of Dermatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, Hubei, China
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, MP, India.
| | - Utsang Kumar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, MP, India
| | - Sami A Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Magdi E A Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Uddin A. Compositional Features and Codon Usage Pattern of Genes Associated with Parkinson's Disease. Mol Neurobiol 2024; 61:8279-8292. [PMID: 38488980 DOI: 10.1007/s12035-024-04091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
Codon usage bias (CUB) is the phenomenon of non-uniform usage of synonymous codons in which some codons are more used than others and it helps in understanding the molecular organization of genome. Bioinformatic approach was used to analyze the protein-coding sequences of genes associated with Parkinson's disease (PD) to explore compositional features and codon usage pattern as no details work was reported yet. The average improved effective number of codons (Nc) and Nc prime were 42.74 and 44.26 respectively, indicated that CUB was low in these genes. In most of the genes, the overall GC content was almost 50% and GC content at the 1st codon position was the highest while GC content at the 2nd codon position was lowest. Relative synonymous codon usage (RSCU) analysis elucidated over-represented (p > 1.6) and under-represented codons (p < 0.6). The GTG (Val) is the only codon over-represented in all genes. Over-represented codons except (GTG) were A or T ending while under-represented codons (except ACT) were G or C ending. The codons namely TTA (Leu), CTA (Leu), ATC (Ile), ATA (Ile), AGT (Ser), AAC (Asn), TGT (Cys), TGC (Cys), CGC (Arg), AGA (Arg), and AGG (Arg) were absent in SNCA1 to SNCA8 genes. The codon TCG (Ser) was absent in all genes except UCHL1 and PINK1. Correspondence analysis (COA) revealed that the pattern of codon usage differs among genes associated with PD. Neutrality plot analysis indicated some of the points are diagonal distribution suggested that mutation pressure influenced the CUB in genes associated with PD.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi-788150, Assam, India.
| |
Collapse
|
3
|
Khandia R, Pandey MK, Garg R, Khan AA, Baklanov I, Alanazi AM, Nepali P, Gurjar P, Choudhary OP. Molecular insights into codon usage analysis of mitochondrial fission and fusion gene: relevance to neurodegenerative diseases. Ann Med Surg (Lond) 2024; 86:1416-1425. [PMID: 38463054 PMCID: PMC10923317 DOI: 10.1097/ms9.0000000000001725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/05/2024] [Indexed: 03/12/2024] Open
Abstract
Mitochondrial dysfunction is the leading cause of neurodegenerative disorders like Alzheimer's disease and Parkinson's disease. Mitochondria is a highly dynamic organelle continuously undergoing the process of fission and fusion for even distribution of components and maintaining proper shape, number, and bioenergetic functionality. A set of genes governs the process of fission and fusion. OPA1, Mfn1, and Mfn2 govern fusion, while Drp1, Fis1, MIEF1, and MIEF2 genes control fission. Determination of specific molecular patterns of transcripts of these genes revealed the impact of compositional constraints on selecting optimal codons. AGA and CCA codons were over-represented, and CCC, GTC, TTC, GGG, ACG were under-represented in the fusion gene set. In contrast, CTG was over-represented, and GCG, CCG, and TCG were under-represented in the fission gene set. Hydropathicity analysis revealed non-polar protein products of both fission and fusion gene set transcripts. AGA codon repeats are an integral part of translational regulation machinery and present a distinct pattern of over-representation and under-representation in different transcripts within the gene sets, suggestive of selective translational force precisely controlling the occurrence of the codon. Out of six synonymous codons, five synonymous codons encoding for leucine were used differently in both gene sets. Hence, forces regulating the occurrence of AGA and five synonymous leucine-encoding codons suggest translational selection. A correlation of mutational bias with gene expression and codon bias and GRAVY and AROMA signifies the selection pressure in both gene sets, while the correlation of compositional bias with gene expression, codon bias, protein properties, and minimum free energy signifies the presence of compositional constraints. More than 25% of codons of both gene sets showed a significant difference in codon usage. The overall analysis shed light on molecular features of gene sets involved in fission and fusion.
Collapse
Affiliation(s)
| | - Megha Katare Pandey
- Translational Medicine Center, All India Institute of Medical Sciences, Bhopal
| | | | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Igor Baklanov
- Department of Philosophy, North Caucasus Federal University, Stavropol, Russia
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Prakash Nepali
- Government Medical Officer, Bhimad Primary Health Care Center, Government of Nepal, Tanahun, Nepal
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda, Punjab, India
| |
Collapse
|
4
|
Khandia R, Gurjar P, Kamal MA, Greig NH. Relative synonymous codon usage and codon pair analysis of depression associated genes. Sci Rep 2024; 14:3502. [PMID: 38346990 PMCID: PMC10861588 DOI: 10.1038/s41598-024-51909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Depression negatively impacts mood, behavior, and mental and physical health. It is the third leading cause of suicides worldwide and leads to decreased quality of life. We examined 18 genes available at the genetic testing registry (GTR) from the National Center for Biotechnological Information to investigate molecular patterns present in depression-associated genes. Different genotypes and differential expression of the genes are responsible for ensuing depression. The present study, investigated codon pattern analysis, which might play imperative roles in modulating gene expression of depression-associated genes. Of the 18 genes, seven and two genes tended to up- and down-regulate, respectively, and, for the remaining genes, different genotypes, an outcome of SNPs were responsible alone or in combination with differential expression for different conditions associated with depression. Codon context analysis revealed the abundance of identical GTG-GTG and CTG-CTG pairs, and the rarity of methionine-initiated codon pairs. Information based on codon usage, preferred codons, rare, and codon context might be used in constructing a deliverable synthetic construct to correct the gene expression level of the human body, which is altered in the depressive state. Other molecular signatures also revealed the role of evolutionary forces in shaping codon usage.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462026, MP, India.
| | - Pankaj Gurjar
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, India
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence in Healthcare, Institutes for Systems Genetics and West China School of Nursing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee place, Hebersham, NSW, 2770, Australia
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
5
|
Sharma A, Gupta S, Paul K. Codon usage behavior distinguishes pathogenic Clostridium species from the non-pathogenic species. Gene 2023; 873:147394. [PMID: 37137382 DOI: 10.1016/j.gene.2023.147394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 05/05/2023]
Abstract
Genus Clostridium is of the largest genus in class Clostridia. It is comprised of spore-forming, anaerobic, gram-positive organisms. The members of this genus include human pathogens to free-living nitrogen fixing bacteria. In the present study, we have performed a comparison of the choice of preferred codons, codon usage patterns, dinucleotide and amino acid usage pattern of 76 species of Genus Clostridium. We found the pathogenic clostridium species to have smaller AT-rich genomes as compared to opportunistic and non-pathogenic clostridium species. The choice of preferred and optimal codons was also influenced by genomic GC/AT content of the respective clostridium species. The pathogenic clostridium species displayed a strict bias in the codon usage, employing 35 of the 61 codons encoding for 20 amino acids. Comparison of amino acid usage revealed an increased usage of amino acids with lower biosynthetic cost by pathogenic clostridium species as compared to opportunistic and non-pathogenic clostridium species. Smaller genome, strict codon usage bias and amino acid usage lead to lower protein energetic cost for the clostridial pathogens. Overall, we found the pathogenic members of genus Clostridium to prefer small, AT-rich codons to reduce biosynthetic costs and match the cellular environment of its AT-rich human host.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Biochemistry, DAV University, Jalandhar, Punjab 144012, India
| | - Shelly Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, Punjab 144012, India.
| |
Collapse
|
6
|
Li Y, Khandia R, Papadakis M, Alexiou A, Simonov AN, Khan AA. An investigation of codon usage pattern analysis in pancreatitis associated genes. BMC Genom Data 2022; 23:81. [PMID: 36434531 PMCID: PMC9700901 DOI: 10.1186/s12863-022-01089-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Pancreatitis is an inflammatory disorder resulting from the autoactivation of trypsinogen in the pancreas. The genetic basis of the disease is an old phenomenon, and evidence is accumulating for the involvement of synonymous/non-synonymous codon variants in disease initiation and progression. RESULTS The present study envisaged a panel of 26 genes involved in pancreatitis for their codon choices, compositional analysis, relative dinucleotide frequency, nucleotide disproportion, protein physical properties, gene expression, codon bias, and interrelated of all these factors. In this set of genes, gene length was positively correlated with nucleotide skews and codon usage bias. Codon usage of any gene is dependent upon its AT and GC component; however, AGG, CGT, and CGA encoding for Arg, TCG for Ser, GTC for Val, and CCA for Pro were independent of nucleotide compositions. In addition, Codon GTC showed a correlation with protein properties, isoelectric point, instability index, and frequency of basic amino acids. We also investigated the effect of various evolutionary forces in shaping the codon usage choices of genes. CONCLUSIONS This study will enable us to gain insight into the molecular signatures associated with the disease that might help identify more potential genes contributing to enhanced risk for pancreatitis. All the genes associated with pancreatitis are generally associated with physiological function, and mutations causing loss of function, over or under expression leads to an ailment. Therefore, the present study attempts to envisage the molecular signature in a group of genes that lead to pancreatitis in case of malfunction.
Collapse
Affiliation(s)
- Yuanyang Li
- Third-Grade Pharmacological Laboratory On Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, China ,grid.254148.e0000 0001 0033 6389College of Medical Science, China Three Gorges University, Yichang, China
| | - Rekha Khandia
- grid.411530.20000 0001 0694 3745Department of Biochemistry and Genetics, Barkatullah University, Bhopal, MP 462026 India
| | - Marios Papadakis
- grid.412581.b0000 0000 9024 6397Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia ,AFNP Med Austria, Vienna, Austria
| | | | - Azmat Ali Khan
- grid.56302.320000 0004 1773 5396Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| |
Collapse
|
7
|
Alqahtani T, Khandia R, Puranik N, Alqahtani AM, Alghazwani Y, Alshehri SA, Chidambaram K, Kamal MA. Codon Usage is Influenced by Compositional Constraints in Genes Associated with Dementia. Front Genet 2022; 13:884348. [PMID: 36017501 PMCID: PMC9395603 DOI: 10.3389/fgene.2022.884348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022] Open
Abstract
Dementia is a clinical syndrome characterized by progressive cognitive decline, and the symptoms could be gradual, persistent, and progressive. In the present study, we investigated 47 genes that have been linked to dementia. Compositional, selectional, and mutational forces were seen to be involved. Nucleotide components that influenced A- and GC-affected codon usages bias at all three codon positions. The influence of these two compositional constraints on codon usage bias (CUB) was positive for nucleotide A and negative for GC. Nucleotide A also experienced the highest mutational force, and GC-ending codons were preferred over AT-ending codons. A high bias toward GC-ending codons enhances the gene expression level, evidenced by the positive association between CAI- and GC-ending codons. Unusual behavior of the TTG codon showing an inverse relationship with the GC-ending codon and negative influence of gene expression, behavior contrary to all other GC-ending codons, shows an operative selectional force. Furthermore, parity analysis, higher translational selection value, preference of GC-ending codons over AT-ending codons, and association of gene length with gene expression refer to the dominant role of selection pressure with compositional constraint and mutational force-shaping codon usage.
Collapse
Affiliation(s)
- Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Nidhi Puranik
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| |
Collapse
|
8
|
Ran X, Xiao J, Cheng F, Wang T, Teng H, Sun Z. Pan-cancer analyses of synonymous mutations based on tissue-specific codon optimality. Comput Struct Biotechnol J 2022; 20:3567-3580. [PMID: 35860410 PMCID: PMC9287186 DOI: 10.1016/j.csbj.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/22/2022] [Accepted: 07/03/2022] [Indexed: 11/24/2022] Open
Abstract
Developed tissue-specific codon optimality in 29 human tissues. Applied these to analyze synonymous mutations in ∼10,000 tumor and normal samples. Synonymous mutations frequently increase optimal codons in most cancer types. Synonymous mutations frequently increase optimal codons cell cycle-related genes. Frequency of optimal codon gain relates to proliferation, DDR deficiency, and survival.
Codon optimality has been demonstrated to be an important determinant of mRNA stability and expression levels in multiple model organisms and human cell lines. However, tissue-specific codon optimality has not been developed to investigate how codon optimality is usually perturbed by somatic synonymous mutations in human cancers. Here, we determined tissue-specific codon optimality in 29 human tissues based on mRNA expression data from the Genotype-Tissue Expression project. We found that optimal codons were associated with differentiation, whereas non-optimal codons were correlated with proliferation. Furthermore, codons biased toward differentiation displayed greater tissue specificity in codon optimality, and the tissue specificity of codon optimality was primarily present in amino acids with high degeneracy of the genetic code. By applying tissue-specific codon optimality to somatic synonymous mutations in 8532 tumor samples across 24 cancer types and to those in 416 normal cells across six human tissues, we found that synonymous mutations frequently increased optimal codons in tumor cells and cancer-related genes (e.g., genes involved in cell cycle). Furthermore, an elevated frequency of optimal codon gain was found to promote tumor cell proliferation in three cancer types characterized by DNA damage repair deficiency and could act as a prognostic biomarker for patients with triple-negative breast cancer. In summary, this study profiled tissue-specific codon optimality in human tissues, revealed alterations in codon optimality caused by synonymous mutations in human cancers, and highlighted the non-negligible role of optimal codon gain in tumorigenesis and therapeutics.
Collapse
Affiliation(s)
- Xia Ran
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyuan Xiao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Fang Cheng
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Tao Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Kaifu District, Changsha, Hunan 410078, China
| | - Huajing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
9
|
Chakraborty S, Nath D. A Study on microRNAs Targeting the Genes Overexpressed in Lung Cancer and their Codon Usage Patterns. Mol Biotechnol 2022; 64:1095-1119. [DOI: 10.1007/s12033-022-00491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
10
|
Moustafa MAA, Nath D, Georrge JJ, Chakraborty S. Binding sites of miRNA on the overexpressed genes of oral cancer using 7mer-seed match. Mol Cell Biochem 2022; 477:1507-1526. [PMID: 35179676 DOI: 10.1007/s11010-022-04375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
The microRNAs having a length of ~ 19-22 nucleotides are the small, non-coding RNAs. The evolution of microRNAs in many disorders may hold the key to tackle complex challenges. Oral cancer belongs to the group of head and neck cancer. It occurs in the mouth region that appears as an ulcer. In this study, we collected information on the overexpressed genes of oral cancer. The coding sequences of the genes were derived from NCBI and the entire set of human microRNAs present in miRBASE 21 was retrieved. The human microRNAs that can target the overexpressed genes of oral cancer were determined with the aid of our in-house software. The interaction between microRNAs and the overexpressed genes was evaluated with 7mer-m8 model of microRNA targeting. The genes DKK1 and APLN paired with only one miRNA i.e., miR-447 and miR-6087, respectively. But the genes INHBA and MMP1 were found to be targeted by 2 miRNAs, while the genes FN1, FAP, TGFPI, COL4A1, COL4A2, and LOXL2 were found to be targeted by 16, 5, 9, 18, 29, and 11 miRNAs. Subsequently, several measures such as free energy, translation efficiency, and cosine similarity metric were used to estimate the binding process. It was found that the target region's stability was higher than the upstream and downstream zones. The overexpressed genes' GC contents were calculated, revealing that the codons in target miRNA region were overall GC rich as well as GC3 rich. Lastly, gene ontology was performed to better understand each gene's involvement in biological processes, molecular function, and cellular component. Our study showed the role of microRNAs in gene repression, which could possibly aid in the prognosis and diagnosis of oral cancer.
Collapse
Affiliation(s)
- Manal A A Moustafa
- Department of Bioinformatics, Christ College, Rajkot (Affiliated to Saurashtra University), Rajkot, Gujarat, India
| | - Durbba Nath
- Department of Biotechnology, Assam University, Silchar, Assam, 788150, India
| | - John J Georrge
- Department of Bioinformatics, Christ College, Rajkot (Affiliated to Saurashtra University), Rajkot, Gujarat, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar, Assam, 788150, India.
| |
Collapse
|
11
|
An interplay between compositional constraint and natural selection dictates the codon usage pattern among select Galliformes. Biosystems 2021; 204:104390. [PMID: 33636205 DOI: 10.1016/j.biosystems.2021.104390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 11/20/2022]
Abstract
Galliformes are believed to be the first avian order that started living in human association and became domesticated. Members of this order ranged from common to rare species. Next-generation sequencing has availed researchers with the whole genome sequences of five Galliformes; chicken, helmeted Guinea fowl, turkey, Japanese quail, and peafowl. Bioinformatic analysis based on codon usage, evolution, and species-specific functional enrichment can provide some crucial information aiding proper understanding of their genomic strategies. In this study, we investigated the genomic features of chicken, helmeted guinea fowl, turkey, and Japanese quail. Their genomes were AT biased although the potentially highly expressed genes contained more GC than AT. Cytosine dominated the third position of frequently used optimal codons. Mutational pressures in the analyzed Galliformes were in the range of 0.2-0.6%. Neutrality plot, translational selection index, and mutational responsive index indicated the dominance of selection pressure over mutational pressure among Galliformes. A pair of di-nucleotides, TpA and CpG, was found to be used less frequently than others in protein-coding genes since both of them are associated with the conversion of euchromatin to heterochromatin. Functional enrichment analysis revealed the dominance of proteins associated with fundamental biological processes. In turkey, chicken and helmeted Guinea fowl proteins with immunity-boosting capacity prevailed along with proteins needed for signal transduction and maintenance of central dogma. Evolutionary analysis indicated a bias towards synonymous substitution than non-synonymous mutation.
Collapse
|
12
|
Barbhuiya PA, Uddin A, Chakraborty S. Understanding the codon usage patterns of mitochondrial CO genes among Amphibians. Gene 2021; 777:145462. [PMID: 33515725 DOI: 10.1016/j.gene.2021.145462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 11/17/2022]
Abstract
A universal phenomenon of using synonymous codons unequally in coding sequences known as codon usage bias (CUB) is observed in all forms of life. Mutation and natural selection drive CUB in many species but the relative role of evolutionary forces varies across species, genes and genomes. We studied the CUB in mitochondrial (mt) CO genes from three orders of Amphibia using bioinformatics approach as no work was reported yet. We observed that CUB of mt CO genes of Amphibians was weak across different orders. Order Caudata had higher CUB followed by Gymnophiona and Anura for all genes and CUB also varied across genes. Nucleotide composition analysis showed that CO genes were AT-rich. The AT content in Caudata was higher than that in Gymnophiona while Anura showed the least content. Multiple investigations namely nucleotide composition, correspondence analysis, parity plot analysis showed that the interplay of mutation pressure and natural selection caused CUB in these genes. Neutrality plot suggested the involvement of natural selection was more than the mutation pressure. The contribution of natural selection was higher in Anura than Gymnophiona and the lowest in Caudata. The codons CGA, TGA, AAA were found to be highly favoured by nature across all genes and orders.
Collapse
Affiliation(s)
- Parvin A Barbhuiya
- Department of Biotechnology, Assam University, Silchar 788150, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788150, Assam, India.
| |
Collapse
|
13
|
Deb B, Uddin A, Chakraborty S. Composition, codon usage pattern, protein properties, and influencing factors in the genomes of members of the family Anelloviridae. Arch Virol 2021; 166:461-474. [PMID: 33392821 PMCID: PMC7779081 DOI: 10.1007/s00705-020-04890-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/02/2020] [Indexed: 01/31/2023]
Abstract
The present study was carried out on 62 genome sequences of members of the family Anelloviridae, as there have been no reports of genome analysis of these DNA viruses using a bioinformatics approach. The genes were found to be rich in AC content with low codon usage bias (CUB). Relative synonymous codon usage (RSCU) values identified the preferred codons for each amino acid in the family. The codon AGA was overrepresented, while the codons TCG, TTG, CGG, CGT, ACG, GCG and GAT were underrepresented in all of the genomes. A significant correlation was found between the effective number of codons (ENC) and base constraints, indicating that compositional properties might have influenced the CUB. A highly significant correlation was observed between the overall base content and the base content at the third codon position, indicating that mutations might have affected the CUB. A highly significant positive correlation was observed between GC12 and GC3 (r = 0.904, p < 0.01), which indicated that directional mutation pressure influenced all three codon positions. A neutrality plot revealed that the contribution of mutation and natural selection in determining the CUB was 58.6% and 41.4%, respectively.
Collapse
Affiliation(s)
- Bornali Deb
- Department of Biotechnology, Assam University, Silchar, Assam 788150 India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, Assam 788150 India
| | | |
Collapse
|
14
|
Abstract
BACKGROUND Thyroid carcinoma is one of the most common cancers in the world. Although the genetics of thyroid carcinoma was intensively studied, new mechanisms could be involved in its development as the codon bias. In this paper, we studied the codon bias of thyroid-cancer genes, considering not only the sequences but also the synonymous mutations. METHODS Different measures and statistical analyses were employed to characterize the thyroid-cancer genes. We considered classical measures as RSCU and ENC, the compositional and protein characteristics, but also the codon bias landscape via the %MinMax algorithm. RESULTS The compositional analyses highlighted two groups of thyroid cancer genes according to the GC% and GC3% content. The ENC did not show a clear codon bias in the genes. Differently, the RSCU analyses showed interesting codons that could play an important role in the development of thyroid cancer as the codon Ser-tcG. Furthermore, interesting synonymous mutations were detected that could affect the codon bias. The codon bias landscape detected genes enriched in rare codons as AKAP9 and KTN1. A cluster analysis based on %MinMax classified the thyroid cancer genes in four different groups according to the distribution of rare/frequent codons in the sequence. CONCLUSIONS This is the first study that analyzed the codon bias in thyroid cancer genes based also on synonymous mutations. This study provided different hints that should be further investigated by wet-lab validation and that it could open new scenarios in the understanding the molecular mechanisms involved in thyroid cancer development based on codon bias.
Collapse
Affiliation(s)
- Daniele Pepe
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, Katholieke Universiteit (KU) Leuven, Leuven, Belgium -
| | - Kim DE Keersmaecker
- Department of Oncology, Laboratory for Disease Mechanisms in Cancer, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Gupta S, Paul K, Roy A. Codon usage signatures in the genus Cryptococcus: A complex interplay of gene expression, translational selection and compositional bias. Genomics 2020; 113:821-830. [PMID: 33096254 DOI: 10.1016/j.ygeno.2020.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022]
Abstract
The fungal genus Cryptococcus comprises of several diverse species. The pathogens forming Cryptococcus neoformans/ Cryptococcus gatti species complex are of immense clinical significance owing to the high frequency of infections and deaths globally. Three closely related non-pathogenic species namely, Cryptococcus amylolentus, Cryptococcus wingfieldii and Cryptococcus depauperatus are the non-pathogenic ancestral species from which pathogenic lineages have diverged. In the current study, a comprehensive analysis of factors influencing the codon and amino acid usage bias in six pathogenic and three non-pathogenic species was performed. Our results revealed that though compositional bias played a crucial role, translational selection and gene expression were the key determinants of codon usage variations. Analysis of relative dinucleotide abundance and codon context signatures revealed strict avoidance of TpA dinucleotide across genomes. Multivariate statistical analysis based on codon usage data resulted in discrete clustering of pathogens and non-pathogens which correlated with previous reports on their phylogenetic distribution.
Collapse
Affiliation(s)
- Shelly Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India.
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, Punjab 144001, India
| | - Ayan Roy
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India.
| |
Collapse
|
16
|
A Crosstalk on Codon Usage in Genes Associated with Leukemia. Biochem Genet 2020; 59:235-255. [PMID: 32989646 DOI: 10.1007/s10528-020-10000-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
Leukemia is the outcome of aggregation of damaged white blood cells. Several genes were reported to be associated with the pathogenesis of leukemia. These genes were computationally analyzed to decipher their codon usage bias (CUB) and to identify the prime factors influencing the codon usage profile as no work was reported yet. The mean values of synonymous codon usage order (SCUO) parameter indicated low CUB of the genes. Significant positive association of SCUO with overall GC and positional GCs might signal the presence of mutational pressure. However, neutrality plot suggested the dominant role of natural selection across the genes. Along with natural selection, the role of mutation pressure was also prominent and that might be responsible for lower CUB (SCUO = 0.19) of genes. Low translational speed might permit accuracy in the process. A strong inverse relationship of translational rate was observed with CUB of genes and folding energy.
Collapse
|
17
|
Uddin A. Compositional Features and Codon Usage Pattern of Genes Associated with Anxiety in Human. Mol Neurobiol 2020; 57:4911-4920. [PMID: 32813237 DOI: 10.1007/s12035-020-02068-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
Codon usage bias (CUB) is the unequal usage of synonymous codon; some codons are more preferred than others. CUB analysis has applications in understanding the molecular organization of genome, genetics, gene expression, and molecular evolution. Bioinformatic approach was used to analyze the protein-coding sequences of genes involved in the anxiety to understand the patterns of codon usage as no work was reported yet. The improved effective number of codons (Nc) values ranged from 43.55 to 55.06, with a mean of 44.57, suggested that the overall CUB was low for genes associated with anxiety. The overall GC and AT content was 54.76 and 45.24, respectively. Relative synonymous codon usage (RSCU) analysis revealed that most frequently used codon ended mostly with C or G. The over-represented codons in genes associated with anxiety were CTG, ATC, GTG, AGC, ACC, and GCC, while under-represented codons were TTA, CTT, CTA, ATA, GTT, GTA, TCG, CCG, GCG, CAA, and CGT. Correlation analysis was performed between overall nucleotide composition and its 3rd codon positions, and observed highly significant (p < 0.01) correlation between them suggested that both mutation pressure and natural selection might affect the pattern of CUB. The highly significant correlation (0.598**, p < 0.01) was also observed between GC12 with GC3 suggested that directional mutation pressure might acted on all codon positions for genes associated with anxiety.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, Assam, 788150, India.
| |
Collapse
|
18
|
Das D, Deb B, Malakar AK, Chakraborty S. Allele frequency analysis of GALC gene causing Krabbe disease in human and its codon usage. Gene 2020; 747:144673. [PMID: 32304783 DOI: 10.1016/j.gene.2020.144673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
Krabbe disease is one of the rarest autosomal recessive disorders in human, caused by mutation in the GALC (β-galactosylceramidase) gene, resulting in several mental and physical health issues. Due to its rarity and phenotypic heterogeneity, diagnosis rate of this disease is very low. This study generated information on the recessive allele frequency dynamics of GALC gene across 15 global populations, with the highest frequency detected in Druze (Israel) population and the lowest frequency in Turkey and the United States. The recessive allele would take more time period (about 24,975 years) to be completely removed from the population having the lowest frequency and vice versa. The codon usage patterns of four isoforms of GALC gene revealed that a few synonymous codons were used more frequently than others in the isoforms. The codon AGA (arginine) was found to be overrepresented in GALC gene, except for galactocerebrosidase isoform a precursor. Further, GALC gene showed low codon usage bias (CUB) as evident from high ENC values (55.7-58.2), with A/T ending codons more preferred to G/C ending codons. CUB analysis elucidated the dual role of mutational pressure (major role) and natural selection (minor role) in GALC gene evolution.
Collapse
Affiliation(s)
- Debaroti Das
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Bornali Deb
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Arup Kumar Malakar
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
19
|
Chakraborty S, Paul S, Nath D, Choudhury Y, Ahn Y, Cho YS, Uddin A. Synonymous codon usage and context analysis of genes associated with pancreatic cancer. Mutat Res 2020; 821:111719. [PMID: 32919141 DOI: 10.1016/j.mrfmmm.2020.111719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 01/22/2023]
Abstract
Pancreatic cancer is a fatal disorder which originates in pancreas. Its mortality rate is increasing with time. Some studies also reported that pancreatic cancer would be ranked 2nd by the year 2030. Codon usage bias (CUB) arises when synonymous codons for each amino acid are not used randomly in the coding sequences of genes. We used bioinformatic methods to analyze the compositional properties, codon context and codon usage trend of the genes associated with pancreatic cancer as no work was reported yet. From the base composition analysis, the pancreatic cancer genes were found to be GC-rich and at the 3rd codon position the G/C ending codons were more preferred to A/T ending ones. The CUB was low in genes associated with pancreatic cancer. Correspondence analysis proposed that other than base constraints, CUB might also be affected by some other factors such as natural selection. Moreover, results of correlation analysis indicated that CUB and various GC contents i.e. GC, GC1, GC2, GC3 played important role in the release of free energy by transcripts of the genes associated with pancreatic cancer. The low compAI values of coding sequences suggested a low translation rate of the genes.
Collapse
Affiliation(s)
- Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| | - Sunanda Paul
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Durbba Nath
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Yashmin Choudhury
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Yeongseon Ahn
- Department of Biomedical Science, Hallym University, Hallymdachak-gil, Chuncheon, Gangwon-do 24252, South Korea
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Hallymdachak-gil, Chuncheon, Gangwon-do 24252, South Korea
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi 788150, Assam, India
| |
Collapse
|
20
|
Mazumder TH, Uddin A, Chakraborty S. Insights into the nucleotide composition and codon usage pattern of human tumor suppressor genes. Mol Carcinog 2019; 59:15-23. [PMID: 31583785 DOI: 10.1002/mc.23124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/05/2019] [Accepted: 09/21/2019] [Indexed: 01/21/2023]
Abstract
Tumor suppressor genes encode different proteins that inhibit the uncontrolled proliferation of cell growth and tumor development. To acquire clues for predicting gene expression level, it is essential to understand the codon usage bias (CUB) of genes to characterize genome which possesses its own compositional characteristics and unique coding sequences. We used bioinformatic tools to analyze the codon usage patterns of 637 human tumor suppressor genes as no work was reported earlier. The mean effective number of codons of these genes was 48, indicating low CUB. Our results exhibited a significant positive correlation among different nucleotide compositions and the codons ending with C base was most frequently used along with the most over-represented codon CTG and GTG codifying leucine and valine amino acid, respectively, in human tumor suppressor genes. The neutrality plot showed a significant positive correlation (Pearson, r = 0. 646; P < .01) suggesting that mutation on GC bias might affect the CUB. However, the linear regression coefficient of GC12 on GC3 in human tumor suppressor genes suggested that natural selection played a major role while mutation pressure played a minor role in the codon usage patterns of tumor suppressor genes in human. Our study would throw light into the factors that affect CUB and the codon usage patterns in the human tumor suppressor genes.
Collapse
Affiliation(s)
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Hailakandi, Assam, India
| | | |
Collapse
|
21
|
Compositional features and codon usage pattern of TP63 gene. Comput Biol Chem 2019; 83:107119. [PMID: 31493739 DOI: 10.1016/j.compbiolchem.2019.107119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 11/23/2022]
Abstract
The tumor protein p63encoded by the gene TP63 acts as a homologue of p53 protein. TP63 gene is the transformation factor with two initiation sites for transcriptional process and is related with stress, signal transduction and cell cycle control. The biasness in the preference of a few codons more frequently over other synonymous codons is the codon usage bias (CUB). Natural selection and mutational pressure are the two prime evolutionary forces acting on CUB. Here, the bioinformatic based analysis was performed to investigate the base distribution and CUB of TP63transcript variants (isoforms) as no work was performed earlier. Analysis of compositional features revealed variation in base content across TP63 gene isoforms and the GC content was more than 50%, indicating GC richness of its isoforms. The mean effective number of codons (ENC), a measure of CUB, was 51.83, i.e. overall CUB of TP63 gene was low. Among 13 isoforms of TP63 gene, nature selected against the CTA codon in 8 isoforms and favored five over-represented (RSCU > 1.6) codons namely CTG, CAG, ATC, AAC and GCC during evolution. Correlation between overall nucleotide composition and its 3rd codon position revealed that both mutational pressure and natural selection moulded its CUB. Further, the correlation between ENC and aromaticity depicted that variation of CUB was related to the degree of aromaticity of p63 protein.
Collapse
|
22
|
Roy A, van Staden J. Insights into the riddles of codon usage patterns and codon context signatures in fungal genus
Puccinia
, a persistent threat to global agriculture. J Cell Biochem 2019; 120:19555-19566. [DOI: 10.1002/jcb.29263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Ayan Roy
- Research Centre for Plant Growth and Development School of Life Sciences, University of KwaZulu‐Natal Pietermaritzburg South Africa
| | - Johannes van Staden
- Research Centre for Plant Growth and Development School of Life Sciences, University of KwaZulu‐Natal Pietermaritzburg South Africa
| |
Collapse
|