1
|
Sterner EG, Cote-L’Heureux A, Maurer-Alcalá XX, Katz LA. Diverse Genome Structures among Eukaryotes May Have Arisen in Response to Genetic Conflict. Genome Biol Evol 2024; 16:evae239. [PMID: 39506510 PMCID: PMC11606643 DOI: 10.1093/gbe/evae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
In contrast to the typified view of genome cycling only between haploidy and diploidy, there is evidence from across the tree of life of genome dynamics that alter both copy number (i.e. ploidy) and chromosome complements. Here, we highlight examples of such processes, including endoreplication, aneuploidy, inheritance of extrachromosomal DNA, and chromatin extrusion. Synthesizing data on eukaryotic genome dynamics in diverse extant lineages suggests the possibility that such processes were present before the last eukaryotic common ancestor. While present in some prokaryotes, these features appear exaggerated in eukaryotes where they are regulated by eukaryote-specific innovations including the nucleus, complex cytoskeleton, and synaptonemal complex. Based on these observations, we propose a model by which genome conflict drove the transformation of genomes during eukaryogenesis: from the origin of eukaryotes (i.e. first eukaryotic common ancestor) through the evolution of last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Elinor G Sterner
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | | | - Xyrus X Maurer-Alcalá
- American Museum of Natural History, Department of Invertebrate Zoology, Institute for Comparative Genomics, New York, NY, USA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Timmons C, Le K, Rappaport HB, Sterner EG, Maurer-Alcalá XX, Goldstein ST, Katz LA. Foraminifera as a model of eukaryotic genome dynamism. mBio 2024; 15:e0337923. [PMID: 38329358 PMCID: PMC10936158 DOI: 10.1128/mbio.03379-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024] Open
Abstract
In contrast to the canonical view that genomes cycle only between haploid and diploid states, many eukaryotes have dynamic genomes that change content throughout an individual's life cycle. However, the few detailed studies of microeukaryotic life cycles render our understanding of eukaryotic genome dynamism incomplete. Foraminifera (Rhizaria) are an ecologically important, yet understudied, clade of microbial eukaryotes with complex life cycles that include changes in ploidy and genome organization. Here, we apply fluorescence microscopy and image analysis techniques to over 2,800 nuclei in 110 cells to characterize the life cycle of Allogromia laticollaris strain Cold Spring Harbor (CSH), one of few cultivable foraminifera species. We show that haploidy and diploidy are brief moments in the A. laticollaris life cycle and that A. laticollaris nuclei endoreplicate up to 12,000 times the haploid genome size. We find that A. laticollaris reorganizes a highly endoreplicated nucleus into thousands of haploid genomes through a non-canonical mechanism called Zerfall, in which the nuclear envelope degrades and extrudes chromatin into the cytoplasm. Based on these findings, along with changes in nuclear architecture across the life cycle, we believe that A. laticollaris uses spatio-temporal mechanisms to delineate germline and somatic DNA within a single nucleus. The analyses here extend our understanding of the genome dynamics across the eukaryotic tree of life.IMPORTANCEIn traditional depictions of eukaryotes (i.e., cells with nuclei), life cycles alternate only between haploid and diploid phases, overlooking studies of diverse microeukaryotic lineages (e.g., amoebae, ciliates, and flagellates) that show dramatic variation in DNA content throughout their life cycles. Endoreplication of genomes enables cells to grow to large sizes and perhaps to also respond to changes in their environments. Few microeukaryotic life cycles have been studied in detail, which limits our understanding of how eukaryotes regulate and transmit their DNA across generations. Here, we use microscopy to study the life cycle of Allogromia laticollaris strain CSH, an early-diverging lineage within the Foraminifera (an ancient clade of predominantly marine amoebae). We show that DNA content changes significantly throughout their life cycle and further describe an unusual process called Zerfall, by which this species reorganizes a large nucleus with up to 12,000 genome copies into hundreds of small gametic nuclei, each with a single haploid genome. Our results are consistent with the idea that all eukaryotes demarcate germline DNA to pass on to offspring amidst more flexible somatic DNA and extend the known diversity of eukaryotic life cycles.
Collapse
Affiliation(s)
- Caitlin Timmons
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Kristine Le
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - H. B. Rappaport
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Elinor G. Sterner
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Xyrus X. Maurer-Alcalá
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | | | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| |
Collapse
|
3
|
Rey C, Launay C, Wenger E, Delattre M. Programmed DNA elimination in Mesorhabditis nematodes. Curr Biol 2023; 33:3711-3721.e5. [PMID: 37607549 DOI: 10.1016/j.cub.2023.07.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Some species undergo programmed DNA elimination (PDE), whereby portions of the genome are systematically destroyed in somatic cells. PDE has emerged independently in several phyla, but its function is unknown. Although the mechanisms are partially solved in ciliates, PDE remains mysterious in metazoans because the study species were not yet amenable to functional approaches. We fortuitously discovered massive PDE in the free-living nematode genus Mesorhabditis, from the same family as C. elegans. As such, these species offer many experimental advantages to start elucidating the PDE mechanisms in an animal. Here, we used cytology to describe the dynamics of chromosome fragmentation and destruction in early embryos. Elimination occurs once in development, at the third embryonic cell division in the somatic blastomeres. Chromosomes are first fragmented during S phase. Next, some of the fragments fail to align on the mitotic spindle and remain outside the re-assembled nuclei after mitosis. These fragments are gradually lost after a few cell cycles. The retained fragments form new mini chromosomes, which are properly segregated in the subsequent cell divisions. With genomic approaches, we found that Mesorhabditis mainly eliminate repeated regions and also about a hundred genes. Importantly, none of the eliminated protein-coding genes are shared between closely related Mesorhabditis species. Our results strongly suggest PDE has not been selected for regulating genes with important biological functions in Mesorhabditis but rather mainly to irreversibly remove repeated sequences in the soma. We propose that PDE may target genes, provided their elimination in the soma is invisible to selection.
Collapse
Affiliation(s)
- Carine Rey
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Superieure de Lyon, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - Caroline Launay
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Superieure de Lyon, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - Eva Wenger
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Superieure de Lyon, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France
| | - Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Superieure de Lyon, CNRS UMR5239, Inserm U1293, University Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
4
|
Goetz EJ, Greco M, Rappaport HB, Weiner AKM, Walker LM, Bowser S, Goldstein S, Katz LA. Foraminifera as a model of the extensive variability in genome dynamics among eukaryotes. Bioessays 2022; 44:e2100267. [PMID: 36050893 DOI: 10.1002/bies.202100267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022]
Abstract
Knowledge of eukaryotic life cycles and associated genome dynamics stems largely from research on animals, plants, and a small number of "model" (i.e., easily cultivable) lineages. This skewed sampling results in an underappreciation of the variability among the many microeukaryotic lineages, which represent the bulk of eukaryotic biodiversity. The range of complex nuclear transformations that exists within lineages of microbial eukaryotes challenges the textbook understanding of genome and nuclear cycles. Here, we look in-depth at Foraminifera, an ancient (∼600 million-year-old) lineage widely studied as proxies in paleoceanography and environmental biomonitoring. We demonstrate that Foraminifera challenge the "rules" of life cycles developed largely from studies of plants and animals. To this end, we synthesize data on foraminiferal life cycles, focusing on extensive endoreplication within individuals (i.e., single cells), the unusual nuclear process called Zerfall, and the separation of germline and somatic function into distinct nuclei (i.e., heterokaryosis). These processes highlight complexities within lineages and expand our understanding of the dynamics of eukaryotic genomes.
Collapse
Affiliation(s)
- Eleanor J Goetz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Mattia Greco
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Hannah B Rappaport
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
| | - Agnes K M Weiner
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA.,NORCE Climate and Environment, NORCE Norwegian Research Centre, Bergen, Norway
| | - Laura M Walker
- Department of Biology, Washington University in St. Louis, Missouri, USA
| | - Samuel Bowser
- Department of Environmental Health Sciences, School of Public Health, State University of New York, Albany, New York, USA
| | - Susan Goldstein
- Department of Geology, University of Georgia, Athens, Georgia, USA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA.,Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
5
|
Drews F, Boenigk J, Simon M. Paramecium epigenetics in development and proliferation. J Eukaryot Microbiol 2022; 69:e12914. [PMID: 35363910 DOI: 10.1111/jeu.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The term epigenetics is used for any layer of genetic information aside from the DNA base-sequence information. Mammalian epigenetic research increased our understanding of chromatin dynamics in terms of cytosine methylation and histone modification during differentiation, aging, and disease. Instead, ciliate epigenetics focused more on small RNA-mediated effects. On the one hand, these do concern the transport of RNA from parental to daughter nuclei, representing a regulated transfer of epigenetic information across generations. On the other hand, studies of Paramecium, Tetrahymena, Oxytricha, and Stylonychia revealed an almost unique function of transgenerational RNA. Rather than solely controlling chromatin dynamics, they control sexual progeny's DNA content quantitatively and qualitatively. Thus epigenetics seems to control genetics, at least genetics of the vegetative macronucleus. This combination offers ciliates, in particular, an epigenetically controlled genetic variability. This review summarizes the epigenetic mechanisms that contribute to macronuclear heterogeneity and relates these to nuclear dimorphism. This system's adaptive and evolutionary possibilities raise the critical question of whether such a system is limited to unicellular organisms or binuclear cells. We discuss here the relevance of ciliate genetics and epigenetics to multicellular organisms.
Collapse
Affiliation(s)
- Franziska Drews
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| | | | - Martin Simon
- Molecular Cell Biology and Microbiology, School of Mathematics and Natural Sciences, University of Wuppertal
| |
Collapse
|
6
|
Drotos KH, Zagoskin MV, Kess T, Gregory TR, Wyngaard GA. Throwing away DNA: programmed downsizing in somatic nuclei. Trends Genet 2022; 38:483-500. [DOI: 10.1016/j.tig.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/25/2022]
|
7
|
Timmons CM, Shazib SUA, Katz LA. Epigenetic influences of mobile genetic elements on ciliate genome architecture and evolution. J Eukaryot Microbiol 2022; 69:e12891. [PMID: 35100457 DOI: 10.1111/jeu.12891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/27/2022]
Abstract
Mobile genetic elements (MGEs) are transient genetic material that can move either within a single organism's genome or between individuals or species. While historically considered 'junk' DNA (i.e. deleterious or at best neutral), more recent studies reveal the adaptive advantages MGEs provide in lineages across the tree of life. Ciliates, a group of single-celled microbial eukaryotes characterized by nuclear dimorphism, exemplify how epigenetic influences from MGEs shape genome architecture and patterns of molecular evolution. Ciliate nuclear dimorphism may have evolved as a response to transposon invasion and ciliates have since co-opted transposons to carry out programmed DNA deletion. Another example of the effect of MGEs is in providing mechanisms for lateral gene transfer from bacteria, which introduces genetic diversity and, in several cases, drives ecological specialization in ciliates. As a third example, the integration of viral DNA, likely through transduction, provides new genetic material and can change the way host cells defend themselves against other viral pathogens. We argue that the acquisition of MGEs through non-Mendelian patterns of inheritance, coupled with their effects on ciliate genome architecture and expression and persistence throughout evolutionary history, exemplify how the transmission of mobile elements should be considered a mechanism of transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Caitlin M Timmons
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Shahed U A Shazib
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063, USA
| |
Collapse
|
8
|
Cheng CY, Orias E, Leu JY, Turkewitz AP. The evolution of germ-soma nuclear differentiation in eukaryotic unicells. Curr Biol 2021; 30:R502-R510. [PMID: 32428490 DOI: 10.1016/j.cub.2020.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this primer, Cheng et al. outline what we know about the nature and control of differentiation of germline versus somatic nuclei in two groups of protozoa: the Ciliates and Foraminifera. This is shown to involve a remarkable variety of developmentally programmed phenomena such as genome editing mediated epigenetically by RNA, as well differential nuclear import.
Collapse
Affiliation(s)
- Chao-Yin Cheng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Eduardo Orias
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Yakovenko I, Agronin J, Smith LC, Oren M. Guardian of the Genome: An Alternative RAG/Transib Co-Evolution Hypothesis for the Origin of V(D)J Recombination. Front Immunol 2021; 12:709165. [PMID: 34394111 PMCID: PMC8355894 DOI: 10.3389/fimmu.2021.709165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
The appearance of adaptive immunity in jawed vertebrates is termed the immunological 'Big Bang' because of the short evolutionary time over which it developed. Underlying it is the recombination activating gene (RAG)-based V(D)J recombination system, which initiates the sequence diversification of the immunoglobulins and lymphocyte antigen receptors. It was convincingly argued that the RAG1 and RAG2 genes originated from a single transposon. The current dogma postulates that the V(D)J recombination system was established by the split of a primordial vertebrate immune receptor gene into V and J segments by a RAG1/2 transposon, in parallel with the domestication of the same transposable element in a separate genomic locus as the RAG recombinase. Here, based on a new interpretation of previously published data, we propose an alternative evolutionary hypothesis suggesting that two different elements, a RAG1/2 transposase and a Transib transposon invader with RSS-like terminal inverted repeats, co-evolved to work together, resulting in a functional recombination process. This hypothesis offers an alternative understanding of the acquisition of recombinase function by RAGs and the origin of the V(D)J system.
Collapse
Affiliation(s)
- Iryna Yakovenko
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Jacob Agronin
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - L. Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Matan Oren
- Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
10
|
Phenotypic plasticity through disposable genetic adaptation in ciliates. Trends Microbiol 2021; 30:120-130. [PMID: 34275698 DOI: 10.1016/j.tim.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022]
Abstract
Ciliates have an extraordinary genetic system in which each cell harbors two distinct kinds of nucleus, a transcriptionally active somatic nucleus and a quiescent germline nucleus. The latter undergoes classical, heritable genetic adaptation, while adaptation of the somatic nucleus is only short-term and thus disposable. The ecological and evolutionary relevance of this nuclear dimorphism have never been well formalized, which is surprising given the long history of using ciliates such as Tetrahymena and Paramecium as model organisms. We present a novel, alternative explanation for ciliate nuclear dimorphism which, we argue, should be considered an instrument of phenotypic plasticity by somatic selection on the level of the ciliate clone, as if it were a diffuse multicellular organism. This viewpoint helps to put some enigmatic aspects of ciliate biology into perspective and presents the diversity of ciliates as a large natural experiment that we can exploit to study phenotypic plasticity and organismality.
Collapse
|
11
|
Collens AB, Katz LA. Opinion: Genetic Conflict With Mobile Elements Drives Eukaryotic Genome Evolution, and Perhaps Also Eukaryogenesis. J Hered 2021; 112:140-144. [PMID: 33538295 PMCID: PMC7953837 DOI: 10.1093/jhered/esaa060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Through analyses of diverse microeukaryotes, we have previously argued that eukaryotic genomes are dynamic systems that rely on epigenetic mechanisms to distinguish germline (i.e., DNA to be inherited) from soma (i.e., DNA that undergoes polyploidization, genome rearrangement, etc.), even in the context of a single nucleus. Here, we extend these arguments by including two well-documented observations: (1) eukaryotic genomes interact frequently with mobile genetic elements (MGEs) like viruses and transposable elements (TEs), creating genetic conflict, and (2) epigenetic mechanisms regulate MGEs. Synthesis of these ideas leads to the hypothesis that genetic conflict with MGEs contributed to the evolution of a dynamic eukaryotic genome in the last eukaryotic common ancestor (LECA), and may have contributed to eukaryogenesis (i.e., may have been a driver in the evolution of FECA, the first eukaryotic common ancestor). Sex (i.e., meiosis) may have evolved within the context of the development of germline-soma distinctions in LECA, as this process resets the germline genome by regulating/eliminating somatic (i.e., polyploid, rearranged) genetic material. Our synthesis of these ideas expands on hypotheses of the origin of eukaryotes by integrating the roles of MGEs and epigenetics.
Collapse
Affiliation(s)
- Adena B Collens
- Department of Biological Sciences, Smith College, Northampton, MA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, MA
- Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA
| |
Collapse
|
12
|
Muñoz-Gómez SA, Bilolikar G, Wideman JG, Geiler-Samerotte K. Constructive Neutral Evolution 20 Years Later. J Mol Evol 2021; 89:172-182. [PMID: 33604782 PMCID: PMC7982386 DOI: 10.1007/s00239-021-09996-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
Evolution has led to a great diversity that ranges from elegant simplicity to ornate complexity. Many complex features are often assumed to be more functional or adaptive than their simpler alternatives. However, in 1999, Arlin Stolzfus published a paper in the Journal of Molecular Evolution that outlined a framework in which complexity can arise through a series of non-adaptive steps. He called this framework Constructive Neutral Evolution (CNE). Despite its two-decade-old roots, many evolutionary biologists still appear to be unaware of this explanatory framework for the origins of complexity. In this perspective piece, we explain the theory of CNE and how it changes the order of events in narratives that describe the evolution of complexity. We also provide an extensive list of cellular features that may have become more complex through CNE. We end by discussing strategies to determine whether complexity arose through neutral or adaptive processes.
Collapse
Affiliation(s)
- Sergio A Muñoz-Gómez
- School of Life Sciences, Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, USA.
| | - Gaurav Bilolikar
- School of Life Sciences, Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, USA
| | - Jeremy G Wideman
- School of Life Sciences, Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, USA
| | - Kerry Geiler-Samerotte
- School of Life Sciences, Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
13
|
Damasceno JD, Marques CA, Black J, Briggs E, McCulloch R. Read, Write, Adapt: Challenges and Opportunities during Kinetoplastid Genome Replication. Trends Genet 2020; 37:21-34. [PMID: 32993968 PMCID: PMC9213392 DOI: 10.1016/j.tig.2020.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
The genomes of all organisms are read throughout their growth and development, generating new copies during cell division and encoding the cellular activities dictated by the genome’s content. However, genomes are not invariant information stores but are purposefully altered in minor and major ways, adapting cellular behaviour and driving evolution. Kinetoplastids are eukaryotic microbes that display a wide range of such read–write genome activities, in many cases affecting critical aspects of their biology, such as host adaptation. Here we discuss the range of read–write genome changes found in two well-studied kinetoplastid parasites, Trypanosoma brucei and Leishmania, focusing on recent work that suggests such adaptive genome variation is linked to novel strategies the parasites use to replicate their unconventional genomes. Polycistronic transcription dominates and shapes kinetoplastid genomes, inevitably leading to clashes with DNA replication. By harnessing the resultant DNA damage for adaptation, kinetoplastids have huge potential for dynamic read–write genome variation. Major origins of DNA replication are confined to the boundaries of polycistronic transcription units in the Trypanosoma brucei and Leishmania genomes, putatively limiting DNA damage. Subtelomeres may lack this arrangement, generating read–write hotspots. In T. brucei, early replication of the highly transcribed subtelomeric variant surface glycoprotein (VSG) expression site may ensure replication-transcription clashes within this site to trigger DNA recombination, an event critical for antigenic variation. Leishmania genomes show extensive aneuploidy and copy number variation. Notably, DNA replication requires recombination factors and relies on post-S phase replication of subtelomeres. Evolution of compartmentalised DNA replication programmes underpin important aspects of genome biology in kinetoplastids, illustrating the consolidation of genome maintenance strategies to promote genome plasticity.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Catarina A Marques
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Jennifer Black
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Emma Briggs
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK; Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
14
|
Ricci F, Luporini P, Alimenti C, Vallesi A. Functional chimeric genes in ciliates: An instructive case from Euplotes raikovi. Gene 2020; 767:145186. [PMID: 32998045 DOI: 10.1016/j.gene.2020.145186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 11/29/2022]
Abstract
In ciliates, with every sexual event the transcriptionally active genes of the sub-chromosomic somatic genome that resides in the cell macronucleus are lost. They are de novo assembled starting from 'Macronuclear Destined Sequences' that arise from the fragmentation of transcriptionally silent DNA sequences of the germline chromosomic genome enclosed in the cell micronucleus. The RNA-mediated epigenetic mechanism that drives the assembly of these sequences is subject to errors which result in the formation of chimeric genes. Studying a gene family that in Euplotes raikovi controls the synthesis of protein signal pheromones responsible for a self/not-self recognition mechanism, we identified the chimeric structure of an 851-bp macronuclear gene previously known to specify soluble and membrane-bound pheromone molecules through an intron-splicing mechanism. This chimeric gene, designated mac-er-1*, conserved the native pheromone-gene structure throughout its coding and 3' regions. Instead, its 5' region is completely unrelated to the pheromone gene structure at the level of a 360-bp sequence, which derives from the assembly with a MDS destined to compound a 2417-bp gene encoding a 696-amino acid protein with unknown function. This mac-er-1* gene characterization provides further evidence that ciliates rely on functional chimeric genes that originate in non-programmed phenomena of somatic MDS recombination to increase the species genetic variability independently of gene reshuffling phenomena of the germline genome.
Collapse
Affiliation(s)
- Francesca Ricci
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy
| | - Pierangelo Luporini
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy
| | - Claudio Alimenti
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy
| | - Adriana Vallesi
- Laboratory of Eukaryotic Microbiology and Animal Biology, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino 62032, Italy.
| |
Collapse
|
15
|
Smith SA, Maurer-Alcalá XX, Yan Y, Katz LA, Santoferrara LF, McManus GB. Combined Genome and Transcriptome Analyses of the Ciliate Schmidingerella arcuata (Spirotrichea) Reveal Patterns of DNA Elimination, Scrambling, and Inversion. Genome Biol Evol 2020; 12:1616-1622. [PMID: 32870974 PMCID: PMC7523726 DOI: 10.1093/gbe/evaa185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 12/04/2022] Open
Abstract
Schmidingerella arcuata is an ecologically important tintinnid ciliate that has long served as a model species in plankton trophic ecology. We present a partial micronuclear genome and macronuclear transcriptome resource for S. arcuata, acquired using single-cell techniques, and we report on pilot analyses including functional annotation and genome architecture. Our analysis shows major fragmentation, elimination, and scrambling in the micronuclear genome of S. arcuata. This work introduces a new nonmodel genome resource for the study of ciliate ecology and genomic biology and provides a detailed functional counterpart to ecological research on S. arcuata.
Collapse
Affiliation(s)
- Susan A Smith
- Department of Marine Sciences, University of Connecticut, Groton
| | | | - Ying Yan
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Luciana F Santoferrara
- Department of Marine Sciences, University of Connecticut, Groton.,Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs
| | - George B McManus
- Department of Marine Sciences, University of Connecticut, Groton
| |
Collapse
|
16
|
Allen SE, Nowacki M. Roles of Noncoding RNAs in Ciliate Genome Architecture. J Mol Biol 2020; 432:4186-4198. [PMID: 31926952 PMCID: PMC7374600 DOI: 10.1016/j.jmb.2019.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/29/2022]
Abstract
Ciliates are an interesting model system for investigating diverse functions of noncoding RNAs, especially in genome defence pathways. During sexual development, the ciliate somatic genome undergoes massive rearrangement and reduction through removal of transposable elements and other repetitive DNA. This is guided by a multitude of noncoding RNAs of different sizes and functions, the extent of which is only recently becoming clear. The genome rearrangement pathways evolved as a defence against parasitic DNA, but interestingly also use the transposable elements and transposases to execute their own removal. Thus, ciliates are also a good model for the coevolution of host and transposable element, and the mutual dependence between the two. In this review, we summarise the genome rearrangement pathways in three diverse species of ciliate, with focus on recent discoveries and the roles of noncoding RNAs. Ciliate genomes undergo massive rearrangement and reduction during development. Transposon elimination is guided by small RNAs and carried out by transposases. New pathways for noncoding RNA production have recently been discovered in ciliates. Diverse ciliate species have different mechanisms for RNA-guided genome remodeling.
Collapse
Affiliation(s)
- Sarah E Allen
- Institute of Cell Biology, University of Bern, Switzerland
| | | |
Collapse
|
17
|
Koonin EV, Makarova KS, Wolf YI, Krupovic M. Evolutionary entanglement of mobile genetic elements and host defence systems: guns for hire. Nat Rev Genet 2019; 21:119-131. [PMID: 31611667 DOI: 10.1038/s41576-019-0172-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 12/12/2022]
Abstract
All cellular life forms are afflicted by diverse genetic parasites, including viruses and other types of mobile genetic elements (MGEs), and have evolved multiple, diverse defence systems that protect them from MGE assault via different mechanisms. Here, we provide our perspectives on how recent evidence points to tight evolutionary connections between MGEs and defence systems that reach far beyond the proverbial arms race. Defence systems incur a fitness cost for the hosts; therefore, at least in prokaryotes, horizontal mobility of defence systems, mediated primarily by MGEs, is essential for their persistence. Moreover, defence systems themselves possess certain features of selfish elements. Common components of MGEs, such as site-specific nucleases, are 'guns for hire' that can also function as parts of defence mechanisms and are often shuttled between MGEs and defence systems. Thus, evolutionary and molecular factors converge to mould the multifaceted, inextricable connection between MGEs and anti-MGE defence systems.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA.
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Mart Krupovic
- Department of Microbiology, Institut Pasteur, Paris, France.
| |
Collapse
|