1
|
Dai X, Zheng Y, Cui J, Zeng Y, Yang B, Zhang Z. Nanodrug delivery systems targeting ferroptosis as an innovative therapeutic approach for Rheumatoid Arthritis. Mater Today Bio 2025; 32:101804. [PMID: 40343168 PMCID: PMC12059336 DOI: 10.1016/j.mtbio.2025.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/02/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic inflammatory disease characterized by joint inflammation, progressive cartilage degradation, and bone erosion. Recent research has implicated ferroptosis not only in autoimmune hepatitis but also in the pathogenesis and progression of autoimmune disorders like RA. Consequently, numerous therapeutic strategies have begun to target the ferroptosis pathway, particularly in the design and development of nanodrug delivery systems (NDDSs). While previous reviews have comprehensively discussed the mechanisms of ferroptosis, related signaling pathways, and NDDS materials, recent studies have further elucidated the interplay between ferroptosis and various metabolic pathways, providing a robust theoretical basis for the design of NDDS-based ferroptosis strategies. This review focuses on investigating the role of ferroptosis in the development of RA, aiming to elucidate how targeting ferroptosis can offer novel therapeutic concepts and potential treatments for RA patients. Specifically, it summarizes the design strategies of ferroptosis-based NDDSs via different pathways and highlights the feasibility of RA treatment regimens based on the ferroptosis mechanism. Furthermore, the review critically discusses the current limitations of NDDSs and offers perspectives on future research directions in this field.
Collapse
Affiliation(s)
- Xiaolin Dai
- Department of Pharmacy, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
| | - Yu Zheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, PR China
- Sichuan-Chongqing Joint Key Laboratory of Metabolic Vascular Diseases, Luzhou, 646000, PR China
| | - Jianrong Cui
- Department of Pharmacy, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
| | - Yuqi Zeng
- Department of Pharmacy, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
| | - Bo Yang
- Department of Pharmacy, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
| | - Zhanlin Zhang
- Irradiation Preservation and Effect Key Laboratory of Sichuan Province, School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, PR China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, PR China
| |
Collapse
|
2
|
Han Y, Chen S, Liu C, Sun H, Jia Z, Shi J, Li J, Chang Y. A comprehensive review of natural products in rheumatoid arthritis: therapeutic potential and mechanisms. Front Immunol 2025; 16:1501019. [PMID: 40406100 PMCID: PMC12094977 DOI: 10.3389/fimmu.2025.1501019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/11/2025] [Indexed: 05/26/2025] Open
Abstract
Rheumatoid arthritis (RA) is a classic autoimmune disease caused by a combination of genetic and environmental factors. The multiple and comprehensive pathologies involving the whole body's immune system and local organs and tissues make it challenging to control or cure them clinically. Fortunately, there are increasing reports that multiple non-toxic or low-toxicity natural products and their derivatives (NP&TDs) have positive therapeutic effects on RA. This review focuses on the potential mechanisms of NP&TDs against RA and aims to provide constructive information for developing rational clinical therapies. Active components of NP&TDs can play therapeutic and palliative roles in RA through multiple biological mechanisms. These mechanisms primarily involve immunosuppressive, anti-inflammatory, autophagic, and apoptotic pathways. Multiple targets- and receptor-coupled signal transduction can directly or indirectly modulates the nuclear transcription factors NF-κB, NFATc1, STAT3, and HIF-1α, which in turn regulate the production of several downstream pro-inflammatory cytokines, chemokines, immunocytes maturation and differentiation, immune complexes, proliferation, and apoptosis regulatory genes. Among these NP&TDs, the tripterygium-type ingredients, the artemisinin-type ingredients, and the paeony-type ingredients have been reported to be the mainstay in treating RA. Mechanistically, immunosuppression and anti-inflammation are still the primary therapeutic mechanisms. Nevertheless, the direct binding targets and pharmacodynamic mechanisms require further in-depth studies.
Collapse
Affiliation(s)
- Yuli Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Changqing Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huihui Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaoyu Jia
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaxin Shi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Wang S, Yang J, Cai L, Li H, Han X, Liu B, Wu J. Antioxidant Effect of Ethyl Acetate Fraction from Kaempferia galanga L.: Integrated Phytochemical Profiling, Network Analysis, and Experimental Validation. Antioxidants (Basel) 2025; 14:551. [PMID: 40427433 PMCID: PMC12108274 DOI: 10.3390/antiox14050551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Kaempferia galanga L. is well known for its use in medicinal and edible homologous application. Various diseases, including those related to oxidation, are commonly treated with it. However, its antioxidant effect is still lacking systematical study. We aimed to screen the most potential antioxidant fraction of the crude ethanolic extract from K. galanga (KG) and evaluate its antioxidant activity and potential mechanism. The ethyl acetate fraction of ethanolic extract from K. galanga (KGEA) was chosen as the most potent antioxidant activity from all the fractions tested. UPLC-Q-TOF-MS/MS was used to determine 43 compounds in KGEA, and 25 potential bioactive compounds were identified by pharmacokinetic analysis. Network pharmacology revealed 174 overlapping targets of chemical and antioxidant targets, and the key targets were identified. Molecular docking and MD simulation revealed a strong binding affinity between the core compounds and their targets. In tests against DPPH and ABTS, KGEA exhibited potent radical scavenging activity. In H2O2-induced cells, KGEA could decrease reactive oxygen species (ROS) production; alleviate mitochondrial damage; promote the increase in antioxidant enzymes SOD, CAT, GSH-Px; and reduce the levels of MDA. Mechanistically, KGEA regulated PI3K/Akt and MAPK signaling pathways against oxidative damage. Moreover, in H2O2-induced zebrafish, KGEA attenuated ROS generation, cell death, lipid peroxidation, and increased SOD, CAT, GSH-Px activities; it also decreased MDA levels. The antioxidant properties of KGEA were demonstrated in vitro and in vivo, and it should be considered as an antioxidant agent for further profound study.
Collapse
Affiliation(s)
- Siyu Wang
- School of Traditional Chinese Medicine and Health, Nanfang College Guangzhou, Guangzhou 510970, China;
| | - Jianzhan Yang
- Chinese Medicine Guangdong Laboratory, Zhuhai 519060, China; (J.Y.); (H.L.)
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Lei Cai
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China;
| | - Haoxiang Li
- Chinese Medicine Guangdong Laboratory, Zhuhai 519060, China; (J.Y.); (H.L.)
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Xiaodong Han
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
| | - Bo Liu
- Chinese Medicine Guangdong Laboratory, Zhuhai 519060, China; (J.Y.); (H.L.)
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510006, China
| | - Jianwei Wu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China;
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
4
|
Iqbal U, Malik A, Ibrahim L, Sial NT, Mehmood MH. Natural and synthetic potential drug leads for rheumatoid arthritis probing innovative target: mitochondrial dysfunction and NLRP3 inflammasome activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03897-3. [PMID: 40019529 DOI: 10.1007/s00210-025-03897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune, chronic, inflammatory disease characterized by synovial hyperplasia, bone erosion, progressive joint deterioration, and excruciating joint pain. Worldwide RA prevalence is approximately 0.1-2%, affecting women and elderly population. Limited knowledge of disease pathogenesis causes hindrance in diagnosis and treatment of RA. Deep investigation of RA pathogenesis is deemed, for the development of novel therapies. Among diverse targets for RA, proper functioning of mitochondria is essential for endurance of synovial cells and chondrocytes. Once mitochondria are damaged, these affect immune and non-immune cells in terms of their activation, survival, and differentiation prima to occurrence of RA. An innate immune complex, NLRP3 (NOD-like receptor family pyrin domain-containing 3) inflammasome plays pivotal role in RA pathogenesis through its control on the synthesis of pro-inflammatory cytokines (IL-1β & IL-18) and induction of pyroptotic cell death. Mitochondrial dysfunction is the possible primary cause of NLRP3 inflammasome activation, leading to inflammation and joint destruction in RA. This review emphasizes that how mitochondrial dysregulation affect NLRP3 inflammasome activation and contribute to RA's inflammatory cascade. It also investigates synthetic and natural substances including Berberine, Ebselen, and Resveratrol that have emerged as promising drug leads for RA by modulating mitochondrial dysfunction and inhibiting NLRP3 inflammasome activation. Furthermore, it concise the evidences from RA-associated animal models explaining beneficial impact of various therapeutic agents in attenuation of inflammation and deterioration of bone and cartilage. Hence, the current review stresses molecular pathways in mitochondrial dynamics and NLRP3 inflammasome activation, as an approach to hone RA treatment goals.
Collapse
Affiliation(s)
- Urooj Iqbal
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Primary and Secondary Health Care Department, Lahore, Punjab, Pakistan
| | - Abdul Malik
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan.
| | - Liza Ibrahim
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Nabeela Tabassum Sial
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Malik Hassan Mehmood
- Department of Pharmaceutical Sciences, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
5
|
Tang L, Li M, Piao S, Du L, Qiu S, Jiang X, Luo M, Wang Y, Pan Z. Activation of the Keap1/Nrf2/HO-1 Pathway by "Tianyu" Pairing: Implications for Inflammation and Oxidative Stress in Rheumatoid Arthritis. Endocr Metab Immune Disord Drug Targets 2025; 25:479-491. [PMID: 39192656 DOI: 10.2174/0118715303307608240812114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE The objective of this study was to examine the impact of "Tianyu" Pairing on oxidative stress in the development of Rheumatoid arthritis (RA) and approach its potential mechanism using cell experiments. METHODS A cell model of RA was developed by stimulating rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) with tumor necrosis factor-α (TNF-α). This model aimed to assess the impact of serum containing Rhodiola rosea-Euonymus alatus drug pair (TYP) on inflammation and oxidative stress in the development of RA, specifically through the Keap1/Nrf2/HO-1 pathway. RESULTS The findings from the in vitro experiment demonstrated that the presence of TYP in the serum effectively suppressed the proliferation of RA-FLS induced by TNF-α. Additionally, TYP facilitated the apoptosis of afflicted cells, attenuated the migratory and invasive capabilities of diseased cells, and decreased the levels of Kelch ECH associating protein 1 (Keap1), reactive oxygen species (ROS), glutathione peroxidase (GSH-Px), catalase (CAT), and malondialdehyde (MDA) (p < 0.01). The influence of inflammation and oxidative stress in RA-FLS cells was reduced by increasing the nuclear-cytoplasmic ratio of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) and levels of phosphorylated Nrf2, Heme Oxygenase 1 (HO-1), and Superoxide Dismutase (SOD) (p < 0.01). CONCLUSION TYP can regulate inflammation and oxidative stress in RA-FLS cells by activating the Keap1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Lu Tang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mingquan Li
- Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Songlan Piao
- Clinical Medical School, Changchun University of Chinese Medicine, Changchun, People's Republic of China
| | - Lianyun Du
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Saiyue Qiu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xin Jiang
- College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meixiu Luo
- College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yinghang Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhi Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
6
|
Pimple P, Shah J, Singh P. Emerging Phytochemical Formulations for Management of Rheumatoid Arthritis: A Review. Curr Drug Deliv 2025; 22:15-40. [PMID: 38299275 DOI: 10.2174/0115672018270434240105110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/02/2023] [Accepted: 12/17/2023] [Indexed: 02/02/2024]
Abstract
Rheumatoid arthritis (RA) is a T-cell-mediated chronic inflammatory disorder affecting 0.5-1% of the global population. The disease with unknown etiology causes slow destruction of joints, advancing to significant deterioration of an individual's quality of life. The present treatment strategy comprises the use of disease-modifying anti-rheumatic drugs (DMARDs) coupled with or without nonsteroidal anti-inflammatory drugs or glucocorticoids. Additionally, involves co-therapy of injectable biological DMARDs in case of persistent or recurrent arthritis. The availability of biological DMARDs and the implementation of the treat-to-target approach have significantly improved the outcomes for patients suffering from RA. Nevertheless, RA requires continuous attention due to inadequate response of patients, development of tolerance and severe side effects associated with long-term use of available treatment regimens. An estimated 60-90% of patients use alternative methods of treatment, such as herbal therapies, for the management of RA symptoms. Over the past few decades, researchers have exploring natural phytochemicals to alleviate RA and associated symptoms. Enormous plant-origin phytochemicals such as alkaloids, flavonoids, steroids, terpenoids and polyphenols have shown anti-inflammatory and immunomodulatory activity against RA. However, phytochemicals have certain limitations, such as high molecular weight, poor water solubility, poor permeability, poor stability and extensive first-pass metabolism, limiting absorption and bioavailability. The use of nanotechnology has aided to extensively improve the pharmacokinetic profile and stability of encapsulated drugs. The current review provides detailed information on the therapeutic potential of phytochemicals. Furthermore, the review focuses on developed phytochemical formulations for RA, with emphasis on clinical trials, regulatory aspects, present challenges, and future prospects.
Collapse
Affiliation(s)
- Prachi Pimple
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| | - Jenny Shah
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| | - Prabha Singh
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| |
Collapse
|
7
|
Ma K, Miao L, Li B, Yu W, Liu F, Liu K, Li Y, Huang C, Yang Z. Mechanism of action of Nrf2 and its related natural regulators in rheumatoid arthritis. J Orthop Surg Res 2024; 19:759. [PMID: 39543632 PMCID: PMC11566362 DOI: 10.1186/s13018-024-05221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovitis that can lead to joint deformities. To date, more than 18 million individuals worldwide have been diagnosed with RA, making it one of the most prevalent autoimmune diseases globally and posing a significant threat to public health and safety. Due to the complex pathogenesis of the disease, which involves autoimmunity, genetics, inflammation and oxidative stress in the body's tissues, the current drug therapy generally targets a single molecule, and effective and efficient drugs involving multiple levels and targets are lacking; thus, there is an urgent need for high-quality research and treatment in this field. Nuclear transcription factor erythroid 2-associated factor 2 (Nrf2) plays a crucial role in cellular resistance to oxidative stress and electrophilic attacks and is a potential pharmacological target for chronic disease treatment. While currently no drugs that target Nrf2 have been approved specifically for RA treatment, such an approach holds great significance. In recent years, the use of natural products to treat RA and other chronic conditions has become increasingly widespread because of their superior efficacy and minimal side effects. Therefore, this article provides a review of the mechanism of Nrf2 in RA and summarizes natural products that target Nrf2 and its associated pathways in the treatment of RA, aiming to offer new insights and strategies for the prevention and management of RA.
Collapse
Affiliation(s)
- Ke Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Lili Miao
- Department of Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Bo Li
- Department of Orthopaedics, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Fengzhao Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Kun Liu
- Department of Orthopaedics, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Yang Li
- Department of Orthopaedics, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Chengcheng Huang
- Department of Endocrinology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, 250014, Shandong, China
| | - Zhenguo Yang
- Department of Orthopaedics, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China.
| |
Collapse
|
8
|
Cui K, Bi D, Wang F, Hou P, Guo J, Xu Z. Exploring the Mechanism of Acupuncture's Influence on the Protease Activity and Free Radical Damage in Synovial Fluid of Rheumatoid Arthritis Rats Induced by Type II Collagen from the Release of Active Oxygen. Appl Biochem Biotechnol 2024; 196:7722-7735. [PMID: 38538872 DOI: 10.1007/s12010-024-04932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 12/14/2024]
Abstract
Acupuncture was studied to investigate the mechanism of its effect on protease vitality and free radical damage in Type I CIA rats induced by type II collagen. The study divided rats into a control group (injected with physiological saline, n = 10), a model group (injected with type II collagen, n = 10), and an intervention group (injected with type II collagen + acupuncture ST36 and GB39, 3 times a week, for a total of 4 weeks, n = 10) based on the different injected drugs. Then, various indicators of the mice were experimentally tested using joint index scoring, H&E histological staining, protein blotting, and immunohistochemistry staining methods. Acupuncture ST36 and GB39 can reduce arthritis scores, histological staining scores, and increase MVD in CIA rats. And reduce protease levels, alleviate inflammation, synovial hyperplasia, and angiogenesis. In addition, the intervention group TNF-α, IL-1β and IL-6 mRNA were reduced, and the clearance rates of hydrogen peroxide free radicals and nitric oxide free radicals were increased. The expression levels of ROS and MDA decrease, while the expression levels of SOD increase It has been proved that acupuncture at ST36 and GB39 can inhibit the release of ROS, reduce protease activity, inflammation, synovial hyperplasia, angiogenesis and free radical damage, thus reducing the severity of CIA (Collagen-Induced Arthritis) in rats.
Collapse
Affiliation(s)
- Kaiying Cui
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Dezhong Bi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Fuyan Wang
- Department of Gastroenterology, Shandong Second Provincial General Hospital, Jinan, 250022, Shandong, China
| | - Pengfei Hou
- Department of Spinal Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Jinxing Guo
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Zhanwang Xu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| |
Collapse
|
9
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Han H, Zhang G, Zhang X, Zhao Q. Nrf2-mediated ferroptosis inhibition: a novel approach for managing inflammatory diseases. Inflammopharmacology 2024; 32:2961-2986. [PMID: 39126567 DOI: 10.1007/s10787-024-01519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 08/12/2024]
Abstract
Inflammatory diseases, including psoriasis, atherosclerosis, rheumatoid arthritis, and ulcerative colitis, are characterized by persistent inflammation. Moreover, the existing treatments for inflammatory diseases only provide temporary relief by controlling symptoms, and treatments of unstable and expensive. Therefore, new therapeutic solutions are urgently needed to address the underlying causes or symptoms of inflammatory diseases. Inflammation frequently coincides with a high level of (reactive oxygen species) ROS activation, serving as a fundamental element in numerous physiological and pathological phenotypes that can result in serious harm to the organism. Given its pivotal role in inflammation, oxidative stress, and ferroptosis, ROS represents a focal node for investigating the (nuclear factor E2-related factor 2) Nrf2 pathway and ferroptosis, both of which are intricately linked to ROS. Ferroptosis is mainly triggered by oxidative stress and involves iron-dependent lipid peroxidation. The transcription factor Nrf2 targets several genes within the ferroptosis pathway. Recent studies have shown that Nrf2 plays a significant role in three key ferroptosis-related routes, including the synthesis and metabolism of glutathione/glutathione peroxidase 4, iron metabolism, and lipid processes. As a result, ferroptosis-related treatments for inflammatory diseases have attracted much attention. Moreover, drugs targeting Nrf2 can be used to manage inflammatory conditions. This review aimed to assess ferroptosis regulation mechanism and the role of Nrf2 in ferroptosis inhibition. Therefore, this review article may provide the basis for more research regarding the treatment of inflammatory diseases through Nrf2-inhibited ferroptosis.
Collapse
Affiliation(s)
- Hang Han
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Guojiang Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| |
Collapse
|
11
|
Zhang M, Wang J, Liu R, Wang Q, Qin S, Chen Y, Li W. The role of Keap1-Nrf2 signaling pathway in the treatment of respiratory diseases and the research progress on targeted drugs. Heliyon 2024; 10:e37326. [PMID: 39309822 PMCID: PMC11414506 DOI: 10.1016/j.heliyon.2024.e37326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Lungs are exposed to external oxidants from the environment as in harmful particles and smog, causing oxidative stress in the lungs and consequently respiratory ailment. The NF-E2-related factor 2 (Nrf2) is the one with transcriptional regulatory function, while its related protein Kelch-like ECH-associated protein 1 (Keap1) inhibits Nrf2 activity. Together, they form the Keap1-Nrf2 pathway, which regulates the body's defense against oxidative stress. This pathway has been shown to maintain cellular homeostasis during oxidative stressing, inflammation, oncogenesis, and apoptosis by coordinating the expression of cytoprotective genes and making it a potential therapeutic target for respiratory diseases. This paper summarizes this point in detail in Chapter 2. In addition, this article summarizes the current drug development and clinical research progress related to the Keap1-Nrf2 signaling pathway, with a focus on the potential of Nrf2 agonists in treating respiratory diseases. Overall, the article reviews the regulatory mechanisms of the Keap1-Nrf2 signaling pathway in respiratory diseases and the progress of targeted drug research, aiming to provide new insights for treatment.
Collapse
Affiliation(s)
- Mengyang Zhang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, 92093, USA
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
12
|
He K, Yang Y, Li Z, Yan H, Song K, Liu Q, Zhao L, Yang S. Delayed Reproduction, Injury, and Regeneration of Testes in Out-of-Season Breeding of Largemouth Bass ( Micropterus nigricans). Antioxidants (Basel) 2024; 13:1077. [PMID: 39334736 PMCID: PMC11429289 DOI: 10.3390/antiox13091077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Out-of-season breeding is an effective method for addressing seasonal shortages of fry in aquaculture species such as largemouth bass (LMB) for year-round production. Off-season breeding of LMB can be achieved by subjecting breeding LMB to prolonged low-temperature conditions; however, this can alter reproductive rhythms, affecting the quality of their sperm and leading to a decrease in reproductive efficiency. Therefore, it is crucial to investigate issues such as the damage to the testes and the related mechanisms caused by low-temperature stress during out-of-season breeding. In this experiment, we assessed the changes in the testes during this time in LMB by comparing reproductive rhythms, testicular histomorphology, ultrastructure, antioxidant capacity and apoptosis. We synthesized measurements of LMB from three identically treated cement ponds and fish exposed to water temperatures of 13-16 °C to assess the changes in the testes. The results showed that (1) out-of-season reproduction delayed sperm production and promoted sperm redevelopment in LMB, various hormone levels have changed over time (e.g., LH, FSH, and T). (2) The head plasma membrane of LMB spermatozoa was separated, and the middle mitochondria were swollen. (3) The expression levels of antioxidant enzymes (cat, sod, and gpx) were upregulated, and oxidative stress occurred in LMB. (4) The expression levels of apoptosis genes (e.g., bax, bcl2, and caspase3) were upregulated, and apoptosis occurred in LMB due to off-season breeding. Moreover, important genes of the mitochondrial apoptosis pathway (bid, CYT-C) were upregulated, indicating that spermatozoan apoptosis in LMB was probably achieved through the mitochondrial apoptosis pathway. These results suggest the delays, damage, and regeneration of LMB testes. Our findings provide new insights into the molecular mechanisms that trigger changes in sperm quality during out-of-season breeding in fish.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.H.); (Y.Y.); (Z.L.); (H.Y.); (K.S.); (Q.L.)
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (K.H.); (Y.Y.); (Z.L.); (H.Y.); (K.S.); (Q.L.)
| |
Collapse
|
13
|
Xu WD, Yang C, Huang AF. The role of Nrf2 in immune cells and inflammatory autoimmune diseases: a comprehensive review. Expert Opin Ther Targets 2024; 28:789-806. [PMID: 39256980 DOI: 10.1080/14728222.2024.2401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Nrf2 regulates mild stress, chronic inflammation, and metabolic changes by regulating different immune cells via downstream signaling. Collection of information about the role of Nrf2 in inflammatory autoimmune diseases will better understand the therapeutic potential of targeting Nrf2 in these diseases. AREAS COVERED In this review, we comprehensively discussed biological function of Nrf2 in different immune cells, including Nrf2 preventing oxidative tissue injury, affecting apoptosis of immune cells and inflammatory cytokine production. Moreover, we discussed the role of Nrf2 in the development of inflammatory autoimmune diseases. EXPERT OPINION Nrf2 binds to downstream signaling molecules and then provides durable protection against different cellular and organ stress. It has emerged as an important target for inflammatory autoimmune diseases. Development of Nrf2 modulator drugs needs to consider factors such as target specificity, short/long term safety, disease indication identification, and the extent of variation in Nrf2 activity. We carefully discussed the dual role of Nrf2 in some diseases, which helps to better target Nrf2 in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
14
|
Zhao J, Huang H. Extracellular Vesicle-Derived Non-Coding RNAs: Key Mediators in Remodelling Heart Failure. Curr Issues Mol Biol 2024; 46:9430-9448. [PMID: 39329911 PMCID: PMC11430706 DOI: 10.3390/cimb46090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Heart failure (HF), a syndrome of persistent development of cardiac insufficiency due to various heart diseases, is a serious and lethal disease for which specific curative therapies are lacking and poses a severe burden on all aspects of global public health. Extracellular vesicles (EVs) are essential mediators of intercellular and interorgan communication, and are enclosed nanoscale vesicles carrying biomolecules such as RNA, DNA, and proteins. Recent studies have showed, among other things, that non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), long ncRNAs (lncRNA), and circular RNAs (circRNAs) can be selectively sorted into EVs and modulate the pathophysiological processes of HF in recipient cells, acting on both healthy and diseased hearts, which makes them promising targets for the diagnosis and therapy of HF. This review aims to explore the mechanism of action of EV-ncRNAs in heart failure, with emphasis on the potential use of differentially expressed miRNAs and circRNAs as biomarkers of cardiovascular disease, and recent research advances in the diagnosis and treatment of heart failure. Finally, we focus on summarising the latest advances and challenges in engineering EVs for HF, providing novel concepts for the diagnosis and treatment of heart failure.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China;
- Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China;
- Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
15
|
Xue W, Wang J, Hou Y, Wu D, Wang H, Jia Q, Jiang Q, Wang Y, Song C, Wang Y, Zhu Z, Tian L. Lung decellularized matrix-derived 3D spheroids: Exploring silicosis through the impact of the Nrf2/Bax pathway on myofibroblast dynamics. Heliyon 2024; 10:e33585. [PMID: 39040273 PMCID: PMC11261893 DOI: 10.1016/j.heliyon.2024.e33585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Silicosis is an occupational respiratory disease caused by long-term inhalation of high concentrations of free silica particles. Studies suggest that oxidative stress is a crucial initiator of silicosis fibrosis, and previous studies have linked the antioxidative stress transcription factor known as Nrf2 to fibrosis antagonism. Myofibroblasts play a pivotal role in tissue damage repair due to oxidative stress. Unlike physiological repair, myofibroblasts in fibrosis exhibit an apoptosis-resistant phenotype, continuously synthesising and secreting significant amounts of collagen and other extracellular matrices, which could be a direct cause of silicosis fibrosis. However, the relationship and mechanism of action between oxidative stress and myofibroblast apoptosis resistance remain unclear. In this study, a new 3D cell culture model using mice lung decellularised matrix particles and fibroblasts was developed, simulating the changes in myofibroblasts during the development of silicotic nodules. Western Blot results indicate that silica stimulation leads to increased collagen deposition and decreased apoptosis-related protein Bax and oxidative stress-related protein Nrf2 in the 3D spheroid model. Immunofluorescence experiments reveal co-localisation in their expression. In Nrf2 overexpressing spheroids, Bax exhibits significant upregulation. In the Nrf2 knockout spheroids, Bax is also significantly downregulated; after intervention with Bax inhibitors, a significant downregulation of Bax-induced apoptosis was also detected in the Nrf2-overexpressed spheroids. In contrast, Bax-induced apoptosis showed a significant upregulation trend in Nrf2-overexpressed spheroids after intervention with Bax agonists. The results demonstrate that the spheroid model can mimic the development process of silicotic nodules, and silica stimulation leads to an apoptosis-resistant phenotype in myofibroblasts in the model, acting through the Nrf2/Bax pathway. This research establishes a new methodology for silicosis study, identifies therapeutic targets for silicosis, and opens new avenues for studying the mechanisms of silicosis fibrosis.
Collapse
Affiliation(s)
- Wenming Xue
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jiaxin Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yao Hou
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Di Wu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Hongwei Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Chenzhao Song
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Yifei Wang
- Experimental Teaching Center of Public Heatlh and Preventive Medicine, School of Public Health, Capital Medical University, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
16
|
Gonçalves AC, Rodrigues S, Fonseca R, Silva LR. Potential Role of Dietary Phenolic Compounds in the Prevention and Treatment of Rheumatoid Arthritis: Current Reports. Pharmaceuticals (Basel) 2024; 17:590. [PMID: 38794160 PMCID: PMC11124183 DOI: 10.3390/ph17050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex illness with both hereditary and environmental components. Globally, in 2019, 18 million people had RA. RA is characterized by persistent inflammation of the synovial membrane that lines the joints, cartilage loss, and bone erosion. Phenolic molecules are the most prevalent secondary metabolites in plants, with a diverse spectrum of biological actions that benefit functional meals and nutraceuticals. These compounds have received a lot of attention recently because they have antioxidant, anti-inflammatory, immunomodulatory, and anti-rheumatoid activity by modulating tumor necrosis factor, mitogen-activated protein kinase, nuclear factor kappa-light-chain-enhancer of activated B cells, and c-Jun N-terminal kinases, as well as other preventative properties. This article discusses dietary polyphenols, their pharmacological properties, and innovative delivery technologies for the treatment of RA, with a focus on their possible biological activities. Nonetheless, commercialization of polyphenols may be achievable only after confirming their safety profile and completing successful clinical trials.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Sofia Rodrigues
- Health Superior School, Polytechnic Institute of Viseu, 3500-843 Viseu, Portugal;
| | - Rafael Fonseca
- Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
17
|
Li YM, Chung YL, Wu YF, Wang CK, Chen CM, Chen YH. Maternal exposure to hyperbaric oxygen at the preimplantation stages increases apoptosis and ectopic Cdx2 expression and decreases Oct4 expression in mouse blastocysts via Nrf2-Notch1 upregulation and Nf2 downregulation. Dev Dyn 2024; 253:467-489. [PMID: 37850827 DOI: 10.1002/dvdy.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND The environmental oxygen tension has been reported to impact the blastocyst quality and cell numbers in the inner cell mass (ICM) during human and murine embryogenesis. While the molecular mechanisms leading to increased ICM cell numbers and pluripotency gene expression under hypoxia have been deciphered, it remains unknown which regulatory pathways caused the underweight fetal body and overweight placenta after maternal exposure to hyperbaric oxygen (HBO). RESULTS The blastocysts from the HBO-exposed pregnant mice revealed significantly increased signals of reactive oxygen species (ROS) and nuclear Nrf2 staining, decreased Nf2 and Oct4 expression, increased nuclear Tp53bp1 and active caspase-3 staining, and ectopic nuclear signals of Cdx2, Yap, and the Notch1 intracellular domain (N1ICD) in the ICM. In the ICM of the HBO-exposed blastocysts, both Nf2 cDNA microinjection and Nrf2 shRNA microinjection significantly decreased the ectopic nuclear expression of Cdx2, Tp53bp1, and Yap whereas increased Oct4 expression, while Nrf2 shRNA microinjection also significantly decreased Notch1 mRNA levels and nuclear expression of N1ICD and active caspase-3. CONCLUSION We show for the first time that maternal exposure to HBO at the preimplantation stage induces apoptosis and impairs ICM cell specification via upregulating Nrf2-Notch1-Cdx2 expression and downregulating Nf2-Oct4 expression.
Collapse
Grants
- MAB-108-027 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MAB-109-029 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MND-MAB-110-031 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MND-MAB-C06-111022 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MND-MAB-C14-112058 Medical Affairs Bureau, Ministry of National Defense, R.O.C., Taiwan
- MOST-111-2635-B-016-002 Ministry of Science and Technology, Taiwan
- TSGH-D-109177 Tri-Service General Hospital in Taiwan, R.O.C.
- TSGH-E-109261 Tri-Service General Hospital in Taiwan, R.O.C.
Collapse
Affiliation(s)
- Yu-Ming Li
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yu Lang Chung
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chien-Kuo Wang
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Chieh-Min Chen
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Hui Chen
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
18
|
Royaei M, Tahoori MT, Bardania H, Shams A, Dehghan A. Amelioration of inflammation through reduction of oxidative stress in rheumatoid arthritis by treating fibroblast-like synoviocytes (FLS) with DMF-loaded PLGA nanoparticles. Int Immunopharmacol 2024; 129:111617. [PMID: 38309093 DOI: 10.1016/j.intimp.2024.111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory condition, and Dimethyl fumarate (DMF) is known for inducing antioxidant enzymes and reducing reactive oxygen species (ROS). Fibroblast-like synoviocytes (FLS) contribute to joint damage by releasing interleukins (IL-1β, IL-6, and IL-8) in response to ROS. Given ROS's impact on FLS acquiring an invasive phenotype, our study explored the effects of poly lactic-co-glycolic acid (PLGA) nanoparticles containing DMF on the expression of the HO-1 enzyme and the inflammatory cytokines IL-1β, IL-6, and IL-8 in FLS cells. METHODS In this study, we evaluated and compared the impact of Free-DMF and PLGA-DMF, on the gene expression of the HO-1 and inflammatory cytokines (IL-1β, IL-6, and IL-8) in FLS cells derived from 13 patients with rheumatoid arthritis. qRT-PCR method was used to quantify the gene expression levels. RESULTS PLGA-DMF nanoparticles demonstrated a significant increase in HO-1 expression and a significant decrease in IL-1β gene expression. Also, a significant decrease in IL-6 gene expression was seen under the effect of Free-DMF. These results indicate the potential effectiveness of PLGA-DMF nanoparticles in reducing inflammation and improving rheumatoid arthritis symptoms. DISCUSSION According to the findings, PLGA-DMF nanoparticles are expected to be effective in reducing inflammation and improving the symptoms of rheumatoid arthritis. Also, further studies on other factors affected by oxidative stress such as cell invasion factors and survival factors after the effect of PLGA-DMF nanoparticle are recommended.
Collapse
Affiliation(s)
- Mohammadreza Royaei
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Taher Tahoori
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran; Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran; Clinical Research Development Unit, Imam Sajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Ali Shams
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Ali Dehghan
- Department of Internal Medicine, Shahid Sadoughi Hospital, Yazd University of Medical Sciences, Yazd, Iran
| |
Collapse
|
19
|
Goshtasbi H, Abdolahinia ED, Fathi M, Movafeghi A, Omidian H, Barar J, Omidi Y. Astaxanthin-loaded alginate-chitosan gel beads activate Nrf2 and pro-apoptotic signalling pathways against oxidative stress. J Microencapsul 2024; 41:140-156. [PMID: 38410930 DOI: 10.1080/02652048.2024.2319048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Abstract
Oxidative stress (OS) plays a crucial role in disease development. Astaxanthin (ATX), a valuable natural compound, may reduce OS and serve as a treatment for diseases like neurodegenerative disorders and cancer. Nuclear factor-erythroid 2-related factor 2 (Nrf2) regulates antioxidant enzymes and OS management. We evaluated ATX's antioxidant activity via Alg-CS/ATX gel beads in vitro. ATX-encapsulated alginate-chitosan (Alg-CS/ATX) gel beads were synthesized and structurally/morphologically characterized by SEM, FT-IR, and XRD. Their biological effects were examined in human umbilical vein endothelial cells (HUVECs) treated with H2O2 through MTT assay, Annexin V/PI, cell cycle studies, and western blotting. Alg-CS effectively carried ATX, with high capacity and reduced pore size. Alg-CS/ATX displayed an 84% encapsulation efficiency, maintaining stability for 30 days. In vitro studies showed a 1.4-fold faster release at pH 5.4 than at neutral pH, improving ATX's therapeutic potential. HUVECs treated with Alg-CS/ATX showed enhanced viability via increased Nrf2 expression. Alg-CS gel beads exhibit significant potential as a biocompatible vehicle for delivering ATX to combat OS with considerable opportunity for clinical applications.
Collapse
Affiliation(s)
- Hamieh Goshtasbi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
20
|
Mendonça ELSS, Xavier JA, Fragoso MBT, Silva MO, Escodro PB, Oliveira ACM, Tucci P, Saso L, Goulart MOF. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals (Basel) 2024; 17:232. [PMID: 38399446 PMCID: PMC10891666 DOI: 10.3390/ph17020232] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Stilbenes are phytoalexins, and their biosynthesis can occur through a natural route (shikimate precursor) or an alternative route (in microorganism cultures). The latter is a metabolic engineering strategy to enhance production due to stilbenes recognized pharmacological and medicinal potential. It is believed that in the human body, these potential activities can be modulated by the regulation of the nuclear factor erythroid derived 2 (Nrf2), which increases the expression of antioxidant enzymes. Given this, our review aims to critically analyze evidence regarding E-stilbenes in human metabolism and the Nrf2 activation pathway, with an emphasis on inflammatory and oxidative stress aspects related to the pathophysiology of chronic and metabolic diseases. In this comprehensive literature review, it can be observed that despite the broad number of stilbenes, those most frequently explored in clinical trials and preclinical studies (in vitro and in vivo) were resveratrol, piceatannol, pterostilbene, polydatin, stilbestrol, and pinosylvin. In some cases, depending on the dose/concentration and chemical nature of the stilbene, it was possible to identify activation of the Nrf2 pathway. Furthermore, the use of some experimental models presented a challenge in comparing results. In view of the above, it can be suggested that E-stilbenes have a relationship with the Nrf2 pathway, whether directly or indirectly, through different biological pathways, and in different diseases or conditions that are mainly related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Elaine L. S. S. Mendonça
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | - Jadriane A. Xavier
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Marilene B. T. Fragoso
- Institute of Chemistry and Biotechnology, UFAL, Maceió 57072-900, Brazil; (J.A.X.); (M.B.T.F.)
| | - Messias O. Silva
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| | | | | | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, 00185 Rome, Italy
| | - Marília O. F. Goulart
- Program of the Northeast Biotechnology Network (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas (UFAL), Maceió 57072-900, Brazil; (E.L.S.S.M.); (M.O.S.)
| |
Collapse
|
21
|
Al-Kuraishy HM, Al-Gareeb AI, Eldahshan OA, Abdelkhalek YM, El Dahshan M, Ahmed EA, Sabatier JM, Batiha GES. The possible role of nuclear factor erythroid-2-related factor 2 activators in the management of Covid-19. J Biochem Mol Toxicol 2024; 38:e23605. [PMID: 38069809 DOI: 10.1002/jbt.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/06/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | | | - Magdy El Dahshan
- Department of Internal Medicine, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, Marseille, France
| | - Gaber E-S Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt
| |
Collapse
|
22
|
Zhao H, Tang C, Wang M, Zhao H, Zhu Y. Ferroptosis as an emerging target in rheumatoid arthritis. Front Immunol 2023; 14:1260839. [PMID: 37928554 PMCID: PMC10620966 DOI: 10.3389/fimmu.2023.1260839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology. Due to the rise in the incidence rate of RA and the limitations of existing therapies, the search for new treatment strategies for RA has become a global focus. Ferroptosis is a novel programmed cell death characterized by iron-dependent lipid peroxidation, with distinct differences from apoptosis, autophagy, and necrosis. Under the conditions of iron accumulation and the glutathione peroxidase 4 (GPX4) activity loss, the lethal accumulation of lipid peroxide is the direct cause of ferroptosis. Ferroptosis mediates inflammation, oxidative stress, and lipid oxidative damage processes, and also participates in the occurrence and pathological progression of inflammatory joint diseases including RA. This review provides insight into the role and mechanism of ferroptosis in RA and discusses the potential and challenges of ferroptosis as a new therapeutic strategy for RA, with an effort to provide new targets for RA prevention and treatment.
Collapse
Affiliation(s)
- Hui Zhao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Cheng Tang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Wang
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Hongfang Zhao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yan Zhu
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
- The Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
23
|
Li J, Arest S, Olszowy B, Gordon J, Barrero CA, Perez-Leal O. CRISPR/Cas9-Based Screening of FDA-Approved Drugs for NRF2 Activation: A Novel Approach to Discover Therapeutics for Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2023; 12:1363. [PMID: 37507903 PMCID: PMC10375998 DOI: 10.3390/antiox12071363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
With the rising prevalence of obesity, non-alcoholic fatty liver disease (NAFLD) now affects 20-25% of the global population. NAFLD, a progressive condition associated with oxidative stress, can result in cirrhosis and liver cancer in 10% and 3% of patients suffering NAFLD, respectively. Therapeutic options are currently limited, emphasizing the need for novel treatments. In this study, we examined the potential of activating the transcription factor NRF2, a crucial player in combating oxidative stress, as an innovative approach to treating NAFLD. Utilizing a CRISPR/Cas9-engineered human HEK293T cell line, we were able to monitor the expression of heme oxygenase-1 (HMOX1), an NRF2 target, using a Nanoluc luciferase tag. Our model was validated using a known NRF2 activator, after which we screened 1200 FDA-approved drugs, unearthing six compounds (Disulfiram, Thiostrepton, Auranofin, Thimerosal, Halofantrine, and Vorinostat) that enhanced NRF2 activity and antioxidant response. These compounds demonstrated protective effects against oxidative stress induced by hydrogen peroxide and lipid droplets accumulation in vitro with hepatoma HUH-7 cells. Our study underscores the utility of CRISPR/Cas9 tagging with Nanoluc luciferase in identifying potential NRF2 activators, paving the way for potential NAFLD therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Oscar Perez-Leal
- Department of Pharmaceutical Sciences, Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
24
|
Zhao L, Xiong C, Yang Y, Li Z, He K, Liu Q, He Z, Luo J, Zhang X, Li Z, Yang S. The protective effect of resveratrol on largemouth bass (Micropterus salmoides) during out-of-season spawning. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108688. [PMID: 36935043 DOI: 10.1016/j.fsi.2023.108688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
In aquaculture production, out-of-season spawning is beneficial to solve the seasonal shortage of fry that are normally produced once annually by species such as largemouth bass (Micropterus salmoides), thereby implementing year-round fry production. Maintaining low temperature over a period of several months can delay largemouth bass ovarian development, but it can cause severe stress to their reproductive function, leading to decreased fertility during out-of-season spawning. Feeding with antioxidants is one of the most effective methods to alleviate the negative effects of low temperature stress. Therefore, the purpose of this study is to: (a) evaluate the changes in oocyte morphology, antioxidant capacity, reproductive hormone-related index, cell apoptosis and autophagy during the out-of-season spawning of largemouth bass, and (b) to investigate the protective effect of the antioxidant resveratrol on this fish during out-of-season spawning from May through August. The study was divided into two groups (three replicates per group, 2000 fish per replicate): control group (Control) (exposure to water temperature of 12-17 °C) and resveratrol supplementation group (Res) (exposure to water temperature of 12-17 °C and fed with 200 mg/kg resveratrol). The results show that: (1) The serum hormones LH and E2 increased first and then remained unchanged, and the ovarian section showed that the ovary remained in stage IV. (2) In the process of off-season reproduction, a large number of follicles experienced follicular atresia, accompanied by endoplasmic reticulum expansion, nuclear chromatin condensation and mitochondrial swelling, which was relieved after feeding resveratrol. (3) Resveratrol decreased the ovarian ROS content and improved the activities of CAT and other antioxidant enzymes in the ovary and liver to some extent. (4) Resveratrol reduced the level of pro-apoptotic (Bax, Caspase3, Caspase8, Caspase9) and autophagy-related components (LC3-B, Beclin-1) while increasing the transcription level of anti-apoptotic (Bcl-2) factors. These findings suggest that resveratrol alleviates some adverse effects of largemouth bass during out-of-season spawning to some extent and provide a model for efficient and high-quality out-of-season spawning.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Chen Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yi Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhihong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
25
|
Zhu M, Ding Q, Lin Z, Fu R, Zhang F, Li Z, Zhang M, Zhu Y. New Targets and Strategies for Rheumatoid Arthritis: From Signal Transduction to Epigenetic Aspect. Biomolecules 2023; 13:biom13050766. [PMID: 37238636 DOI: 10.3390/biom13050766] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to joint damage and even permanent disability, seriously affecting patients' quality of life. At present, the complete cure for RA is not achievable, only to relieve the symptoms to reduce the pain of patients. Factors such as environment, genes, and sex can induce RA. Presently, non-steroidal anti-inflammatory drugs, DRMADs, and glucocorticoids are commonly used in treating RA. In recent years, some biological agents have also been applied in clinical practice, but most have side effects. Therefore, finding new mechanisms and targets for treating RA is necessary. This review summarizes some potential targets discovered from the perspective of epigenetics and RA mechanisms.
Collapse
Affiliation(s)
- Menglin Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Rong Fu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Fuyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Mei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
26
|
Jing W, Liu C, Su C, Liu L, Chen P, Li X, Zhang X, Yuan B, Wang H, Du X. Role of reactive oxygen species and mitochondrial damage in rheumatoid arthritis and targeted drugs. Front Immunol 2023; 14:1107670. [PMID: 36845127 PMCID: PMC9948260 DOI: 10.3389/fimmu.2023.1107670] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation, pannus formation, and bone and cartilage damage. It has a high disability rate. The hypoxic microenvironment of RA joints can cause reactive oxygen species (ROS) accumulation and mitochondrial damage, which not only affect the metabolic processes of immune cells and pathological changes in fibroblastic synovial cells but also upregulate the expression of several inflammatory pathways, ultimately promoting inflammation. Additionally, ROS and mitochondrial damage are involved in angiogenesis and bone destruction, thereby accelerating RA progression. In this review, we highlighted the effects of ROS accumulation and mitochondrial damage on inflammatory response, angiogenesis, bone and cartilage damage in RA. Additionally, we summarized therapies that target ROS or mitochondria to relieve RA symptoms and discuss the gaps in research and existing controversies, hoping to provide new ideas for research in this area and insights for targeted drug development in RA.
Collapse
Affiliation(s)
- Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Cui Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chenghong Su
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Limei Liu
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ping Chen
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiangjun Li
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xinghua Zhang
- Department of Acupuncture, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bo Yuan
- Department of Acupuncture and Pain, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Haidong Wang
- Department of Rheumatic and Bone Disease, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaozheng Du
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
27
|
Ali M, Benfante V, Stefano A, Yezzi A, Di Raimondo D, Tuttolomondo A, Comelli A. Anti-Arthritic and Anti-Cancer Activities of Polyphenols: A Review of the Most Recent In Vitro Assays. Life (Basel) 2023; 13:life13020361. [PMID: 36836717 PMCID: PMC9967894 DOI: 10.3390/life13020361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Polyphenols have gained widespread attention as they are effective in the prevention and management of various diseases, including cancer diseases (CD) and rheumatoid arthritis (RA). They are natural organic substances present in fruits, vegetables, and spices. Polyphenols interact with various kinds of receptors and membranes. They modulate different signal cascades and interact with the enzymes responsible for CD and RA. These interactions involve cellular machinery, from cell membranes to major nuclear components, and provide information on their beneficial effects on health. These actions provide evidence for their pharmaceutical exploitation in the treatment of CD and RA. In this review, we discuss different pathways, modulated by polyphenols, which are involved in CD and RA. A search of the most recent relevant publications was carried out with the following criteria: publication date, 2012-2022; language, English; study design, in vitro; and the investigation of polyphenols present in extra virgin olive, grapes, and spices in the context of RA and CD, including, when available, the underlying molecular mechanisms. This review is valuable for clarifying the mechanisms of polyphenols targeting the pathways of senescence and leading to the development of CD and RA treatments. Herein, we focus on research reports that emphasize antioxidant properties.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
- Correspondence:
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Anthony Yezzi
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- NBFC—National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
28
|
Liu Y, Zhang Y, Zhang K, Wang Y. Protocatechuic acid reduces H 2O 2-induced migration and oxidative stress of fibroblast-like synoviocytes in rheumatoid arthritis by activating Nrf2-Keap1 signaling pathway. CHINESE J PHYSIOL 2023; 66:28-35. [PMID: 36814154 DOI: 10.4103/cjop.cjop-d-22-00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Honeycomb (Nidus vespae) is traditional Chinese medicine and can treat rheumatoid arthritis (RA), and protocatechuic acid (PCA) is a bioactive component of honeycomb. This study aimed to investigate whether PCA could reduce the H2O2-induced migration and oxidative stress of RA fibroblast-like synoviocytes (RA-FLSs). H2O2-induced RA-FLSs were used to simulate the in vitro model of RA. The viability, apoptosis, migration, invasion, and oxidative stress of RA-FLSs were detected by Cell Counting Kit-8 (CCK-8), terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, wound healing, transwell assays, DCFDA staining, and malonaldehyde and superoxide dismutase enzyme-linked immunosorbent assay kits. The expression of migration and invasion-related proteins and Nrf2/Keap1 signaling pathway-related proteins was analyzed by western blotting. As a result, PCA suppressed the viability, migration, invasion, and oxidative and promoted apoptosis of H2O2-induced RA-FLSs by activating the Nrf2/Keap1 signaling pathway. ML-385, an Nrf2 inhibitor, could enhance the viability, migration, invasion, and oxidative and inhibited apoptosis of H2O2-induced RA-FLSs. In conclusion, PCA reduced H2O2-induced migration and oxidative stress of RA-FLSs by activating the Nrf2-Keap1 signaling pathway.
Collapse
Affiliation(s)
- Yan Liu
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yucheng Zhang
- Department of Critical Care Medicine, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu, China
| | - Keke Zhang
- School of Integrated Traditional Chinese and Western Medicine, Jiangsu Health Vocational College, Nanjing, Jiangsu, China
| | - Yue Wang
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Lv L, Shu H, Mo X, Tian Y, Guo H, Sun HY. Activation of the Nrf2 Antioxidant Pathway by Longjing Green Tea Polyphenols in Mice Livers. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221139409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies have revealed that green tea polyphenol (GTP) could protect against liver injury due to oxidative stress. However, the mechanism underlying the bioactive actions of GTP in the liver has not been systematically evaluated. This study aimed to investigate the effect of GTP on the activation of the nuclear factor erythroid-2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (keap1) pathway, using in silico and in vivo methods. Furthermore, the regulation of Nrf2 downstream target antioxidant response element (ARE) was also evaluated. The high-performance liquid chromatography analysis indicated that GTP includes 9 major compounds, and molecule docking analysis demonstrated that most of these polyphenols have a strong binding affinity with the keap1 Kelch domain, where keap1 binds to the Neh2 domain of Nrf2. Remarkably, the predominant compound of GTP, that is, epigallocatechin gallate, displayed the best binding affinity score, which can fully occupy all 3 polar subpockets of the keap1 Kelch domain. The Nrf2, keap1, and Nrf2 downstream target gene expression levels were changed in the livers compared to the control group. It showed that the Nrf2 expression level was significantly upregulated in GTP-induced mice liver across most treatments, while the keap1 expression level remained unchanged. Subsequently, we observed a significant increasing trend in the expression of the downstream ARE, including antioxidative enzymes, liver phase II enzymes, and liver efflux transporters in mice livers. The present study demonstrated that GTP could activate the Nrf2 signaling pathway by interrupting the Nrf2-keap1 protein–protein interaction
Collapse
Affiliation(s)
- Le Lv
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong, People's Republic of China
- School of Applied Biology, Shenzhen Institute of Technology, Shenzhen, Guangdong, People's Republic of China
| | - Haoyue Shu
- Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, Shenzhen, Guangdong, People's Republic of China
| | - Xiaoye Mo
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, Guangdong, People's Republic of China
| | - Yongjing Tian
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, Guangdong, People's Republic of China
| | - Hui Guo
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, Guangdong, People's Republic of China
| | - Hai-Yan Sun
- School of Food and Drug, Shenzhen Polytechnic, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
30
|
Ageing and Osteoarthritis Synergically Affect Human Synoviocyte Cells: An In Vitro Study on Sex Differences. J Clin Med 2022; 11:jcm11237125. [PMID: 36498698 PMCID: PMC9739144 DOI: 10.3390/jcm11237125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoarthritis is a chronic inflammatory disease that affects all of the joints, especially those of the elderly. Aging is a natural and irreversible biological process implicated in the pathophysiology of many chronic diseases, such as osteoarthritis. Inflammation and oxidative stress are the main factors involved in osteoarthritis and aging, respectively, with the production of several pro-inflammatory cytokines such as Interleukin 1β (IL1β) and reactive oxygen species. The aim of the study was to set-up an in vitro model of osteoarthritis and aging, focusing on the sex differences by culturing male and female fibroblast-like synoviocytes (FLSs) with IL1β, hydrogen peroxide (H2O2), IL1β+H2O2 or a growth medium (control). IL1β+H2O2 reduced the cell viability and microwound healing potential, increased Caspase-3 expression and reactive oxygen species and IL6 production; IL1β increased IL6 production more than the other conditions did; H2O2 increased Caspase-3 expression and reactive oxygen species production; Klotho expression showed no differences among the treatments. The FLSs from female donors demonstrated a better response capacity in unfavorable conditions of inflammation and oxidative stress than those from the male donors did. This study developed culture conditions to mimic the aging and osteoarthritis microenvironment to evaluate the behavior of the FLSs which play a fundamental role in joint homeostasis, focusing on the sex-related aspects that are relevant in the osteoarthritis pathophysiology.
Collapse
|
31
|
Triacetyl Resveratrol Inhibits PEDV by Inducing the Early Apoptosis In Vitro. Int J Mol Sci 2022; 23:ijms232314499. [PMID: 36498827 PMCID: PMC9737061 DOI: 10.3390/ijms232314499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
PEDV represents an ancient Coronavirus still causing huge economic losses to the porcine breeding industry. Resveratrol has excellent antiviral effects. Triacetyl resveratrol (TCRV), a novel natural derivative of resveratrol, has been recently discovered, and its pharmacological effects need to be explored further. This paper aims to explore the relationship between PEDV and TCRV, which offers a novel strategy in the research of antivirals. In our study, Vero cells and IPEC-J2 cells were used as an in vitro model. First, we proved that TCRV had an obvious anti-PEDV effect and a strong inhibitory effect at different time points. Then, we explored the mechanism of inhibition of PEDV infection by TCRV. Our results showed that TCRV could induce the early apoptosis of PEDV-infected cells, in contrast to PEDV-induced apoptosis. Moreover, we observed that TCRV could promote the expression and activation of apoptosis-related proteins and release mitochondrial cytochrome C into cytoplasm. Based on these results, we hypothesized that TCRV induced the early apoptosis of PEDV-infected cells and inhibited PEDV infection by activating the mitochondria-related caspase pathway. Furthermore, we used the inhibitors Z-DEVD-FMK and Pifithrin-α (PFT-α) to support our hypothesis. In conclusion, the TCRV-activated caspase pathway triggered early apoptosis of PEDV-infected cells, thereby inhibiting PEDV infections.
Collapse
|
32
|
Cui L, Weiyao J, Chenghong S, Limei L, Xinghua Z, Bo Y, Xiaozheng D, Haidong W. Rheumatoid arthritis and mitochondrial homeostasis: The crossroads of metabolism and immunity. Front Med (Lausanne) 2022; 9:1017650. [PMID: 36213670 PMCID: PMC9542797 DOI: 10.3389/fmed.2022.1017650] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis is an autoimmune disease characterized by chronic symmetric synovial inflammation and erosive bone destruction. Mitochondria are the main site of cellular energy supply and play a key role in the process of energy metabolism. They possess certain self-regulatory and repair capabilities. Mitochondria maintain relative stability in number, morphology, and spatial structure through biological processes, such as biogenesis, fission, fusion, and autophagy, which are collectively called mitochondrial homeostasis. An imbalance in the mitochondrial homeostatic environment will affect immune cell energy metabolism, synovial cell proliferation, apoptosis, and inflammatory signaling. These biological processes are involved in the onset and development of rheumatoid arthritis. In this review, we found that in rheumatoid arthritis, abnormal mitochondrial homeostasis can mediate various immune cell metabolic disorders, and the reprogramming of immune cell metabolism is closely related to their inflammatory activation. In turn, mitochondrial damage and homeostatic imbalance can lead to mtDNA leakage and increased mtROS production. mtDNA and mtROS are active substances mediating multiple inflammatory pathways. Several rheumatoid arthritis therapeutic agents regulate mitochondrial homeostasis and repair mitochondrial damage. Therefore, modulation of mitochondrial homeostasis would be one of the most attractive targets for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Liu Cui
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Weiyao
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Su Chenghong
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Liu Limei
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhang Xinghua
- Acupuncture and Moxibustion Department, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Yuan Bo
- Acupuncture and Pain Department, Affiliated Hospital of Gansu University of Traditional Chinese Medicine (TCM), Lanzhou, China
| | - Du Xiaozheng
- College of Acupuncture-Moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Du Xiaozheng
| | - Wang Haidong
- Rheumatoid Bone Disease Center, Gansu Provincial Hospital of Traditional Chinese Medicine (TCM), Lanzhou, China
- Wang Haidong
| |
Collapse
|
33
|
Icariin represses the inflammatory responses and survival of rheumatoid arthritis fibroblast-like synoviocytes by regulating the TRIB1/TLR2/NF-kB pathway. Int Immunopharmacol 2022; 110:108991. [DOI: 10.1016/j.intimp.2022.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
|
34
|
Sheng S, Wang X, Liu X, Hu X, Shao Y, Wang G, Mao D, Li C, Chen B, Chen X. The role of resveratrol on rheumatoid arthritis: From bench to bedside. Front Pharmacol 2022; 13:829677. [PMID: 36105210 PMCID: PMC9465647 DOI: 10.3389/fphar.2022.829677] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/13/2022] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by symmetrical polyarthritis as its main clinical manifestation. Uncontrolled RA eventually leads to joint deformities and loss of function. Currently, the pathogenesis of RA remains under discussion, and RA treatment is still at the bottleneck stage. Resveratrol has long been regarded as a potential antioxidant drug for RA treatment. Currently, resveratrol is considered to exert therapeutic effects on RA by activating silent information regulator 1 (SIRT1) and its downstream pathways. There is notable crosstalk between the SIRT1 and NF-κB pathways, and these pathways, which play an essential role in the development of RA, are unexpectedly linked to the influence of resveratrol. Based on recent studies of almost all the pathways that resveratrol can affect, this review summarizes a regulatory chain of core components that cover multiple tracks. We also list the effects of resveratrol on immune cells and other subtle controls, which can help clinicians understand the known mechanism of resveratrol and better treat patients with RA.
Collapse
Affiliation(s)
- Shuyan Sheng
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xinyi Wang
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xin Liu
- School of pharmacy, Anhui Medical University, Hefei, China
| | - Xinyang Hu
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Yubao Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Microscopic Morphological Center Laboratory, Anhui Medical University, Hefei, China
| | - Gaoyuan Wang
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Deshen Mao
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Conghan Li
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Bangjie Chen
- First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, China
- *Correspondence: Bangjie Chen, ; Xiaoyu Chen,
| | - Xiaoyu Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Microscopic Morphological Center Laboratory, Anhui Medical University, Hefei, China
- *Correspondence: Bangjie Chen, ; Xiaoyu Chen,
| |
Collapse
|
35
|
Insights into the Anti-inflammatory and Antiviral Mechanisms of Resveratrol. Mediators Inflamm 2022; 2022:7138756. [PMID: 35990040 PMCID: PMC9391165 DOI: 10.1155/2022/7138756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022] Open
Abstract
Resveratrol is a naturally occurring stilbene phytoalexin phenolic compound, which has been extensively studied on its biological activity. It has been widely accepted that resveratrol possesses anti-inflammatory and antiviral activities. In this review, we summarize the anti-inflammatory dosages and mechanism and antiviral mechanism of resveratrol. Since viral infections are often accompanied by inflammation, we propose that the NF-κB signaling pathway is a key and common molecular mechanism of resveratrol to exert anti-inflammatory and antiviral effects. For future studies, we believe that resveratrol's anti-inflammatory and antiviral mechanisms can consider the upstream signaling molecules of the NF-κB signaling pathway. For resveratrol antivirus, future studies can be conducted on the interaction of resveratrol with key proteins or important enzymes of the virus. In addition, we also think that the clinical application of resveratrol is very important. In short, resveratrol is a promising anti-inflammatory and antiviral drug, and research on it needs to be expanded.
Collapse
|
36
|
Chang S, Tang M, Zhang B, Xiang D, Li F. Ferroptosis in inflammatory arthritis: A promising future. Front Immunol 2022; 13:955069. [PMID: 35958605 PMCID: PMC9361863 DOI: 10.3389/fimmu.2022.955069] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Ferroptosis is a kind of regulatory cell death (RCD) caused by iron accumulation and lipid peroxidation, which is characterized by mitochondrial morphological changes and has a complex regulatory network. Ferroptosis has been gradually emphasized in the pathogenesis of inflammatory arthritis. In this review, we summarized the relevant research on ferroptosis in various inflammatory arthritis including rheumatoid arthritis (RA), osteoarthritis, gout arthritis, and ankylosing spondylitis, and focused on the relationship between RA and ferroptosis. In patients with RA and animal models of RA, there was evidence of iron overload and lipid peroxidation, as well as mitochondrial dysfunction that may be associated with ferroptosis. Ferroptosis inducers have shown good application prospects in tumor therapy, and some anti-rheumatic drugs such as methotrexate and sulfasalazine have been shown to have ferroptosis modulating effects. These phenomena suggest that the role of ferroptosis in the pathogenesis of inflammatory arthritis will be worth further study. The development of therapeutic strategies targeting ferroptosis for patients with inflammatory arthritis may be a promising future.
Collapse
Affiliation(s)
- Siyuan Chang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mengshi Tang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fen Li
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Fen Li,
| |
Collapse
|
37
|
Heo YR, Son CN, Baek WK, Kim SH. Grape seed proanthocyanidin extract induces apoptotic and autophagic cell death in rheumatoid arthritis fibroblast-like synoviocytes. Arch Rheumatol 2022; 37:393-403. [PMID: 36589610 PMCID: PMC9791554 DOI: 10.46497/archrheumatol.2022.9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023] Open
Abstract
Objectives In this study, we aimed to evaluate the association between grape seed proanthocyanidin extract (GSPE) and rheumatoid arthritis-fibroblast-like synoviocytes (RA-FLSs) and to investigate whether GSPE induces cell death in RA-FLSs. Materials and methods The FLSs were isolated from RA synovial tissues. Cell viability and cell cycle staging were analyzed using a hemocytometer and flow cytometry. Caspase 3 and poly (ADP-ribose) polymerase (PARP) proteins were analyzed using Western blotting with z-VAD-fmk. Protein LC3 and polyubiquitin-binding protein p62 that were degraded by autophagy were evaluated using Western blotting with 3-methyladenine and chloroquine. Reactive oxygen species (ROS) were also evaluated. Results When RA-FLSs were treated with GSPE, cell viability decreased, the number of cells in sub-G1 and G2/M phases increased, and the expression of pro-PARP and pro-caspase 3 proteins decreased in a concentration-dependent manner. This result was offset, when the cells were co-treated with the pan-caspase inhibitor z-VAD-fmk. The reduced cell viability, increased expression of LC3-II protein, and reduced expression of p62 protein with GSPE treatment were offset, when RA-FLSs were co-treated with GSPE and autophagy inhibitors 3-methyladenine and chloroquine. The level of ROS in RA-FLSs treated with GSPE was significantly lower than treatment with N-acetyl-cysteine, a ROS inhibitor. Conclusion Our study results show that GSPE induces apoptotic and autophagic cell death and inhibites reactive oxygen species in RA-FLSs.
Collapse
Affiliation(s)
- Ye-Rin Heo
- Department of Internal Medicine, Division of Rheumatology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Chang-Nam Son
- Department of Internal Medicine, Division of Rheumatology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Won-Ki Baek
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Sang-Hyon Kim
- Department of Internal Medicine, Division of Rheumatology, Keimyung University School of Medicine, Daegu, Republic of Korea
,
Institute for Medical Science, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
38
|
Wang J, Jia R, Celi P, Zhuo Y, Ding X, Zeng Q, Bai S, Xu S, Yin H, Lv L, Zhang K. Resveratrol Alleviating the Ovarian Function Under Oxidative Stress by Alternating Microbiota Related Tryptophan-Kynurenine Pathway. Front Immunol 2022; 13:911381. [PMID: 35911670 PMCID: PMC9327787 DOI: 10.3389/fimmu.2022.911381] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress (OS) is a key factor regulating the systemic pathophysiological effects and one of the fundamental mechanisms associated with aging and fertility deterioration. Previous studies revealed that resveratrol (RV) exhibits a preventive effect against oxidative stress in the ovary. However, it remains unknown whether gut microbiota respond to resveratrol during an OS challenge. In Exp. 1, layers received intraperitoneal injection of tert-butyl hydroperoxide (tBHP) (0 or 800 μmol/kg BW) or received resveratrol diets (0 or 600 mg/kg) for 28 days. In Exp. 2, the role of intestinal microbiota on the effects of resveratrol on tBHP-induced oxidative stress was assessed through fecal microbiota transplantation (FMT). The OS challenge reduced the egg-laying rate and exhibited lower pre-hierarchical follicles and higher atretic follicles. Oral RV supplementation ameliorated the egg-laying rate reduction and gut microbiota dysbiosis. RV also reversed the tryptphan-kynurenine pathway, upregulated nuclear factor E2-related factor 2 (Nrf2) and silent information regulator 1(SIRT1) levels, and decreased the expression of forkhead box O1 (FoxO1) and P53. These findings indicated that the intestinal microbiota-related tryptophan-kynurenine pathway is involved in the resveratrol-induced amelioration of ovary oxidative stress induced by tBHP in the layer model, while SIRT1-P53/FoxO1 and Nrf2-ARE signaling pathway were involved in this process.
Collapse
Affiliation(s)
- Jianping Wang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Jianping Wang,
| | - Ru Jia
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Pietro Celi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Yong Zhuo
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Ding
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiufeng Zeng
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shiping Bai
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huadong Yin
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Li Lv
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Keying Zhang
- Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
39
|
Pouremamali F, Pouremamali A, Dadashpour M, Soozangar N, Jeddi F. An update of Nrf2 activators and inhibitors in cancer prevention/promotion. Cell Commun Signal 2022; 20:100. [PMID: 35773670 PMCID: PMC9245222 DOI: 10.1186/s12964-022-00906-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) protein is a basic-region leucine zipper transcription factor that defends against endogenous or exogenous stressors. By inducing several cytoprotective and detoxifying gene expressions, Nrf2 can increase the sensitivity of the cells to oxidants and electrophiles. Transient Nrf2 activation, by its specific activators, has protective roles against carcinogenesis and cancer development. However, permanent activation of Nrf2 promotes various cancer properties, comprising malignant progression, chemo/radio resistance, and poor patient prognosis. Taken together, these findings suggest that reaching an optimal balance between paradoxical functions of Nrf2 in malignancy may render a selective improvement to identify therapeutic strategies in cancer treatment. In this review, we describe lately discovered Nrf2 inducers and inhibitors, and their chemopreventive and/or anticancer activities. The Nrf2 pathway signifies one of the most significant cell defense procedures against exogenous or endogenous stressors. Certainly, by increasing the expression of several cytoprotective genes, the transcription factor Nrf2 can shelter cells and tissues from multiple sources of damage including electrophilic, xenobiotic, metabolic, and oxidative stress. Notably, the aberrant activation or accumulation of Nrf2, a common event in many tumors, confers a selective advantage to cancer cells and is connected to malignant progression, therapy resistance, and poor prognosis. Therefore, lately, Nrf2 has arisen as a hopeful target in treatment of cancer, and many struggles have been made to detect therapeutic strategies intended at disrupting its pro-oncogenic role. By summarizing the outcomes from past and recent studies, this review provided an overview concerning the Nrf2 pathway and the molecular mechanisms causing Nrf2 hyperactivation in cancer cells. Finally, this paper also described some of the most promising therapeutic approaches that have been successfully employed to counteract Nrf2 activity in tumors, with a particular emphasis on the development of natural compounds and the adoption of drug repurposing strategies. Video abstract
Collapse
Affiliation(s)
- Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Pouremamali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Narges Soozangar
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran. .,Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
40
|
Karimi A, Azar PS, Kadkhodayi M, Tandorost A, Vajdi M, Shoorei H, Farhangi MA. A comprehensive insight into effects of resveratrol on molecular mechanism in rheumatoid arthritis: A literature systematic review. Int J Rheum Dis 2022; 25:827-843. [PMID: 35754354 DOI: 10.1111/1756-185x.14356] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023]
Abstract
AIM Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, which is characterized by massive pain and destruction of synovial joints, leads to bone erosion, damage to cartilage, and disability. Several studies suggested that resveratrol supplementation may be effective in the prevention and management of RA. Therefore, a systematic review was conducted to summarize published studies that assess the effect of resveratrol supplementation on the complications of RA. METHODS A comprehensive search to identify in vitro, animal, and human studies investigating the impact of resveratrol on the complications of RA was performed up to February 2022. Two independent reviewers evaluated studies based on inclusion/exclusion criteria and performed data extraction. RESULTS All studies examining the effects of resveratrol supplementation on the complications of RA were included. From a total of 571 retrieved articles, 32 studies were eligible for the current systematic review. The evidence reviewed here indicates that resveratrol supplementation may exert beneficial effects on the complications of RA by attenuating inflammation and oxidative stress, modulating the immune response, and down-regulating the messenger RNA expression of genes related to inflammatory pathways. CONCLUSION Due to the promising therapeutic effects of resveratrol on RA complications and limited number of human studies in this subject, further clinical trials are suggested.
Collapse
Affiliation(s)
- Arash Karimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pouria Sefidmooye Azar
- Department of Nutrition and Hospitality Management, School of Applied Sciences, The University of Mississippi, University Park, Mississippi, USA
| | - Mahtab Kadkhodayi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Tandorost
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahdi Vajdi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | |
Collapse
|
41
|
Roshani M, Jafari A, Loghman A, Sheida AH, Taghavi T, Tamehri Zadeh SS, Hamblin MR, Homayounfal M, Mirzaei H. Applications of resveratrol in the treatment of gastrointestinal cancer. Biomed Pharmacother 2022; 153:113274. [PMID: 35724505 DOI: 10.1016/j.biopha.2022.113274] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Natural product compounds have lately attracted interest in the scientific community as a possible treatment for gastrointestinal (GI) cancer, due to their anti-inflammatory and anticancer properties. There are many preclinical, clinical, and epidemiological studies, suggesting that the consumption of polyphenol compounds, which are abundant in vegetables, grains, fruits, and pulses, may help to prevent various illnesses and disorders from developing, including several GI cancers. The development of GI malignancies follows a well-known path, in which normal gastrointestinal cells acquire abnormalities in their genetic composition, causing the cells to continuously proliferate, and metastasize to other sites, especially the brain and liver. Natural compounds with the ability to affect oncogenic pathways might be possible treatments for GI malignancies, and could easily be tested in clinical trials. Resveratrol is a non-flavonoid polyphenol and a natural stilbene, acting as a phytoestrogen with anti-cancer, cardioprotective, anti-oxidant, and anti-inflammatory properties. Resveratrol has been shown to overcome resistance mechanisms in cancer cells, and when combined with conventional anticancer drugs, could sensitize cancer cells to chemotherapy. Several new resveratrol analogs and nanostructured delivery vehicles with improved anti-GI cancer efficacy, absorption, and pharmacokinetic profiles have already been developed. This present review focuses on the in vitro and in vivo effects of resveratrol on GI cancers, as well as the underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mina Homayounfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
42
|
López-Armada MJ, Fernández-Rodríguez JA, Blanco FJ. Mitochondrial Dysfunction and Oxidative Stress in Rheumatoid Arthritis. Antioxidants (Basel) 2022; 11:antiox11061151. [PMID: 35740048 PMCID: PMC9220001 DOI: 10.3390/antiox11061151] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Control of excessive mitochondrial oxidative stress could provide new targets for both preventive and therapeutic interventions in the treatment of chronic inflammation or any pathology that develops under an inflammatory scenario, such as rheumatoid arthritis (RA). Increasing evidence has demonstrated the role of mitochondrial alterations in autoimmune diseases mainly due to the interplay between metabolism and innate immunity, but also in the modulation of inflammatory response of resident cells, such as synoviocytes. Thus, mitochondrial dysfunction derived from several danger signals could activate tricarboxylic acid (TCA) disruption, thereby favoring a vicious cycle of oxidative/mitochondrial stress. Mitochondrial dysfunction can act through modulating innate immunity via redox-sensitive inflammatory pathways or direct activation of the inflammasome. Besides, mitochondria also have a central role in regulating cell death, which is deeply altered in RA. Additionally, multiple evidence suggests that pathological processes in RA can be shaped by epigenetic mechanisms and that in turn, mitochondria are involved in epigenetic regulation. Finally, we will discuss about the involvement of some dietary components in the onset and progression of RA.
Collapse
Affiliation(s)
- María José López-Armada
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| | - Jennifer Adriana Fernández-Rodríguez
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
| | - Francisco Javier Blanco
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña, 15001 A Coruña, Spain
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| |
Collapse
|
43
|
Elbaz EM, Ahmed KA, Abdelmonem M. Resveratrol mitigates diclofenac-induced hepatorenal toxicity in rats via modulation of miR-144/Nrf2/GSH axis. J Biochem Mol Toxicol 2022; 36:e23129. [PMID: 35673973 DOI: 10.1002/jbt.23129] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/01/2022] [Accepted: 05/29/2022] [Indexed: 12/11/2022]
Abstract
Despite the extensive therapeutic uses of diclofenac, it may cause several adverse effects, including hepatorenal injury. The antioxidant and anti-inflammatory properties of resveratrol, a polyphenolic compound, make the agent effective in ameliorating a variety of drug-induced injuries. This study investigated the potential beneficial effects of resveratrol on diclofenac-induced hepatorenal toxicity and explored the role of miR-144 and its relationship to oxidative stress and inflammation triggered by diclofenac. Rats were divided into four groups: control; diclofenac group received diclofenac (10 mg/kg/day, intraperitoneal [ip]) for 7 days; prevention group received resveratrol concomitantly with diclofenac for 7 days; and the treatment group received diclofenac for 7 days followed by resveratrol (20 mg/kg/day, per oral) for another 7 days. Diclofenac administration induced a significant increase in serum hepatorenal biomarkers and histopathological aberrations. In addition, diclofenac upregulated miR-144 while reducing nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels and glutathione (GSH) content. Moreover, diclofenac induced tissue inflammation and apoptosis as evidenced by increased protein expression of nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α), and caspase-3. Intriguingly, resveratrol prevention or treatment significantly mitigated the toxic effects of diclofenac as manifested by normalization of the hepatorenal functions and amelioration of the histopathological changes. Resveratrol also triggered miR-144 downregulation with Nrf2 upregulation. Consequently, resveratrol showed hepatorenal antioxidant, anti-inflammatory, and antiapoptotic activities as manifested by improvement in the antioxidant markers along with a decline in NF-κB, TNF-α, and caspase-3 expressions. In conclusion, this study demonstrates a potential therapeutic role of resveratrol in mitigating diclofenac-induced hepatorenal insult, possibly via modulating miR-144/Nrf2/GSH axis.
Collapse
Affiliation(s)
- Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maha Abdelmonem
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
44
|
Wang X, Zhang Y, Jin T, Botchway BOA, Fan R, Wang L, Liu X. Adipose-Derived Mesenchymal Stem Cells Combined With Extracellular Vesicles May Improve Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:830346. [PMID: 35663577 PMCID: PMC9158432 DOI: 10.3389/fnagi.2022.830346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
The complexity of central nervous system diseases together with their intricate pathogenesis complicate the establishment of effective treatment strategies. Presently, the superiority of adipose-derived mesenchymal stem cells (ADSCs) on neuronal injuries has attracted significant attention. Similarly, extracellular vesicles (EVs) are potential interventional agents that could identify and treat nerve injuries. Herein, we reviewed the potential effects of ADSCs and EVs on amyotrophic lateral sclerosis (ALS) injured nerves, and expound on their practical application in the clinic setting. This article predominantly focused on the therapeutic role of ADSCs concerning the pathogenesis of ALS, the protective and reparative effects of EVs on nerve injury, as well as the impact following the combined usage of ADSCs and EVs in ALS.
Collapse
Affiliation(s)
- Xichen Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
| | - Tian Jin
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
| | | | - Ruihua Fan
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Lvxia Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
- *Correspondence: Xuehong Liu,
| |
Collapse
|
45
|
Maity S, Wairkar S. Dietary polyphenols for management of rheumatoid arthritis: Pharmacotherapy and novel delivery systems. Phytother Res 2022; 36:2324-2341. [PMID: 35318759 DOI: 10.1002/ptr.7444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic, complex, systemic autoimmune disease causing chronic inflammation, swelling, and pain. It affects pulmonary and ocular physiology, gastrointestinal disturbance, skeletal disorders, and renal malfunctioning. Although conventional and biological drugs available to treat RA are potent and effective, they lead to life-threatening side effects and patient discomfort. Hence, alternative therapies are explored for their treatment which is safe, effective, and economical. Herbal drugs are widely used as an alternative therapy and some medicinal plants, especially dietary polyphenols proved their efficacy in treating RA. Polyphenols are secondary metabolites of plants possessing several pharmacological actions. They exert anti-inflammatory, immunomodulatory and anti-rheumatoid activity by modulating tumor necrosis factor, mitogen-activated protein kinase, nuclear factor kappa-light-chain-enhancer of activated B cells, and c-Jun N-terminal kinases. Thus, polyphenols could be a promising option for the management of RA. Unfortunately, polyphenols suffer from poor bioavailability due to their physicochemical properties and incorporation into novel delivery systems such as liposomes, nanoparticles, nanoemulsions, micelles improved their oral bioavailability. This review article summarizes dietary polyphenols, their pharmacological actions and novel delivery systems for the treatment of RA. Nevertheless, the commercial translation of polyphenols could be only possible after establishing their safety profile and successful clinical trials.
Collapse
Affiliation(s)
- Siddharth Maity
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, Mumbai, India
| |
Collapse
|
46
|
Kim MJ, Jeon JH. Recent Advances in Understanding Nrf2 Agonism and Its Potential Clinical Application to Metabolic and Inflammatory Diseases. Int J Mol Sci 2022; 23:ijms23052846. [PMID: 35269986 PMCID: PMC8910922 DOI: 10.3390/ijms23052846] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a major component of cell damage and cell fat, and as such, it occupies a central position in the pathogenesis of metabolic disease. Nuclear factor-erythroid-derived 2-related factor 2 (Nrf2), a key transcription factor that coordinates expression of genes encoding antioxidant and detoxifying enzymes, is regulated primarily by Kelch-like ECH-associated protein 1 (Keap1). However, involvement of the Keap1–Nrf2 pathway in tissue and organism homeostasis goes far beyond protection from cellular stress. In this review, we focus on evidence for Nrf2 pathway dysfunction during development of several metabolic/inflammatory disorders, including diabetes and diabetic complications, obesity, inflammatory bowel disease, and autoimmune diseases. We also review the beneficial role of current molecular Nrf2 agonists and summarize their use in ongoing clinical trials. We conclude that Nrf2 is a promising target for regulation of numerous diseases associated with oxidative stress and inflammation. However, more studies are needed to explore the role of Nrf2 in the pathogenesis of metabolic/inflammatory diseases and to review safety implications before therapeutic use in clinical practice.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Endocrinology in Internal Medicine, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Correspondence: ; Tel.: +82-(53)-200-3182; Fax: +82-(53)-200-3155
| |
Collapse
|
47
|
Zhao T, Yang Q, Xi Y, Xie Z, Shen J, Li Z, Li Z, Qin D. Ferroptosis in Rheumatoid Arthritis: A Potential Therapeutic Strategy. Front Immunol 2022; 13:779585. [PMID: 35185879 PMCID: PMC8847160 DOI: 10.3389/fimmu.2022.779585] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
Ferroptosis is one of the newly discovered forms of cell-regulated death characterized by iron-dependent lipid peroxidation. Extensive research has focused on the roles of ferroptosis in tumors, blood diseases, and neurological diseases. Some recent findings have indicated that ferroptosis may also be related to the occurrence and development of inflammatory arthritis. Ferroptosis may be a potential therapeutic target, and few studies in vitro and animal models have shown implications in the pathogenesis of inflammatory arthritis. This mini review discussed the common features between ferroptosis and the pathogenesis of rheumatoid arthritis (RA), and evaluated therapeutic applications of ferroptosis regulators in preclinical and clinical research. Some critical issues worth paying attention to were also raised to guide future research efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
48
|
Yang Z, Mo Y, Cheng F, Zhang H, Shang R, Wang X, Liang J, Liu Y, Hao B. Antioxidant Effects and Potential Molecular Mechanism of Action of Limonium aureum Extract Based on Systematic Network Pharmacology. Front Vet Sci 2022; 8:775490. [PMID: 35071383 PMCID: PMC8767100 DOI: 10.3389/fvets.2021.775490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is the redox imbalance state of organisms that involves in a variety of biological processes of diseases. Limonium aureum (L.) Hill. is an excellent wild plant resource in northern China, which has potential application value for treating oxidative stress. However, there are few studies that focused on the antioxidant effect and related mechanism of L. aureum. Thus, the present study combining systematic network pharmacology and molecular biology aimed to investigate the antioxidant effects of L. aureum and explore its underlying anti-oxidation mechanisms. First, the antioxidant activity of L. aureum extracts was confirmed by in vitro and intracellular antioxidant assays. Then, a total of 11 bioactive compounds, 102 predicted targets, and 70 antioxidant-related targets were obtained from open source databases. For elucidating the molecular mechanisms of L. aureum, the PPI network and integrated visualization network based on bioinformatics assays were constructed to preliminarily understand the active compounds and related targets. The subsequent enrichment analysis results showed that L. aureum mainly affect the biological processes involving oxidation-reduction process, response to drug, etc., and the interference with these biological processes might be due to the simultaneous influence on multiple signaling pathways, including the HIF-1 and ERBB signaling pathways. Moreover, the mRNA levels of predicted hub genes were measured by qRT-PCR to verify the regulatory effect of L. aureum on them. Collectively, this finding lays a foundation for further elucidating the anti-oxidative damage mechanism of L. aureum and promotes the development of therapeutic drugs for oxidative stress.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Yanan Mo
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Feng Cheng
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Xuehong Wang
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Jianping Liang
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| |
Collapse
|
49
|
Lu J, Gu L, Li Q, Wu N, Li H, Zhang X. Andrographolide emeliorates maltol aluminium-induced neurotoxicity via regulating p62-mediated Keap1-Nrf2 pathways in PC12 cells. PHARMACEUTICAL BIOLOGY 2021; 59:232-241. [PMID: 33632062 PMCID: PMC7919883 DOI: 10.1080/13880209.2021.1883678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 06/08/2023]
Abstract
CONTEXT Andrographolide (Andro) has a neuroprotective effect and a potential for treating Alzheimer's disease (AD), but the mechanism has not been elucidated. OBJECTIVE The efficacy of Andro on p62-mediated Kelch-like ECH-associated protein 1(Keap1)-Nuclear factor E2 related factor 2 (Nrf2) pathways in the aluminium maltolate (Al(mal)3)-induced neurotoxicity in PC12 cell was explored. MATERIALS AND METHODS PC12 cells were induced by Al(mal)3 (700 μM) to establish a neurotoxicity model. Following Andro (1.25, 2.5, 5, 10, 20, 40 μM) co-treatment with Al(Mal)3, cell viability was detected with MTT, protein expression levels of β-amyloid precursor protein (APP), β-site APP cleaving enzyme 1 (BACE1), Tau, Nrf2, Keap1, p62 and LC3 were measured via western blotting or immunofluorescence analyses. Nrf2, Keap1, p62 and LC3 mRNA, were detected by reverse transcription-quantitative PCR. RESULTS Compared with the 700 μM Al(mal)3 group, Andro (5, 10 μM) significantly increased Al(mal)3-induced cell viability from 67.4% to 91.9% and 91.2%, respectively, and decreased the expression of APP, BACE1 and Keap1 proteins and the ratio of P-Tau to Tau (from 2.75- fold to 1.94- and 1.70-fold, 2.12-fold to 1.77- and 1.56-fold, 0.68-fold to 0.51- and 0.55-fold, 1.45-fold to 0.82- and 0.91-fold, respectively), increased the protein expression of Nrf2, p62 and the ratio of LC3-II/LC3-I (from 0.67-fold to 0.93- and 0.94-fold, 0.64-fold to 0.88- and 0.87-fold, 0.51-fold to 0.63- and 0.79-fold, respectively), as well as the mRNA expression of Nrf2, p62 and LC3 (from 0.48-fold to 0.92-fold, 0.49-fold to 0.92-fold, 0.25-fold to 0.38-fold). Furthermore, Nrf2 and p62 nuclear translocation were increased and keap1 in the cytoplasm was decreased in the presence of Andro. Silencing p62 or Nrf2 can significantly reduce the protein and mRNA expression of Nrf2 and p62 under co-treatment with Andro and Al(mal)3. DISCUSSION AND CONCLUSIONS Our results suggested that Andro could be a promising therapeutic lead against Al-induced neurotoxicity by regulating p62-mediated keap1-Nrf2 pathways.
Collapse
Affiliation(s)
- Jiaqi Lu
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Lili Gu
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Qin Li
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Ningzi Wu
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Hongxing Li
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Xinyue Zhang
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| |
Collapse
|
50
|
Alavi M, Farkhondeh T, Aschner M, Samarghandian S. Resveratrol mediates its anti-cancer effects by Nrf2 signaling pathway activation. Cancer Cell Int 2021; 21:579. [PMID: 34717625 PMCID: PMC8557610 DOI: 10.1186/s12935-021-02280-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/18/2021] [Indexed: 12/30/2022] Open
Abstract
AIM AND BACKGROUND Cancer represents a major health problem with an exceedingly high toll on the patients, their families, and the economy. Cancers are also associated with high mortality rates. Existing therapies for cancer are generally ineffective with many side effects. METHOD A search was conducted on Pubmed, Google Scholar, Scopus, and web of science databases, and articles related to anticancer effects of resveratrol were collected. RESULTS Resveratrol is a natural compound that can activate the Nrf2 transcription factor. Nfr2 translocates to the nucleus and induces antioxidant gene expression. In different cell lines, resveratrol can increase apoptosis and inhibit the proliferation of cancer cells. CONCLUSION We found that resveratrol shows efficacy for the treatment of cancer, but due to high controversy on the Nrf2 signaling pathway and mechanisms of resveratrol action, additional studies should be conducted to better characterize its mode-of-action in cancer.
Collapse
Affiliation(s)
- Matin Alavi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|