1
|
Chen P, Wang Y, Chen F, Zhou B. Epigenetics in obesity: Mechanisms and advances in therapies based on natural products. Pharmacol Res Perspect 2024; 12:e1171. [PMID: 38293783 PMCID: PMC10828914 DOI: 10.1002/prp2.1171] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Obesity is a major risk factor for morbidity and mortality because it has a close relationship to metabolic illnesses, such as diabetes, cardiovascular diseases, and some types of cancer. With no drugs available, the mainstay of obesity management remains lifestyle changes with exercise and dietary modifications. In light of the tremendous disease burden and unmet therapeutics, fresh perspectives on pathophysiology and drug discovery are needed. The development of epigenetics provides a compelling justification for how environmental, lifestyle, and other risk factors contribute to the pathogenesis of obesity. Furthermore, epigenetic dysregulations can be restored, and it has been reported that certain natural products obtained from plants, such as tea polyphenols, ellagic acid, urolithins, curcumin, genistein, isothiocyanates, and citrus isoflavonoids, were shown to inhibit weight gain. These substances have great antioxidant potential and are of great interest because they can also modify epigenetic mechanisms. Therefore, understanding epigenetic modifications to target the primary cause of obesity and the epigenetic mechanisms of anti-obesity effects with certain phytochemicals can prove rational strategies to prevent the disease and develop novel therapeutic interventions. Thus, the current review aimed to summarize the epigenetic mechanisms and advances in therapies for obesity based on natural products to provide evidence for the development of several potential anti-obesity drug targets.
Collapse
Affiliation(s)
- Peng Chen
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Yulai Wang
- Department of Pharmacy, Huangshi Central HospitalAffiliated Hospital of Hubei Polytechnic UniversityHuangshiHubeiP.R. China
| | - Fuchao Chen
- Sinopharm Dongfeng General HospitalHubei University of MedicineShiyanHubeiP.R. China
| | - Benhong Zhou
- Department of PharmacyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
2
|
Kesharwani D, Brown AC. Navigating the Adipocyte Precursor Niche: Cell-Cell Interactions, Regulatory Mechanisms and Implications for Adipose Tissue Homeostasis. JOURNAL OF CELLULAR SIGNALING 2024; 5:65-86. [PMID: 38826152 PMCID: PMC11141760 DOI: 10.33696/signaling.5.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Support for stem cell self-renewal and differentiation hinges upon the intricate microenvironment termed the stem cell 'niche'. Within the adipose tissue stem cell niche, diverse cell types, such as endothelial cells, immune cells, mural cells, and adipocytes, intricately regulate the function of adipocyte precursors. These interactions, whether direct or indirect, play a pivotal role in governing the balance between self-renewal and differentiation of adipocyte precursors into adipocytes. The mechanisms orchestrating the maintenance and coordination of this niche are still in the early stages of comprehension, despite their crucial role in regulating adipose tissue homeostasis. The complexity of understanding adipocyte precursor renewal and differentiation is amplified due to the challenges posed by the absence of suitable surface receptors for identification, limitations in creating optimal ex vivo culture conditions for expansion and constraints in conducting in vivo studies. This review delves into the current landscape of knowledge surrounding adipocyte precursors within the adipose stem cell niche. We will review the identification of adipocyte precursors, the cell-cell interactions they engage in, the factors influencing their renewal and commitment toward adipocytes and the transformations they undergo during instances of obesity.
Collapse
Affiliation(s)
- Devesh Kesharwani
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Aaron C. Brown
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
- School of Biomedical Sciences and Engineering, The University of Maine, Orono, Maine 04469, USA
- Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
3
|
Cero C, Shu W, Reese AL, Douglas D, Maddox M, Singh AP, Ali SL, Zhu AR, Katz JM, Pierce AE, Long KT, Nilubol N, Cypess RH, Jacobs JL, Tian F, Cypess AM. Standardized In Vitro Models of Human Adipose Tissue Reveal Metabolic Flexibility in Brown Adipocyte Thermogenesis. Endocrinology 2023; 164:bqad161. [PMID: 37944134 PMCID: PMC11032247 DOI: 10.1210/endocr/bqad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Functional human brown and white adipose tissue (BAT and WAT) are vital for thermoregulation and nutritional homeostasis, while obesity and other stressors lead, respectively, to cold intolerance and metabolic disease. Understanding BAT and WAT physiology and dysfunction necessitates clinical trials complemented by mechanistic experiments at the cellular level. These require standardized in vitro models, currently lacking, that establish references for gene expression and function. We generated and characterized a pair of immortalized, clonal human brown (hBA) and white (hWA) preadipocytes derived from the perirenal and subcutaneous depots, respectively, of a 40-year-old male individual. Cells were immortalized with hTERT and confirmed to be of a mesenchymal, nonhematopoietic lineage based on fluorescence-activated cell sorting and DNA barcoding. Functional assessments showed that the hWA and hBA phenocopied primary adipocytes in terms of adrenergic signaling, lipolysis, and thermogenesis. Compared to hWA, hBA were metabolically distinct, with higher rates of glucose uptake and lactate metabolism, and greater basal, maximal, and nonmitochondrial respiration, providing a mechanistic explanation for the association between obesity and BAT dysfunction. The hBA also responded to the stress of maximal respiration by using both endogenous and exogenous fatty acids. In contrast to certain mouse models, hBA adrenergic thermogenesis was mediated by several mechanisms, not principally via uncoupling protein 1 (UCP1). Transcriptomics via RNA-seq were consistent with the functional studies and established a molecular signature for each cell type before and after differentiation. These standardized cells are anticipated to become a common resource for future physiological, pharmacological, and genetic studies of human adipocytes.
Collapse
Affiliation(s)
- Cheryl Cero
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weiguo Shu
- American Type Culture Collection, Cell Biology R&D, 217 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Amy L Reese
- American Type Culture Collection, Sequencing and Bioinformatics Center, 10801 University Blvd, Manassas, VA 20110, USA
| | - Diana Douglas
- American Type Culture Collection, Cell Biology R&D, 217 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Michael Maddox
- American Type Culture Collection, Cell Biology R&D, 217 Perry Parkway, Gaithersburg, MD 20877, USA
- Current Affiliation: Vita Therapeutics, 801 W. Baltimore Street, Suite 301, Baltimore, MD 21201, USA
| | - Ajeet P Singh
- American Type Culture Collection, Sequencing and Bioinformatics Center, 10801 University Blvd, Manassas, VA 20110, USA
| | - Sahara L Ali
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander R Zhu
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jacqueline M Katz
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anne E Pierce
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly T Long
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program, Center for Cancer Research, NCI, NIH, 10 Center Drive, Room 4-5952, Bethesda, MD 20892, USA
| | - Raymond H Cypess
- American Type Culture Collection, 10801 University Blvd, Manassas, VA 20110, USA
| | - Jonathan L Jacobs
- American Type Culture Collection, Sequencing and Bioinformatics Center, 10801 University Blvd, Manassas, VA 20110, USA
| | - Fang Tian
- American Type Culture Collection, Cell Biology R&D, 217 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Brown AC. Optogenetics Sheds Light on Brown and Beige Adipocytes. JOURNAL OF CELLULAR SIGNALING 2023; 4:178-186. [PMID: 37946877 PMCID: PMC10635576 DOI: 10.33696/signaling.4.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Excessive food intake leads to lipid accumulation in white adipose tissue, triggering inflammation, cellular stress, insulin resistance, and metabolic syndrome. In contrast, the dynamic energy expenditure and heat generation of brown and beige adipose tissue, driven by specialized mitochondria, render it an appealing candidate for therapeutic strategies aimed at addressing metabolic disorders. This review examines the therapeutic potential of brown and beige adipocytes for obesity and metabolic disorders, focusing on recent studies that employ optogenetics for thermogenesis control in these cells. The findings delve into the mechanisms underlying UCP1-dependent and UCP1-independent thermogenesis and how optogenetic approaches can be used to precisely modulate energy expenditure and induce thermogenesis. The convergence of adipocyte biology and optogenetics presents an exciting frontier in combating metabolic disorders and advancing our understanding of cellular regulation and energy balance.
Collapse
Affiliation(s)
- Aaron Clifford Brown
- MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
- School of Biomedical Sciences and Engineering, The University of Maine, Orono, Maine 04469, USA
- Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
5
|
Abstract
Metabolic diseases, including obesity, diabetes mellitus and cardiovascular disease, are a major threat to health in the modern world, but efforts to understand the underlying mechanisms and develop rational treatments are limited by the lack of appropriate human model systems. Notably, advances in stem cell and organoid technology allow the generation of cellular models that replicate the histological, molecular and physiological properties of human organs. Combined with marked improvements in gene editing tools, human stem cells and organoids provide unprecedented systems for studying mechanisms of metabolic diseases. Here, we review progress made over the past decade in the generation and use of stem cell-derived metabolic cell types and organoids in metabolic disease research, especially obesity and liver diseases. In particular, we discuss the limitations of animal models and the advantages of stem cells and organoids, including their application to metabolic diseases. We also discuss mechanisms of drug action, understanding the efficacy and toxicity of existing therapies, screening for new treatments and pursuing personalized therapies. We highlight the potential of combining stem cell-derived organoids with gene editing and functional genomics to revolutionize the approach to finding treatments for metabolic diseases.
Collapse
Affiliation(s)
- Wenxiang Hu
- Department of Basic Research, Guangzhou Laboratory, Guangdong, China.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Wang O, Han L, Lin H, Tian M, Zhang S, Duan B, Chung S, Zhang C, Lian X, Wang Y, Lei Y. Fabricating 3-dimensional human brown adipose microtissues for transplantation studies. Bioact Mater 2022; 22:518-534. [PMID: 36330162 PMCID: PMC9619153 DOI: 10.1016/j.bioactmat.2022.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Transplanting cell cultured brown adipocytes (BAs) represents a promising approach to prevent and treat obesity (OB) and its associated metabolic disorders, including type 2 diabetes mellitus (T2DM). However, transplanted BAs have a very low survival rate in vivo. The enzymatic dissociation during the harvest of fully differentiated BAs also loses significant cells. There is a critical need for novel methods that can avoid cell death during cell preparation, transplantation, and in vivo. Here, we reported that preparing BAs as injectable microtissues could overcome the problem. We found that 3D culture promoted BA differentiation and UCP-1 expression, and the optimal initial cell aggregate size was 100 μm. The microtissues could be produced at large scales via 3D suspension assisted with a PEG hydrogel and could be cryopreserved. Fabricated microtissues could survive in vivo for long term. They alleviated body weight and fat gain and improved glucose tolerance and insulin sensitivity in high-fat diet (HFD)-induced OB and T2DM mice. Transplanted microtissues impacted multiple organs, secreted protein factors, and influenced the secretion of endogenous adipokines. To our best knowledge, this is the first report on fabricating human BA microtissues and showing their safety and efficacy in T2DM mice. The proposal of transplanting fabricated BA microtissues, the microtissue fabrication method, and the demonstration of efficacy in T2DM mice are all new. Our results show that engineered 3D human BA microtissues have considerable advantages in product scalability, storage, purity, safety, dosage, survival, and efficacy.
Collapse
Affiliation(s)
- Ou Wang
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, USA
- Biomedical Engineering Program, University of Nebraska-Lincoln, NE, USA
| | - Li Han
- Department of Biomedical Engineering, Pennsylvania State University, PA, USA
| | - Haishuang Lin
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, USA
| | - Mingmei Tian
- China Novartis Institutes for BioMedical Research Co., Ltd., Beijing, China
| | - Shuyang Zhang
- Department of Chemistry, University of Nebraska-Lincoln, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Soonkyu Chung
- Department of Nutrition, University of Massachusetts, Amherst, MA, USA
| | - Chi Zhang
- School of Biological Science, University of Nebraska-Lincoln, NE, USA
| | - Xiaojun Lian
- Department of Biomedical Engineering, Pennsylvania State University, PA, USA
| | - Yong Wang
- Department of Biomedical Engineering, Pennsylvania State University, PA, USA
| | - Yuguo Lei
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, NE, USA
- Department of Biomedical Engineering, Pennsylvania State University, PA, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, PA, USA
- Corresponding author. The Pennsylvania State University, PA, USA.
| |
Collapse
|
7
|
Role of Distinct Fat Depots in Metabolic Regulation and Pathological Implications. Rev Physiol Biochem Pharmacol 2022; 186:135-176. [PMID: 35915363 DOI: 10.1007/112_2022_73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
People suffering from obesity and associated metabolic disorders including diabetes are increasing exponentially around the world. Adipose tissue (AT) distribution and alteration in their biochemical properties play a major role in the pathogenesis of these diseases. Emerging evidence suggests that AT heterogeneity and depot-specific physiological changes are vital in the development of insulin resistance in peripheral tissues like muscle and liver. Classically, AT depots are classified into white adipose tissue (WAT) and brown adipose tissue (BAT); WAT is the site of fatty acid storage, while BAT is a dedicated organ of metabolic heat production. The discovery of beige adipocyte clusters in WAT depots indicates AT heterogeneity has a more central role than hither to ascribed. Therefore, we have discussed in detail the current state of understanding on cellular and molecular origin of different AT depots and their relevance toward physiological metabolic homeostasis. A major focus is to highlight the correlation between altered WAT distribution in the body and metabolic pathogenesis in animal models and humans. We have also underscored the disparity in the molecular (including signaling) changes in various WAT tissues during diabetic pathogenesis. Exercise-mediated beneficial alteration in WAT physiology/distribution that protects against metabolic disorders is evolving. Here we have discussed the depot-specific biochemical adjustments induced by different forms of exercise. A detailed understanding of the molecular details of inter-organ crosstalk via substrate utilization/storage and signaling through chemokines provide strategies to target selected WAT depots to pharmacologically mimic the benefits of exercise countering metabolic diseases including diabetes.
Collapse
|
8
|
Ai X, Hou X, Guo T. C-type natriuretic peptide promotes adipogenic differentiation of goat adipose-derived stem cells via cGMP/PKG/ p38 MAPK signal pathway. In Vitro Cell Dev Biol Anim 2021; 57:865-877. [PMID: 34786662 DOI: 10.1007/s11626-021-00621-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/31/2021] [Indexed: 10/19/2022]
Abstract
C-type natriuretic peptide (CNP) is a member of natriuretic peptide family, which plays unique roles in cardiovascular system. Once CNP binds to natriuretic peptide receptor B (NPR-B), NPR-B induces the production of cGMP, thereby activating PKG and downstream targets. The expression of NPR-B in adipose tissue led to a hypothesis that CNP could have roles involving in regulation of adipogenesis. However, there are few studies on the relationship between CNP and adipogenesis in goat. In the present study, goat adipose-derived stem cells (ADSCs) were isolated and employed to investigate the effect of CNP on adipogenesis in goat. The results showed that CNP significantly promoted adipogenic differentiation of goat ADSCs and also up-regulated the expression of brown adipose genes including uncoupling protein 1 (UCP-1) and peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α). Furthermore, treatment with CNP increased the cGMP production and the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), MAPK activated protein kinase 2 (MK2), and activating transcription factor 2 (ATF2) during adipogenic differentiation. Conversely, PKG inhibitor Rp-8-CPT-cGMP or p38 MAPK specific inhibitor SB203580 abolished stimulative effect of CNP on adipogenic differentiation. Collectively, it is proved that CNP promoted adipogenic differentiation of goat ADSCs depending on the cGMP/PKG/p38 MAPK signal pathway.
Collapse
Affiliation(s)
- Xia Ai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| | - Ximiao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Tingting Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| |
Collapse
|
9
|
Wang Z, Yu X, Chen Y. Recruitment of Thermogenic Fat: Trigger of Fat Burning. Front Endocrinol (Lausanne) 2021; 12:696505. [PMID: 34367068 PMCID: PMC8341719 DOI: 10.3389/fendo.2021.696505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
Brown and beige adipose tissues possess the remarkable capacity to convert energy into heat, which potentially opens novel therapeutic perspectives targeting the epidemic of metabolic syndromes such as obesity and type 2 diabetes. These thermogenic fats implement mitochondrial oxidative phosphorylation and uncouple respiration to catabolize fatty acids and glucose, which leads to an increase in energy expenditure. In particular, beige adipocytes that arise in white adipose tissue display their thermogenic capacity through various noncanonical mechanisms. This review aims to summarize the general overview of thermogenic fat, especially including the UCP1-independent adaptive thermogenesis and the emerging mechanisms of "beiging", which may provide more evidence of targeting thermogenic fat to counteract obesity and other metabolic disorders in humans.
Collapse
Affiliation(s)
- Zhihan Wang
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Laboratory of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
| | - Xuefeng Yu
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Yong Chen
- Division of Endocrinology, Internal Medicine, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Laboratory of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
- *Correspondence: Yong Chen,
| |
Collapse
|
10
|
Lu KY, Primus Dass KT, Lin SZ, Harn HJ, Liu SP. The application of stem cell therapy and brown adipose tissue transplantation in metabolic disorders. Cytotherapy 2020; 22:521-528. [PMID: 32690364 DOI: 10.1016/j.jcyt.2020.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/22/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023]
Abstract
The discovery of brown fat in adult humans has led to increased research of the thermogenic function of this tissue in various metabolic diseases. In addition, high levels of brown fat have been correlated with lower body mass index values. Therefore, increasing brown fat mass and/or activity through methods such as the browning of white fat is considered a promising strategy to prevent and treat obesity-associated diseases. Cell-based approaches using mesenchymal stromal cells and brown adipose tissue (BAT) have been utilized to directly increase BAT mass/activity through cell and tissue implantation into animals. In addition, recent studies evaluating the transplantation of human embryonic stem cells and induced pluripotent stem (iPS) cells have shown promising results in terms of positive metabolic function. In this comprehensive review, we provide a summary of the research over the past 10 years with regard to stem cell therapy and brown fat tissue transplantation for the effective treatment of metabolic syndrome. Recent advancements in stem cell methods have allowed for the production of brown adipocytes from human iPS cells, which represent an unlimited source of cellular material with which to study adipocyte development. In addition, this process is expected to be used to further explore drug- and cell-based therapies to treat obesity-related metabolic complications.
Collapse
Affiliation(s)
- Kang-Yun Lu
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | - Shinn-Zong Lin
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan; Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Horng-Jyh Harn
- Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Taiwan; Department of Pathology, Buddhist Tzu Chi General Hospital and Tzu Chi University, Hualien, Taiwan.
| | - Shih-Ping Liu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan; Center for Translational Medicine, China Medical University and Hospital, Taichung, Taiwan.
| |
Collapse
|
11
|
Zlatska AV, Vasyliev RG, Gordiienko IM, Rodnichenko AE, Morozova MA, Vulf MA, Zubov DO, Novikova SN, Litvinova LS, Grebennikova TV, Zlatskiy IA, Syroeshkin AV. Effect of the deuterium on efficiency and type of adipogenic differentiation of human adipose-derived stem cells in vitro. Sci Rep 2020; 10:5217. [PMID: 32251307 PMCID: PMC7089999 DOI: 10.1038/s41598-020-61983-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/27/2020] [Indexed: 12/30/2022] Open
Abstract
In this study, we performed an adipogenic differentiation of human adipose-derived stem cells (ADSCs) in vitro with different deuterium content (natural, low and high) in the culture medium during differentiation process with parallel analysis of the gene expression, metabolic activity and cell viability/toxicity. After ADSCs differentiation into adipocytes we have done the analysis of differentiation process efficiency and determined a type of resulting adipocytes (by morphology, gene expression, UCP1 protein detection and adipokine production analysis). We have found that high (5 × 105 ppm) deuterium content significantly inhibit in vitro adipogenic differentiation of human ADSCs compared to the groups with natural (150 ppm) and low (30 ppm) deuterium content. Importantly, protocol of differentiation used in our study leads to white adipocytes development in groups with natural (control) and high deuterium content, whereas deuterium-depleted differentiation medium leads to brown-like (beige) adipocytes formation. We have also remarked the direct impact of deuterium on the cellular survival and metabolic activity. Interesting, in deuterium depleted-medium, the cells had normal survival rate and high metabolic activity, whereas the inhibitory effect of deuterated medium on ADSCs differentiation at least was partly associated with deuterium cytotoxicity and inhibitory effect on metabolic activity. The inhibitory effect of deuterium on metabolic activity and the subsequent decrease in the effectiveness of adipogenic differentiation is probably associated with mitochondrial dysfunction. Thus, deuterium could be considered as an element that affects the substance chirality. These findings may be the basis for the development of new approaches in the treatment of obesity, metabolic syndrome and diabetes through the regulation of adipose-derived stem cell differentiation and adipocyte functions.
Collapse
Affiliation(s)
- Alona V Zlatska
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine.,Biotechnology Laboratory ilaya.regeneration, Medical Company ilaya, 9 I. Kramskogo Str., Kyiv, 03115, Ukraine
| | - Roman G Vasyliev
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Inna M Gordiienko
- Biotechnology Laboratory ilaya.regeneration, Medical Company ilaya, 9 I. Kramskogo Str., Kyiv, 03115, Ukraine.,R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology NAS of Ukraine, 45 Vasylkivska Str., Kyiv, 03022, Ukraine
| | - Anzhela E Rodnichenko
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Maria A Morozova
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| | - Maria A Vulf
- Immanuel Kant Baltic federal University (IKBFU), 6 Gaidara St, Kaliningrad, 236001, Russian Federation
| | - Dmytro O Zubov
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Svitlana N Novikova
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine
| | - Larisa S Litvinova
- Immanuel Kant Baltic federal University (IKBFU), 6 Gaidara St, Kaliningrad, 236001, Russian Federation
| | - Tatiana V Grebennikova
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.,Federal Research Center of Epidemiology and Microbiology named Gamalei, Moscow, Russian Federation
| | - Igor A Zlatskiy
- State Institute of Genetic and Regenerative Medicine NAMS of Ukraine, 67 Vyshgorodska Str., Kyiv, 04114, Ukraine. .,Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.
| | - Anton V Syroeshkin
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation
| |
Collapse
|
12
|
Di Somma M, Schaafsma W, Grillo E, Vliora M, Dakou E, Corsini M, Ravelli C, Ronca R, Sakellariou P, Vanparijs J, Castro B, Mitola S. Natural Histogel-Based Bio-Scaffolds for Sustaining Angiogenesis in Beige Adipose Tissue. Cells 2019; 8:cells8111457. [PMID: 31752157 PMCID: PMC6912328 DOI: 10.3390/cells8111457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
In the treatment of obesity and its related disorders, one of the measures adopted is weight reduction by controlling nutrition and increasing physical activity. A valid alternative to restore the physiological function of the human body could be the increase of energy consumption by inducing the browning of adipose tissue. To this purpose, we tested the ability of Histogel, a natural mixture of glycosaminoglycans isolated from animal Wharton jelly, to sustain the differentiation of adipose derived mesenchymal cells (ADSCs) into brown-like cells expressing UCP-1. Differentiated cells show a higher energy metabolism compared to undifferentiated mesenchymal cells. Furthermore, Histogel acts as a pro-angiogenic matrix, induces endothelial cell proliferation and sprouting in a three-dimensional gel in vitro, and stimulates neovascularization when applied in vivo on top of the chicken embryo chorioallantoic membrane or injected subcutaneously in mice. In addition to the pro-angiogenic activity of Histogel, also the ADSC derived beige cells contribute to activating endothelial cells. These data led us to propose Histogel as a promising scaffold for the modulation of the thermogenic behavior of adipose tissue. Indeed, Histogel simultaneously supports the acquisition of brown tissue markers and activates the vasculature process necessary for the correct function of the thermogenic tissue. Thus, Histogel represents a valid candidate for the development of bioscaffolds to increase the amount of brown adipose tissue in patients with metabolic disorders.
Collapse
Affiliation(s)
- Margherita Di Somma
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
| | - Wandert Schaafsma
- Histocell, S.L.Parque Tecnológico 801A, 2o 48160 Derio—BIZKAIA, Spain; (W.S.); (B.C.)
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
| | - Maria Vliora
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
- FAME Laboratory, Department of Exercise Science, University of Thessaly, 38221 Trikala, Greece;
| | - Eleni Dakou
- Laboratory of Cell Genetics, Department of Biology, Faculty of Science and Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
| | - Paraskevi Sakellariou
- FAME Laboratory, Department of Exercise Science, University of Thessaly, 38221 Trikala, Greece;
| | - Jef Vanparijs
- Department of Human Physiology, Faculty of Physical Education and Physical Therapy, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Begona Castro
- Histocell, S.L.Parque Tecnológico 801A, 2o 48160 Derio—BIZKAIA, Spain; (W.S.); (B.C.)
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (M.D.S.); (E.G.); (M.V.); (M.C.); (C.R.); (R.R.)
- Correspondence:
| |
Collapse
|
13
|
Yao X, Dani V, Dani C. Human Pluripotent Stem Cells: A Relevant Model to Identify Pathways Governing Thermogenic Adipocyte Generation. Front Endocrinol (Lausanne) 2019; 10:932. [PMID: 32038489 PMCID: PMC6990109 DOI: 10.3389/fendo.2019.00932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/20/2019] [Indexed: 01/19/2023] Open
Abstract
Brown and brown-like adipocytes (BAs) are promising cell targets to counteract obesity thanks to their potential to drain and oxidize circulating glucose and triglycerides. However, the scarcity of BAs in human adults is a major limitation for energy expenditure based therapies. Enhanced characterization of BA progenitor cells (BAPs) and identification of critical pathways regulating their generation and differentiation into mature BAs would be an effective way to increase the BA mass. The identification of molecular mechanisms involved in the generation of thermogenic adipocytes is progressing substantially in mice. Much less is known in humans, thus highlighting the need for an in vitro model of human adipocyte development. Pluripotent stem cells (PSCs), i.e., embryonic stem cells and induced pluripotent stem cells, help gain insight into the different phases in the development of multiple cell types. We will discuss the capacity of human PSCs to differentiate into BAs in this review. Several groups, including ours, have reported low spontaneous adipocyte generation from PSCs. However, factors governing the differentiation of induced pluripotent stem cell-derived BA progenitors cells were recently identified, and the TGFβ signaling pathway has a pivotal role. The development of new relevant methods, such as the differentiation of hPSC-BAPs into 3D adipospheres to better mimick the lobular structure of human adipose tissue, will also be discussed. Differentiation of human PSCs into thermogenic adipocytes at high frequency provides an opportunity to characterize new targets for anti-obesity therapy.
Collapse
|