1
|
Gao Q, Yue N, Liu K, Deng Z, Yang L, Zou J, Du Q. A family study of dentinogenesis imperfecta shields type II caused by a novel DSPP mutation and investigations on the isolated stem cells from human exfoliated deciduous teeth. BMC Oral Health 2025; 25:503. [PMID: 40197225 PMCID: PMC11978159 DOI: 10.1186/s12903-025-05912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVE This study aims to analyze the clinical features and genetic mutation characteristics of a family with Dentinogenesis Imperfecta Shields type II (DGI-II) and to observe the behavior of the stem cells from human exfoliated deciduous teeth (SHED) to explore the relationship between the locus of dentin sialophosphoprotein (DSPP) mutations and family clinical manifestations. MATERIALS AND METHODS After collecting clinical data from the family, Whole Genome Sequencing (WGS) followed by Sanger sequencing was used to identify pathogenic genes sites. The physical characteristics of the patient's teeth were examined using Micro-CT, scanning electron microscopy (SEM), and microhardness analysis. The behavior of SHEDs was studied through flow cytometry, adipogenic and osteogenic differentiation, quantitative real-time PCR (qRT-PCR), Western blotting, CCK-8 proliferation assays, colony formation, and cell migration experiments. RESULTS A novel frameshift mutation, DSPP c.2695delA.N899fs, was identified in the family. Micro-CT showed significant wear in the patient's teeth. SEM results revealed reduced and irregular dentinal tubules. Microhardness analysis showed significantly lower hardness in the patient's teeth. CCK-8, colony formation, and migration assays demonstrated reduced proliferation and migration capacities in the patient's SHEDs. qRT-PCR and Western blot results showed lower expression of DSPP, RUNX2, OCN, and ALP compared to controls, but higher DSPP protein level in the patient's SHEDs. Osteogenic differentiation tests indicated reduced mineralization capacity of the patient's SHEDs. CONCLUSION This study identified a novel frameshift mutation, DSPP c.2695delA.N899fs, in a DGI-II family and demonstrated its impact on SHED proliferation, migration, and mineralization. The findings demonstrated that this novel variant disturbs dentinal characteristics and cell behavior of SHED.
Collapse
Affiliation(s)
- Qianhua Gao
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32, Section 2, The First Ring Road West, Chengdu, 610072, Sichuan, China
| | - Ning Yue
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32, Section 2, The First Ring Road West, Chengdu, 610072, Sichuan, China
| | - Kehong Liu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32, Section 2, The First Ring Road West, Chengdu, 610072, Sichuan, China
| | - Zhongren Deng
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32, Section 2, The First Ring Road West, Chengdu, 610072, Sichuan, China
| | - Ling Yang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32, Section 2, The First Ring Road West, Chengdu, 610072, Sichuan, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China.
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32, Section 2, The First Ring Road West, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
2
|
Gilani M, Saikia A, Anthonappa R. The genetics of non-syndromic dentinogenesis imperfecta: a systematic review. Eur Arch Paediatr Dent 2025; 26:3-16. [PMID: 39806231 PMCID: PMC11865110 DOI: 10.1007/s40368-024-00992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE This systematic review aims to consolidate existing genetic and clinical data on non-syndromic dentinogenesis imperfecta (DI) to enhance understanding of its etiology. METHODS Electronic databases were searched for genetic familial linkage studies published in English without time restrictions. Genetic familial linkage studies that reported cases of Shield's classifications: DI-II, DI-III or DD-II were included. After removing duplicates and excluding non-eligible articles, two reviewers screened relevant articles independently, followed by data extraction. RESULTS The systematic search identified 3475 articles, with 135 suitable for full-text review and a final 41 that met inclusion criteria. Within this set of studies, 10 conducted a histopathologic examination of teeth from affected participants. DSPP mutations were the most frequently reported, with 59 documented mutations. Four studies identified mutations in COL1A1 and COL1A2, revealing non-syndromic DI cases, predominantly in individuals of Asian descent. Histopathological analysis of affected teeth showed variations in pulp chamber size, dentinal tubule irregularities, enamel malformations, and mineral density reductions, depending on DI phenotype. CONCLUSIONS This review consolidates genetic and clinical data to advance the understanding of non-syndromic DI. It highlights the role of DSPP, COL1A1 and COL1A2 and the potential involvement of other genes, emphasizing the effectiveness of whole-exome sequencing in identifying causative mutations.
Collapse
Affiliation(s)
- M Gilani
- Dental School, The University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia.
| | - A Saikia
- Dental School, The University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia
| | - R Anthonappa
- Dental School, The University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia
| |
Collapse
|
3
|
Xue Q, Wu Z, Zhao Y, Wei X, Hu M. Progress in the pathogenic mechanism, histological characteristics of hereditary dentine disorders and clinical management strategies. Front Cell Dev Biol 2024; 12:1474966. [PMID: 39717845 PMCID: PMC11663852 DOI: 10.3389/fcell.2024.1474966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
Hereditary dentine disorders are autosomal dominant diseases that affect the development and structure of dentine, leading to various dental abnormalities and influencing the individual's oral health. It is generally classified as dentinogenesis imperfecta (DGI) and dentine dysplasia (DD). Specifically, DGI is characterized by the abnormal formation of dentine, resulting in teeth that are discolored, translucent, and prone to fracture or wear down easily. DD is characterized by abnormal dentine development, manifested as teeth with short roots and abnormal pulp chambers, leading to frequent tooth loss. Up to now, the pathogenesis of hereditary dentine disorders has been poorly clarified and the clinical intervention is limited. Treatment for hereditary dentine disorders focuses on managing the symptoms and preventing further dental problems. Genetic counseling and testing may also be recommended as these conditions can be passed on to future generations. In this review, we summarize the clinical features, pathogenic genes, histomorphological characteristics and therapy of hereditary dentine disorders. Due to the limited understanding of the disease at present, we hope this review could improve the recognition of the disease by clinicians, stimulate more scholars to further study the deeply detailed mechanisms of the disease and explore potential therapeutic strategies, thus achieving effective, systematic management of the disease and improving the life quality of patients.
Collapse
Affiliation(s)
| | | | | | - Xiaoxi Wei
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Min Hu
- Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
4
|
Hassib NF, Mehrez M, Mostafa MI, Abdel-Hamid MS. Isolated dentinogenesis imperfecta: Novel DSPP variants and insights on genetic counselling. Clin Oral Investig 2024; 28:254. [PMID: 38630328 PMCID: PMC11024031 DOI: 10.1007/s00784-024-05636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/23/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVE Dentinogenesis imperfecta (DI) is an inherited dentin defect and may be isolated or associated with disorders such as osteogenesis imperfecta, odontochondrodysplasia Ehler-Danlos and others. Isolated DI is caused mainly by pathogenic variants in DSPP gene and around 50 different variants have been described in this gene. Herein, we report on 19 patients from two unrelated Egyptian families with isolated DI. Additionally, we focused on genetic counselling of the two families. MATERIALS AND METHODS The patients were examined clinically and dentally. Panoramic X-rays were done to some patients. Whole exome sequencing (WES) and Sanger sequencing were used. RESULTS WES revealed two new nonsense variants in DSPP gene, c.288T > A (p.Tyr96Ter) and c.255G > A (p.Trp85Ter). Segregation analysis by Sanger sequencing confirmed the presence of the first variant in all affected members of Family 1 while the second variant was confirmed to be de novo in the patient of Family 2. CONCLUSIONS AND CLINICAL RELEVANCE Our study extends the number of DSPP pathogenic variants and strengthens the fact that DSPP is the most common DI causative gene irrespective of patients' ethnicity. In addition, we provide insights on genetic counseling issues in patients with inherited DSPP variants taking into consideration the variable religion, culture and laws in our society.
Collapse
Affiliation(s)
- Nehal F Hassib
- Orodental Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 33 ElBohous street, Dokki, P.O.12622, Cairo, 3337 09 31, Egypt.
- School of dentistry, New Giza University, Giza, Egypt.
| | - Mennat Mehrez
- Orodental Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 33 ElBohous street, Dokki, P.O.12622, Cairo, 3337 09 31, Egypt
| | - Mostafa I Mostafa
- Orodental Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 33 ElBohous street, Dokki, P.O.12622, Cairo, 3337 09 31, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
5
|
Sriwattanapong K, Theerapanon T, Khamwachirapitak C, Sae-Ear P, Srijunbarl A, Porntaveetus T, Shotelersuk V. Deep dental phenotyping and a novel FAM20A variant in patients with amelogenesis imperfecta type IG. Oral Dis 2024; 30:537-550. [PMID: 36650945 DOI: 10.1111/odi.14510] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To identify etiologic variants and perform deep dental phenotyping in patients with amelogenesis imperfecta (AI). METHODS Three patients of two unrelated families were evaluated. Genetic variants were investigated by exome and Sanger sequencing. An unerupted permanent third molar (AI1) from Patient1 and a deciduous first molar (AI2) from Patient2, along with three tooth-type matched controls for each were characterized. RESULTS All three patients harbored biallelic pathogenic variants in FAM20A, indicating AI1G. Of the four identified variants, one, c.1231C > T p.(Arg411Trp), was novel. Patient1 possessed the largest deletion, 7531 bp, ever identified in FAM20A. In addition to hypoplastic enamel, multiple impacted teeth, intrapulpal calcification, pericoronal radiolucencies, malocclusion, and periodontal infections were found in all three patients, gingival hyperplasia in Patient1 and Patient2, and alveolar bone exostosis in Patient3. Surface roughness was increased in AI1 but decreased in AI2. Decreased enamel mineral density, hardness, and elastic modulus were observed in AI1 enamel and dentin and AI2 dentin, along with decreased phosphorus, increased carbon, and increased calcium/phosphorus and carbon/oxygen ratios. Severely collapsed enamel rods and disorganized dentin-enamel junction were observed. CONCLUSIONS We report a novel FAM20A variant and, for the first time, the defective mineral composition and physical/mechanical properties of AI1G teeth.
Collapse
Affiliation(s)
- Kanokwan Sriwattanapong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chompak Khamwachirapitak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Pannagorn Sae-Ear
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Anucharte Srijunbarl
- Dental Materials R&D Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
6
|
Tantibhaedhyangkul W, Tantrapornpong J, Yutchawit N, Theerapanon T, Intarak N, Thaweesapphithak S, Porntaveetus T, Shotelersuk V. Dental characteristics of patients with four different types of skeletal dysplasias. Clin Oral Investig 2023; 27:5827-5839. [PMID: 37548766 PMCID: PMC10560164 DOI: 10.1007/s00784-023-05194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE Skeletal dysplasia (SD) comprises more than 450 separate disorders. We hypothesized that their dental features would be distinctive and investigated the tooth characteristics of four patients with different SDs. MATERIAL AND METHODS Four SD patients with molecularly confirmed diagnoses, Pt-1 acromicric dysplasia, Pt-2 hypophosphatasia and hypochondroplasia, Pt-3 cleidocranial dysplasia, and Pt-4 achondroplasia, were recruited. A tooth from each patient was evaluated for mineral density (micro-computerized tomography), surface roughness (surface profilometer), microhardness, mineral contents (energy-dispersive X-ray), and ultrastructure (scanning electron microscopy and histology), and compared with three tooth-type matched controls. RESULTS Pt-1 and Pt-3 had several unerupted teeth. Pt-2 had an intact-root-exfoliated tooth at 2 years old. The lingual surfaces of the patients' teeth were significantly smoother, while their buccal surfaces were rougher, than controls, except for Pt-1's buccal surface. The patients' teeth exhibited deep grooves around the enamel prisms and rough intertubular dentin. Pt-3 demonstrated a flat dentinoenamel junction and Pt-2 had an enlarged pulp, barely detectable cementum layer, and ill-defined cemento-dentinal junction. Reduced microhardnesses in enamel, dentin, and both layers were observed in Pt-3, Pt-4, and Pt-1, respectively. Pt-1 showed reduced Ca/P ratio in dentin, while both enamel and dentin of Pt-2 and Pt-3 showed reduced Ca/P ratio. CONCLUSION Each SD has distinctive dental characteristics with changes in surface roughness, ultrastructure, and mineral composition of dental hard tissues. CLINICAL RELEVANCE In this era of precision dentistry, identifying the specific potential dental problems for each patient with SD would help personalize dental management guidelines.
Collapse
Affiliation(s)
- Worasap Tantibhaedhyangkul
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jenjira Tantrapornpong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuttanun Yutchawit
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Narin Intarak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sermporn Thaweesapphithak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
7
|
Zhang Z, Huang G, Huang Y, Liu S, Chen F, Gao X, Dong Y, Tian H. Novel dentin sialophosphoprotein gene frameshift mutations affect dentin mineralization. Arch Oral Biol 2023; 151:105701. [PMID: 37084484 DOI: 10.1016/j.archoralbio.2023.105701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
OBJECTIVE This study aimed to identify candidate genes for inheritable dentin defects in three Chinese pedigrees and characterize the property of affected teeth. DESIGN Clinical and radiological features were recorded for the affected individuals. Genomic DNA obtained from peripheral venous blood or saliva were analyzed by whole-exome sequencing. The density and microhardness of affected dentin was measured. Scanning electron microscopy (SEM) was also performed to obtain the microstructure phenotype. RESULTS 1) General appearance: the affected dentitions shared yellowish-brown or milky color. Radiographs showed that the pulp cavity and root canals were obliterated in varying degrees or exhibited a pulp aspect in the 'thistle tube'. Some patients exhibited periapical infections without pulpal exposure, and some affected individuals showed shortened, abnormally thin roots accompanied by severe alveolar bone loss. 2) Genomic analysis: three new frameshift mutations (NM_014208.3: c.2833delA, c.2852delGand c.3239delA) were identified in exon 5 of dentin sialophosphoprotein (DSPP) gene, altering dentin phosphoprotein (DPP) as result. In vitro studies showed that the density and microhardness of affected dentin were decreased, the dentinal tubules were sparse and arranged disorderly, and the dentinal-enamel-junction (DEJ) was abnormal. CONCLUSIONS In this study, we identified three novel frameshift mutations of dentin sialophosphoprotein gene related to inherited dentin defects. These mutations are speculated to cause abnormal coding of dentin phosphoprotein C-terminus, which affect dentin mineralization. These results expand the spectrum of dentin sialophosphoprotein gene mutations causing inheritable dentin defects and broaden our understanding of the biological mechanisms by which dentin forms.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Guibin Huang
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Yu Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health and Science Center, Beijing, PR China
| | - Siyi Liu
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Xuejun Gao
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China
| | - Yanmei Dong
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.
| | - Hua Tian
- Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, PR China.
| |
Collapse
|
8
|
Du Q, Cao L, Yan N, Kang S, Lin M, Cao P, Jia R, Wang C, Qi H, Yu Y, Zou J, Yang J. Identification of DSPP novel variants and phenotype analysis in dentinogenesis dysplasia Shields type II patients. Clin Oral Investig 2023:10.1007/s00784-023-05009-y. [PMID: 37017752 DOI: 10.1007/s00784-023-05009-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/28/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVES To investigate the genetic causes and teeth characteristics of dentin dysplasia Shields type II(DD-II) in three Chinese families. MATERIALS AND METHODS Data from three Chinese families affected with DD-II were collected. Whole-exome sequencing (WES) and whole-genome sequencing (WGS) were conducted to screen for variations, and Sanger sequencing was used to verify mutation sites. The physical and chemical characteristics of the affected teeth including tooth structure, hardness, mineral content, and ultrastructure were investigated. RESULTS A novel frameshift deletion mutation c.1871_1874del(p.Ser624fs) in DSPP was found in families A and B, while no pathogenic mutation was found in family C. The affected teeth's pulp cavities were obliterated, and the root canals were smaller than normal teeth and irregularly distributed comprising a network. The patients' teeth also had reduced dentin hardness and highly irregular dentinal tubules. The Mg content of the teeth was significantly lower than that of the controls, but the Na content was obviously higher than that of the controls. CONCLUSIONS A novel frameshift deletion mutation, c.1871_1874del (p.Ser624fs), in the DPP region of the DSPP gene causes DD-II. The DD-II teeth demonstrated compromised mechanical properties and changed ultrastructure, suggesting an impaired function of DPP. Our findings expand the mutational spectrum of the DSPP gene and strengthen the understanding of clinical phenotypes related to the frameshift deletion in the DPP region of the DSPP gene. CLINICAL RELEVANCE A DSPP mutation can alter the characteristics of the affected teeth, including tooth structure, hardness, mineral content, and ultrastructure.
Collapse
Affiliation(s)
- Qin Du
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Li Cao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Centre for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, No.32, Section 2, The First Ring Road West, Chengdu, 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, 610072, China
| | - Nana Yan
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Sujun Kang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Mu Lin
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Peilin Cao
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Ran Jia
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Chenyang Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Hanyu Qi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Yue Yu
- State Key Laboratory of Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, No. 14 Section 3, Renmin South Road, Chengdu, 610041, China.
| | - Jiyun Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Centre for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, No.32, Section 2, The First Ring Road West, Chengdu, 610072, China.
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, 610072, China.
| |
Collapse
|
9
|
Wejaphikul K, Srilanchakon K, Kamolvisit W, Jantasuwan S, Santawong K, Tongkobpetch S, Theerapanon T, Damrongmanee A, Hongsawong N, Ukarapol N, Dejkhamron P, Supornsilchai V, Porntaveetus T, Shotelersuk V. Novel Variants and Phenotypes in NEUROG3-Associated Syndrome. J Clin Endocrinol Metab 2022; 108:52-58. [PMID: 36149814 DOI: 10.1210/clinem/dgac554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/14/2022] [Indexed: 02/03/2023]
Abstract
CONTEXT Biallelic pathogenic variants in the NEUROG3 gene cause malabsorptive diarrhea, insulin-dependent diabetes mellitus (IDDM), and rarely hypogonadotropic hypogonadism. With only 17 reported cases, the clinical and mutational spectra of this disease are far from complete. OBJECTIVE To identify the underlying genetic etiology in 3 unrelated Thai patients who presented with early-onset malabsorptive diarrhea, endocrine abnormalities, and renal defects and to determine the pathogenicity of the newly identified pathogenic variants using luciferase reporter assays and western blot. METHODS Three unrelated patients with congenital diarrhea were recruited. Detailed clinical and endocrinological features were obtained. Exome sequencing was performed to identify mutations and in vitro functional experiments including luciferase reporter assay were studied to validate their pathogenicity. RESULTS In addition to malabsorptive diarrhea due to enteric anendocrinosis, IDDM, short stature, and delayed puberty, our patients also exhibited pituitary gland hypoplasia with multiple pituitary hormone deficiencies (Patient 1, 2, 3) and proximal renal tubulopathy (Patient 2, 3) that have not previously reported. Exome sequencing revealed that Patient 1 was homozygous for c.371C > G (p.Thr124Arg) while the other 2 patients were homozygous for c.284G > C (p.Arg95Pro) in NEUROG3. Both variants have never been previously reported. Luciferase reporter assay demonstrated that these 2 variants impaired transcriptional activity of NEUROG3. CONCLUSIONS This study reported pituitary gland hypoplasia with multiple pituitary hormone deficiencies and proximal renal tubulopathy and 2 newly identified NEUROG3 loss-of-function variants in the patients with NEUROG3-associated syndrome.
Collapse
Affiliation(s)
- Karn Wejaphikul
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Northern Diabetes Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Khomsak Srilanchakon
- Division of Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wuttichart Kamolvisit
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Supavadee Jantasuwan
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Kanokwan Santawong
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Siraprapa Tongkobpetch
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Alisara Damrongmanee
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattaphorn Hongsawong
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuthapong Ukarapol
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Prapai Dejkhamron
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Northern Diabetes Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Vichit Supornsilchai
- Division of Endocrinology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
10
|
Faruangsaeng T, Thaweesapphitak S, Khamwachirapitak C, Porntaveetus T, Shotelersuk V. Comparative transcriptome profiles of human dental pulp stem cells from maxillary and mandibular teeth. Sci Rep 2022; 12:8860. [PMID: 35614192 PMCID: PMC9133121 DOI: 10.1038/s41598-022-12867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
The molecular control of tooth development is different between the maxilla and mandible, contributing to different tooth shapes and locations; however, whether this difference occurs in human permanent teeth is unknown. The aim of this study was to investigate and compare the transcriptome profiles of permanent maxillary and mandibular posterior teeth. Ten participants who had a pair of opposing premolars or molars extracted were recruited. The RNA obtained from cultured dental pulp stem cells underwent RNA-sequencing and qRT-PCR. The transcriptome profiles of two opposing premolar pairs and two molar pairs demonstrated that the upper premolars, lower premolars, upper molars, and lower molars expressed the same top-ranked genes, comprising FN1, COL1A1, COL1A2, ACTB, and EEFIA1, which are involved in extracellular matrix organization, immune system, signal transduction, hemostasis, and vesicle-mediated transport. Comparative transcriptome analyses of each/combined tooth pairs demonstrated that PITX1 was the only gene with different expression levels between upper and lower posterior teeth. PITX1 exhibited a 64-fold and 116-fold higher expression level in lower teeth compared with their upper premolars and molars, respectively. These differences were confirmed by qRT-PCR. Taken together, this study, for the first time, reveals that PITX1 is expressed significantly higher in mandibular posterior teeth compared with maxillary posterior teeth. The difference is more evident in the molars compared with premolars and consistent with its expression pattern in mouse developing teeth. We demonstrate that differences in lower versus upper teeth gene expression during odontogenesis occur in permanent teeth and suggest that these differences should be considered in molecular studies of dental pulp stem cells. Our findings pave the way to develop a more precise treatment in regenerative dentistry such as gene-based therapies for dentin/pulp regeneration and regeneration of different tooth types.
Collapse
Affiliation(s)
- Thira Faruangsaeng
- International Graduate Program in Geriatric Dentistry and Special Patients Care, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sermporn Thaweesapphitak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chompak Khamwachirapitak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- International Graduate Program in Geriatric Dentistry and Special Patients Care, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand. .,Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
11
|
The Modified Shields Classification and 12 Families with Defined DSPP Mutations. Genes (Basel) 2022; 13:genes13050858. [PMID: 35627243 PMCID: PMC9141616 DOI: 10.3390/genes13050858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in Dentin Sialophosphoprotein (DSPP) are known to cause, in order of increasing severity, dentin dysplasia type-II (DD-II), dentinogenesis imperfecta type-II (DGI-II), and dentinogenesis imperfecta type-III (DGI-III). DSPP mutations fall into two groups: a 5′-group that affects protein targeting and a 3′-group that shifts translation into the −1 reading frame. Using whole-exome sequence (WES) analyses and Single Molecule Real-Time (SMRT) sequencing, we identified disease-causing DSPP mutations in 12 families. Three of the mutations are novel: c.53T>C/p.(Val18Ala); c.3461delG/p.(Ser1154Metfs*160); and c.3700delA/p.(Ser1234Alafs*80). We propose genetic analysis start with WES analysis of proband DNA to identify mutations in COL1A1 and COL1A2 causing dominant forms of osteogenesis imperfecta, 5′-DSPP mutations, and 3′-DSPP frameshifts near the margins of the DSPP repeat region, and SMRT sequencing when the disease-causing mutation is not identified. After reviewing the literature and incorporating new information showing distinct differences in the cell pathology observed between knockin mice with 5′-Dspp or 3′-Dspp mutations, we propose a modified Shields Classification based upon the causative mutation rather than phenotypic severity such that patients identified with 5′-DSPP defects be diagnosed as DGI-III, while those with 3′-DSPP defects be diagnosed as DGI-II.
Collapse
|
12
|
Intarak N, Theerapanon T, Porntaveetus T, Shotelersuk V. Patterns of molar agenesis associated with p.P20L and p.R77Q variants in PAX9. Eur J Oral Sci 2022; 130:e12855. [PMID: 35182440 DOI: 10.1111/eos.12855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022]
Abstract
Nonsyndromic tooth agenesis is associated with variants in several genes. There are numerous genotype-phenotype publications involving many patients and kindreds. Here, we identified six Thai individuals in two families with nonsyndromic tooth agenesis, performed exome sequencing, and conducted functional experiments. Family 1 had four affected members carrying the heterozygous PAX9 variant, c.59C>T (p.Pro20Leu). The p.Pro20Leu was previously reported in two families having four and three affected members. These seven cases and Proband-1 had agenesis of at least three third molars. Family 2 comprised two affected members with agenesis of all 12 molars. Both individuals were heterozygous for c.230G>A (p.Arg77Gln) in PAX9, which has not been reported previously. This variant is predicted to be damaging, evolutionarily conserved, and resides in the PAX9 linking peptide. The BMP4 RNA levels in Proband-1's leukocytes were not significantly different from those in the controls, whereas BMP4 levels observed in Proband-2 were significantly increased. Moreover, the p.Arg77Gln variant demonstrated nuclear localization similar to the wild-type but resulted in significantly impaired transactivation of BMP4, a PAX9 downstream gene. In conclusion, we demonstrate that the PAX9 p.Pro20Leu is highly associated with absent third molars, while the novel PAX9 p.Arg77Gln impairs BMP4 transactivation and is associated with total molar agenesis.
Collapse
Affiliation(s)
- Narin Intarak
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Theerapanon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
13
|
Du Q, Cao L, Liu Y, Pang C, Wu S, Zheng L, Jiang W, Na X, Yu J, Wang S, Zhu X, Yang J. Phenotype and molecular characterizations of a family with dentinogenesis imperfecta shields type II with a novel DSPP mutation. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1672. [PMID: 34988181 PMCID: PMC8667123 DOI: 10.21037/atm-21-5369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
Background Dentinogenesis imperfecta (DGI), Shields type-II is an autosomal dominant genetic disease which severely affects the function of the patients’ teeth. The dentin sialophosphoprotein (DSPP) gene is considered to be the pathogenic gene of DGI-II. In this study, a DGI-II family with a novel DSPP mutation were collected, functional characteristics of DGI cells and clinical features were analyzed to better understand the genotype-phenotype relationship of this disease. Methods Clinical data were collected, whole exome sequencing (WES) was conducted, and Sanger sequencing was used to verify the mutation sites. Physical characteristics of the patient’s teeth were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The localization of green fluorescent protein (GFP)-fused wild-type (WT) dentin sialoprotein (DSP) and its variant were evaluated via an immunocytochemistry (ICC) assay. The behaviors of human dental pulp stem cells (hDPSCs) were investigated by flow cytometry, osteogenic differentiation, and quantitative real-time polymerase chain reaction (qRT-PCR). Results A novel heterozygous mutation c.53T > G (p. Val18Gly) in DSPP was found in this family. The SEM results showed that the participants’ teeth had reduced and irregular dentinal tubes. The EDS results showed that the Ca/P ratio of the patients’ teeth was significantly higher than that of the control group. The ICC assay showed that the mutant DSP was entrapped in the endoplasmic reticulum (ER), while the WT DSP located mainly in the Golgi apparatus. In comparison with normal cells, the patient’s cells exhibited significantly decreased mineralization ability and lower expression levels of DSPP and RUNX2. Conclusions The c.53T > G (p. Val18Gly) DSPP variant was shown to present with rare hypoplastic enamel defects. Functional analysis revealed that this novel variant disturbs dentinal characteristics and pulp cell behavior.
Collapse
Affiliation(s)
- Qin Du
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Li Cao
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Liu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyan Pang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Si Wu
- The State Key Lab of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- The State Key Lab of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Jiang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxue Na
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Yu
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Shasha Wang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjun Zhu
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiyun Yang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Prenatal Diagnosis Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Liang T, Xu Q, Zhang H, Wang S, Diekwisch TGH, Qin C, Lu Y. Enamel Defects Associated With Dentin Sialophosphoprotein Mutation in Mice. Front Physiol 2021; 12:724098. [PMID: 34630144 PMCID: PMC8497714 DOI: 10.3389/fphys.2021.724098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/31/2021] [Indexed: 12/04/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is an extracellular matrix protein that is highly expressed in odontoblasts, but only transiently expressed in presecretory ameloblasts during tooth development. We previously generated a knockin mouse model expressing a mouse equivalent (DSPP, p.P19L) of human mutant DSPP (p.P17L; referred to as “DsppP19L/+”), and reported that DsppP19L/+ and DsppP19L/P19L mice manifested a dentin phenotype resembling human dentinogenesis imperfecta (DGI). In this study, we analyzed pathogenic effects of mutant P19L-DSPP on enamel development in DsppP19L/+ and DsppP19L/P19L mice. Micro-Computed Tomography (μCT) analyses of 7-week-old mouse mandibular incisors showed that DsppP19L/P19L mice had significantly decreased enamel volume and/or enamel density at different stages of amelogenesis examined. Acid-etched scanning electron microscopy (SEM) analyses of mouse incisors demonstrated that, at the mid-late maturation stage of amelogenesis, the enamel of wild-type mice already had apparent decussating pattern of enamel rods, whereas only minute particulates were found in DsppP19L/+ mice, and no discernible structures in DsppP19L/P19L mouse enamel. However, by the time that incisor enamel was about to erupt into oral cavity, distinct decussating enamel rods were evident in DsppP19L/+ mice, but only poorly-defined enamel rods were revealed in DsppP19L/P19L mice. Moreover, μCT analyses of the mandibular first molars showed that DsppP19L/+ and DsppP19L/P19L mice had a significant reduction in enamel volume and enamel density at the ages of 2, 3, and 24weeks after birth. Backscattered and acid-etched SEM analyses revealed that while 3-week-old DsppP19L/+ mice had similar pattern of enamel rods in the mandibular first molars as age-matched wild-type mice, no distinct enamel rods were observed in DsppP19L/P19L mice. Yet neither DsppP19L/+ nor DsppP19L/P19L mice showed well-defined enamel rods in the mandibular first molars by the age of 24weeks, as judged by backscattered and acid-etched SEM. In situ hybridization showed that DSPP mRNA level was markedly reduced in the presecretory ameloblasts, but immunohistochemistry revealed that DSP/DSPP immunostaining signals were much stronger within the presecretory ameloblasts in Dspp mutant mice than in wild-type mice. These results suggest that mutant P19L-DSPP protein caused developmental enamel defects in mice, which may be associated with intracellular retention of mutant DSPP in the presecretory ameloblasts.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Qian Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Hua Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Suzhen Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Thomas G H Diekwisch
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, United States
| |
Collapse
|
15
|
Sriwattanapong K, Sa-Ard-Iam N, Boonprakong L, Subbalekha K, Trachoo V, Suratannon N, Porntaveetus T, Shotelersuk V. Reduced ELANE and SLPI expression compromises dental pulp cell activity. Cell Prolif 2021; 54:e13132. [PMID: 34580954 PMCID: PMC8560611 DOI: 10.1111/cpr.13132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/03/2023] Open
Abstract
Background Patients with ELANE variants and severe congenital neutropenia (SCN) commonly develop oral complications. Whether they are caused only by low neutrophil count or the combination of neutropenia and aberrant dental cells is unknown. Methods Genetic variant was identified with exome sequencing. Dental pulp cells isolated from the SCN patient with an ELANE mutation were investigated for gene expression, enzyme activity, proliferation, colony formation, wound healing, apoptosis, ROS, attachment, spreading and response to lipopolysaccharide. Results ELANE cells had diminished expression of ELANE and SLPI and reduced neutrophil elastase activity. Moreover, ELANE cells exhibited impaired proliferation, colony forming, migration, attachment and spreading; and significantly increased ROS formation and apoptosis, corresponding with increased Cyclin D1 and MMP2 levels. The intrinsic levels of TGF‐β1 and TNF‐α were significantly increased; however, IL‐6, IL‐8 and NF‐kB1 were significantly decreased in ELANE cells compared with those in controls. After exposure to lipopolysaccharide, ELANE cells grew larger, progressed to more advanced cell spreading stages and showed significantly increased SLPI, TNF‐α and NF‐kB1 and tremendously increased IL‐6 and IL‐8 expression, compared with controls. Conclusion This study, for the first time, suggests that in addition to neutropenia, the aberrant levels and functions of ELANE, SLPI and their downstream molecules in pulp cells play an important role in oral complications in SCN patients. In addition, pulp cells with diminished neutrophil elastase and SLPI are highly responsive to inflammation.
Collapse
Affiliation(s)
- Kanokwan Sriwattanapong
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Noppadol Sa-Ard-Iam
- Center of Excellence in Periodontal Disease and Dental Implant, Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Lawan Boonprakong
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Keskanya Subbalekha
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorapat Trachoo
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Narissara Suratannon
- Pediatric Allergy & Clinical Immunology Research Unit, Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
16
|
Qin W, Wan QQ, Ma YX, Wang CY, Wan MC, Ma S, Wang YR, Wang WR, Gu JT, Tay FR, Niu LN. Manifestation and Mechanisms of Abnormal Mineralization in Teeth. ACS Biomater Sci Eng 2021; 9:1733-1756. [PMID: 34436861 DOI: 10.1021/acsbiomaterials.1c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tooth biomineralization is a dynamic and complicated process influenced by local and systemic factors. Abnormal mineralization in teeth occurs when factors related to physiologic mineralization are altered during tooth formation and after tooth maturation, resulting in microscopic and macroscopic manifestations. The present Review provides timely information on the mechanisms and structural alterations of different forms of pathological tooth mineralization. A comprehensive study of these alterations benefits diagnosis and biomimetic treatment of abnormal mineralization in patients.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Qian-Qian Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Chen-Yu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Mei-Chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Sai Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Yi-Rong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Wan-Rong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Jun-Ting Gu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, Georgia 30912, United States
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| |
Collapse
|
17
|
Dentine disorders and adhesive treatments: A systematic review. J Dent 2021; 109:103654. [PMID: 33798638 DOI: 10.1016/j.jdent.2021.103654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES A better understanding of the microstructure and mechanical properties of enamel and dentine may enable practitioners to apply the current adhesive dentistry protocols to clinical cases involving dentine disorders (dentinogenesis imperfecta or dentine dysplasia). DATA/SOURCES Publications (up to June 2020) investigating the microstructure of dentine disorders were browsed in a systematic search using the PubMed/Medline, Embase and Cochrane Library electronic databases. Two authors independently selected the studies, extracted the data in accordance with the PRISMA statement, and assessed the risk of bias with the Critical Appraisal Checklist. A Mann-Whitney U test was computed to compare tissues damage related to the two dentine disorders of interest. STUDY SELECTION From an initial total of 642 studies, only 37 (n = 164 teeth) were included in the present analysis, among which 18 investigating enamel (n = 70 teeth), 15 the dentine-enamel junction (n = 62 teeth), and 35 dentine (n = 156 teeth). Dentine is damaged in cases of dentinogenesis imperfecta and osteogenesis imperfecta (p = 2.55E-21 and p = 3.99E-21, respectively). These studies highlight a reduction in mineral density, hardness, modulus of elasticity and abnormal microstructure in dentine disorders. The majority of studies report an altered dentine-enamel junction in dentinogenesis imperfecta and in osteogenesis imperfecta (p = 6.26E-09 and p = 0.001, respectively). Interestingly, enamel is also affected in cases of dentinogenesis imperfecta (p = 0.0013), unlike to osteogenesis imperfecta (p = 0.056). CONCLUSIONS Taking into account all these observations, only a few clinical principles may be favoured in the case of adhesive cementation: (i) to preserve the residual enamel to enhance bonding, (ii) to sandblast the tooth surfaces to increase roughness, (iii) to choose a universal adhesive and reinforce enamel and dentine by means of infiltrant resins. As these recommendations are mostly based on in vitro studies, future in vivo studies should be conducted to confirm these hypotheses.
Collapse
|
18
|
Phenotypic features of dentinogenesis imperfecta associated with osteogenesis imperfecta and COL1A2 mutations. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 131:694-701. [PMID: 33737018 DOI: 10.1016/j.oooo.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/02/2020] [Accepted: 01/05/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Dentinogenesis imperfecta (DI) requires dental treatment. This study investigated the characteristics of DI teeth associated with osteogenesis imperfecta (OI) and COL1A2 mutations. STUDY DESIGN Whole exome and Sanger sequencing were performed. Three primary teeth (called "OIDI teeth") obtained from 3 unrelated COL1A2 patients were investigated and compared with 9 control teeth from age-matched healthy individuals using colorimetry, micro-computed tomography, Knoop microhardness, energy dispersive X-ray spectroscopy, scanning electron microscopy, and histology. RESULTS All patients were identified with heterozygous glycine substitutions in COL1A2. The COL1A2 mutations, c.1531G>T and c.2027G>T, were de novo, whereas c.3106G>C was inherited. OIDI1, 2, and 3 teeth had a substantial decrease in dentin microhardness and lightness. OIDI2 enamel microhardness was significantly reduced, whereas OIDI1 and 3 had enamel microhardness comparable to that of control individuals. The OIDI1 pulp cavity was large; OIDI2 was narrow; and OIDI3 was obliterated. OIDI1 and 3 had significantly higher carbon levels than those in control individuals. Numerous ectopic calcified masses, sparse and obstructed dentinal tubules, dentin holes, and collagen disorientation were observed. CONCLUSIONS OIDI teeth had reduced lightness and variable pulp morphology. Weak dentin, mineral disproportion, and abnormal ultrastructure could contribute to the brittleness of OIDI teeth and adhesive restoration failure. Here, we expand the phenotypic spectrum of COL1A2 mutations and raise awareness among dentists seeing patients with OI.
Collapse
|
19
|
Turkkahraman H, Galindo F, Tulu US, Helms JA. A novel hypothesis based on clinical, radiological, and histological data to explain the dentinogenesis imperfecta type II phenotype. Connect Tissue Res 2020; 61:526-536. [PMID: 31284784 DOI: 10.1080/03008207.2019.1631296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: The aim of this study was to explore whether dentinogenesis imperfecta (DGI)-related aberrations are detectable in odontogenic tissues. Materials and Methods: Morphological and histological analyses were carried out on 3 teeth (two maxillary 1st molars, one maxillary central incisor) extracted from a patient with DGI Type II. A maxillary 2nd molar teeth extracted from a healthy patient was used as control. A micro-computed tomographic (μCT) data-acquisition system was used to scan and reconstruct samples. Pentachrome and picrosirius red histologic stains were used to analyze odontogenic tissues and their collagenous matrices. Results: Our findings corroborate DGI effects on molar and incisor root elongation, and the hypo-mineralized state of DGI dentin. In addition to these findings, we discovered changes to the DGI pulp cavity: Reactionary dentin formation, which we theorize is exacerbated by the early loss of enamel, nearly obliterated an acellular but still-vascularized DGI pulp cavity. We also discovered an accumulation of lamellated cellular cementum at the root apices, which we hypothesize compensates for the severe and rapid attrition of the DGI tooth. Conclusions: Based on imaging and histological data, we propose a novel hypothesis to explain the complex dental phenotypes observed in patients with DGI Type II.
Collapse
Affiliation(s)
- Hakan Turkkahraman
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine , Stanford, CA, USA.,Department of Orthodontics and Oral Facial Genetics, School of Dentistry, Indiana University , Indianapolis, IN, USA
| | - Fernando Galindo
- School of Dentistry, Javeriana University , Bogotá, Colombia.,Fundación Santa Fé de Bogotá Hospital , Bogotá, Colombia
| | - Ustun Serdar Tulu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine , Stanford, CA, USA
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine , Stanford, CA, USA
| |
Collapse
|
20
|
Intarak N, Budsamongkol T, Theerapanon T, Chanamuangkon T, Srijunbarl A, Boonprakong L, Porntaveetus T, Shotelersuk V. Tooth ultrastructure of a novel COL1A2 mutation expanding its genotypic and phenotypic spectra. Oral Dis 2020; 27:1257-1267. [PMID: 32989910 DOI: 10.1111/odi.13657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To investigate tooth ultrastructure and mutation of two patients in a family affected with osteogenesis imperfecta (OI) type IV and dentinogenesis imperfecta (DGI). METHODS Mutations were detected by whole exome and Sanger sequencing. The permanent second molar obtained from the proband (DGI1) and the primary first molar from his affected son (DGI2) were studied for their color, roughness, mineral density, hardness, elastic modulus, mineral content, and ultrastructure, compared to the controls. RESULTS Two novel missense COL1A2 variants, c.752C > T (p.Ser251Phe) and c.758G > T (p.Gly253Val), were identified in both patients. The c.758G > T was predicted to be the causative mutation. Pulp cavities of DGI1 (permanent teeth) were obliterated while those of DGI2 (primary teeth) were wide. The patients' teeth had darker and redder colors; reduced dentin hardness; decreased, disorganized, and scattered dentinal tubules and collagen fibers; and irregular dentinoenamel junction (DEJ), compared to controls. Lacunae-like structures were present in DGI2. CONCLUSIONS We reported the novel causative mutation, c.758G > T (p.Gly253Val), in COL1A2 for OI type IV and DGI. The DGI dentin demonstrated inferior mechanical property and ultrastructure, suggesting severe disturbances of dentin formation. These could contribute to fragility and prone to infection of DGI teeth. This study expands phenotypic and genotypic spectra of COL1A2 mutations.
Collapse
Affiliation(s)
- Narin Intarak
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thunyaporn Budsamongkol
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Geriatric Dentistry and Special Patients Care Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Theerapanon
- Excellence Center in Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Theerapat Chanamuangkon
- Biomaterial Testing Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Anucharte Srijunbarl
- Dental Materials R&D Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Lawan Boonprakong
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
21
|
Intermittent Administration of Parathyroid Hormone Enhances Odonto/Osteogenic Differentiation of Stem Cells from the Apical Papilla via JNK and P38 MAPK Pathways. Stem Cells Int 2020; 2020:5128128. [PMID: 32148520 PMCID: PMC7042551 DOI: 10.1155/2020/5128128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/12/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Parathyroid hormone (PTH) is considered to be essential during the tooth development. Stem cells from the apical papilla (SCAPs) are responsible for dentine formation. However, the interaction between PTH and SCAPs remains unclear. This study was aimed at investigating the effects of PTH on odonto/osteogenic differentiation capacity of SCAPs and elucidating the underlying molecular mechanisms. Materials and Methods. Here, SCAPs were isolated and identified in vitro. Effects of PTH on the proliferation of SCAPs were determined by Cell Counting Kit-8 (CCK-8), flow cytometry (FCM), and EdU. Alkaline phosphatase (ALP) activity, alizarin red staining, Western blot, and RT-PCR were carried out to detect the odonto/osteogenic differentiation of PTH-treated SCAPs as well as the participation of the MAPK signaling pathway. Results An ALP activity assay determined that 10-8 mol/L PTH was the optimal concentration for the induction of SCAPs with no significant influence on the proliferation of SCAPs as indicated by CCK-8, FCM, and EdU. The expression of odonto/osteogenic markers was significantly upregulated in mRNA levels and protein levels. Moreover, intermittent treatment of PTH also increased phosphorylation of JNK and P38, and the differentiation was suppressed following the inhibition of JNK and P38 MAPK pathways. Conclusion PTH can regulate the odonto/osteogenic differentiation of SCAPs via JNK and P38 MAPK pathways.
Collapse
|
22
|
Udomchaiprasertkul W, Kuptanon C, Porntaveetus T, Shotelersuk V. A family with homozygous and heterozygous p.Gly337Ser mutations in COL1A2. Eur J Med Genet 2020; 63:103896. [PMID: 32081708 DOI: 10.1016/j.ejmg.2020.103896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/31/2020] [Accepted: 02/16/2020] [Indexed: 01/09/2023]
Abstract
Osteogenesis imperfecta (OI) is commonly caused by monoallelic mutations in COL1A1 or COL1A2. Biallelic mutations are extremely rare. Only five previous reports have identified seven OI patients with homozygous mutations in COL1A2. OI is a genetically and phenotypically heterogeneous disorder which challenges an establishment of genotype-phenotype correlation. Notably, more than thirty patients with OI possess the heterozygous mutation, p.Gly337Ser, in COL1A2. Their clinical severity ranges from mild OI type I to severe types III and IV. Here, we report a 17-year-old Thai female with recurrent bone fractures, short stature, blue sclerae, triangular face, missing teeth, dentinogenesis imperfecta (DI), skeletal deformities, and scoliosis. She was diagnosed with OI type III. Her parents were second-cousin-once-removed. The father was a professional Thai boxer. Both had normal bone mineral density, no history of bone fractures, and only teeth problems. They were diagnosed with DI without OI. Whole exome sequencing identified that the proband harbored the homozygous mutation, c.1009G > A (p.Gly337Ser), in exon 19 of COL1A2 while her parents were heterozygous for this mutation. This study reports the eighth child with OI and the homozygous mutation in COL1A2; and the first two individuals with the heterozygous p.Gly337Ser mutation in COL1A2 causing an isolated DI without OI.
Collapse
Affiliation(s)
- Wandee Udomchaiprasertkul
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand; Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; Molecular Biology and Genomic Research Laboratory, Division of Research and International Relations, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10900, Thailand
| | - Chulaluck Kuptanon
- Department of Pediatrics, Queen Sirikit National Institute of Child Health, Bangkok, 10400, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
23
|
Shotelersuk V, Tongsima S, Pithukpakorn M, Eu‐ahsunthornwattana J, Mahasirimongkol S. Precision medicine in Thailand. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:245-253. [DOI: 10.1002/ajmg.c.31694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of MedicineChulalongkorn University Bangkok Thailand
- Excellence Center for Medical GeneticsKing Chulalongkorn Memorial Hospital, the Thai Red Cross Society Bangkok Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and BiotechnologyNational Science and Technology Development Agency Pathum Thani Thailand
| | - Manop Pithukpakorn
- Division of Medical Genetics, Department of MedicineFaculty of Medicine Siriraj Hospital, Mahidol University Bangkok Thailand
- Siriraj Center of Research Excellence in Precision MedicineFaculty of Medicine Siriraj Hospital, Mahidol University Bangkok Thailand
| | - Jakris Eu‐ahsunthornwattana
- Department of Community MedicineFaculty of Medicine Ramathibodi Hospital, Mahidol University Bangkok Thailand
- Division of Medical Genetics and Molecular Medicine, Department of Internal Medicine, Faculty of Medicine Ramathibodi HospitalMahidol University Bangkok Thailand
| | - Surakameth Mahasirimongkol
- Medical Genetics Center, Medical Life Sciences Institute, Department of Medical SciencesMinistry of Public Health Nonthaburi Thailand
| |
Collapse
|
24
|
Budsamongkol T, Intarak N, Theerapanon T, Yodsanga S, Porntaveetus T, Shotelersuk V. A novel mutation in COL1A2 leads to osteogenesis imperfecta/Ehlers-Danlos overlap syndrome with brachydactyly. Genes Dis 2019; 6:138-146. [PMID: 31193991 PMCID: PMC6545454 DOI: 10.1016/j.gendis.2019.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
Osteogenesis imperfecta (OI) is mainly characterized by bone fragility and Ehlers-Danlos syndrome (EDS) by connective tissue defects. Mutations in COL1A1 or COL1A2 can lead to both syndromes. OI/EDS overlap syndrome is mostly caused by helical mutations near the amino-proteinase cleavage site of type I procollagen. In this study, we identified a Thai patient having OI type III, EDS, brachydactyly, and dentinogenesis imperfecta. His dentition showed delayed eruption, early exfoliation, and severe malocclusion. For the first time, ultrastructural analysis of the tooth affected with OI/EDS showed that the tooth had enamel inversion, bone-like dentin, loss of dentinal tubules, and reduction in hardness and elasticity, suggesting severe developmental disturbance. These severe dental defects have never been reported in OI or EDS. Exome sequencing identified a novel de novo heterozygous glycine substitution, c.3296G > A, p.Gly1099Glu, in exon 49 of COL1A2. Three patients with mutations in the exon 49 of COL1A2 were previously reported to have OI with brachydactyly and intracranial hemorrhage. Notably, two of these three patients did not show hyperextensible joints and hypermobile skin, while our patient at the age of 5 years had not developed intracranial hemorrhage. Here, we demonstrate that the novel glycine substitution in the carboxyl region of alpha2(I) collagen triple helix leads to OI/EDS with brachydactyly and severe tooth defects, expanding the genotypic and phenotypic spectra of OI/EDS overlap syndrome.
Collapse
Affiliation(s)
- Thunyaporn Budsamongkol
- Geriatric Dentistry and Special Patients Care International Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Narin Intarak
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somchai Yodsanga
- Biomaterial Testing Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- Geriatric Dentistry and Special Patients Care International Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.,Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
25
|
Lu T, Li M, Xu X, Xiong J, Huang C, Zhang X, Hu A, Peng L, Cai D, Zhang L, Wu B, Xiong F. Whole exome sequencing identifies an AMBN missense mutation causing severe autosomal-dominant amelogenesis imperfecta and dentin disorders. Int J Oral Sci 2018; 10:26. [PMID: 30174330 PMCID: PMC6119682 DOI: 10.1038/s41368-018-0027-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 11/25/2022] Open
Abstract
Tooth development is a complex process that involves precise and time-dependent orchestration of multiple genetic, molecular, and cellular interactions. Ameloblastin (AMBN, also named “amelin” or “sheathlin”) is the second most abundant enamel matrix protein known to have a key role in amelogenesis. Amelogenesis imperfecta (AI [MIM: 104500]) refers to a genetically and phenotypically heterogeneous group of conditions characterized by inherited developmental enamel defects. The hereditary dentin disorders comprise a variety of autosomal-dominant genetic symptoms characterized by abnormal dentin structure affecting either the primary or both the primary and secondary teeth. The vital role of Ambn in amelogenesis has been confirmed experimentally using mouse models. Only two cases have been reported of mutations of AMBN associated with non-syndromic human AI. However, no AMBN missense mutations have been reported to be associated with both human AI and dentin disorders. We recruited one kindred with autosomal-dominant amelogenesis imperfecta (ADAI) and dentinogenesis imperfecta/dysplasia characterized by generalized severe enamel and dentin defects. Whole exome sequencing of the proband identified a novel heterozygous C-T point mutation at nucleotide position 1069 of the AMBN gene, causing a Pro to Ser mutation at the conserved amino acid position 357 of the protein. Exfoliated third molar teeth from the affected family members were found to have enamel and dentin of lower mineral density than control teeth, with thinner and easily fractured enamel, short and thick roots, and pulp obliteration. This study demonstrates, for the first time, that an AMBN missense mutation causes non-syndromic human AI and dentin disorders. A mutation on a gene involved in healthy tooth development may cause both enamel and dentin disorders. The ameloblastin enamel protein, and its associated gene, AMBN, play vital roles in enamel formation and tooth remodelling. Mutations on AMBN can cause amelogenesis imperfecta (AI), a genetic and hereditory condition resulting in enamel defects and severe tooth decay. Now, Fu Xiong and Bu-Ling Wu at Southern Medical University in Guangzhou, China, and co-workers have identified an AMBN mutation found in both enamel and dentin defect disorders. The researchers analyzed extracted teeth from a Chinese patient with both AI and a severe dentin disorder, along with teeth from affected and non-affected members of the same family, and compared the results with a control group. They identified a rare mutation on AMBN common to all affected individuals.
Collapse
Affiliation(s)
- Ting Lu
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.,Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Meiyi Li
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangmin Xu
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Key Laboratory of Biological Chip, Guangzhou, Guangdong, China
| | - Jun Xiong
- Department of Laboratory Medicine, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cheng Huang
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuelian Zhang
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Aiqin Hu
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Peng
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Decheng Cai
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Leitao Zhang
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, College of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Key Laboratory of Biological Chip, Guangzhou, Guangdong, China.
| |
Collapse
|