1
|
Li W, Xu W. Genetic and phenotypic heterogeneity of tooth agenesis: An update including candidate genes. Arch Oral Biol 2025; 175:106270. [PMID: 40252478 DOI: 10.1016/j.archoralbio.2025.106270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
OBJECTIVE This study aims to further investigate the genetic etiology as well as the corresponding characteristics of tooth agenesis (TA). It focuses on expanding the gene spectrum and exploring genotype-phenotype correlations and potential candidate genes for TA. DESIGN The narrative review approach was conducted, providing a comprehensive perspective of tooth agenesis-related literature. RESULTS We describe the (candidate) causal genes of syndromic TA and nonsyndromic TA respectively. There is overlap between the gene spectrum of the two forms. Tooth phenotypes (either the number of missing teeth or the malformations) of syndromic form are more severe than that of nonsyndromic form. The phenomenon even exists among family members carried the same variant, highlighting the disorder's complexity and the causal genes' expression variability. Besides, the candidate genes, corresponding functional and case evidence are updated, which contributes to improve the diagnosis of TA. CONCLUSIONS TA is a group of complex disorder regulated by multiple genetic signaling pathways. We review the previously known and novel found genes/candidate genes related to TA, emphasizing the genetic and phenotypic heterogeneity. The enlarged spectrum is useful for further promoting the understanding of TA and early diagnosis. It is suggested that molecular diagnosis is particularly vital for early management and genetic counseling.
Collapse
Affiliation(s)
- Wantao Li
- Department of Stomatology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China
| | - Wenjing Xu
- Department of Orthodontics, Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin 300134, China.
| |
Collapse
|
2
|
Jiang Z, Zhang Y, Wang L, Yang H, Yu L. Complex genomic rearrangement with deletion of PITX2 in a Chinese family with Axenfeld-Rieger syndrome: A case report and literature review. Mol Vis 2024; 30:466-476. [PMID: 39959165 PMCID: PMC11829790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/29/2024] [Indexed: 02/18/2025] Open
Abstract
Purpose This study identified the genetic causes of Axenfeld-Rieger syndrome (ARS) in a Chinese family and evaluated their clinical phenotype and clinical treatment. Methods We recruited a Chinese family with ARS. The proband presented with bilateral ectopic pupils, periumbilical redundancy, craniofacial abnormalities, and dental abnormalities after birth and was diagnosed with ARS. The symptoms were the same for her younger brother. Blood samples were collected from four family members: the proband, her brother, and her parents. Whole-genome sequencing (WGS) was performed to identify probable genetic variants in the proband. To confirm the identified variants, samples from the other family members were subjected to quantitative polymerase chain reaction (qPCR) and Sanger sequencing. Results Based on the results of WGS, we suspected a deletion region and an inversion region around the PITX2 gene. Through qPCR and Sanger sequencing, we identified a complex rearrangement involving a 6.15 Mb deletion on Chromosome 4, including the PITX2 coding region (Hg38; chr4:110617776-116769011), a 45.71 Mb inversion (Hg38; chr4:116769011-162481408), and a 14-bp deletion (Hg38; chr4:162481409-162481422). Interestingly, the father's copy number was normal, but Sanger sequencing revealed the same breakpoints. This indicated that the father is a balanced rearrangement carrier, and the children are unbalanced rearrangement carriers. While similar deletions and many breakpoints in this region have been reported, this specific rearrangement is novel. Conclusions Using WGS, qPCR, and Sanger, we found a complex genomic rearrangement with the deletion of PITX2 in a Chinese family with ARS. The clinical characteristics of the affected individuals were reported. The current findings broaden our understanding of the phenotype and variant spectrum associated with ARS caused by PITX2 deletion.
Collapse
Affiliation(s)
- Zhen Jiang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ya Zhang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liqin Wang
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, China
| | - Hong Yang
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, China
| | - Ling Yu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Intarak N, Manaspon C, Theerapanon T, Prommanee S, Samaranayake L, Shotelersuk V, Porntaveetus T. Tooth agenesis related to a novel KDF1 variant: A case report and literature review. Oral Dis 2024; 30:5195-5202. [PMID: 38501196 DOI: 10.1111/odi.14930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVES To investigate the role of Keratinocyte Differentiation Factor 1 (KDF1) in ectodermal dysplasia (ED) and nonsyndromic tooth agenesis (NSTA) and perform a literature review. METHODS Genome sequencing was used to identify genetic variants in a Thai, NSTA proband and validated through Sanger sequencing. Pathogenicity was assessed using ACMG guidelines, MetaRNN and AlphaMissense. A comprehensive review of KDF1/NSTA cases informed genotype-phenotype analysis of the proband. RESULTS The proband revealed multiple missing teeth, caries and extensive periodontal disease. Deep phenotyping showed no signs of ED beyond tooth agenesis. The identified novel KDF1 variant, p.Ile243Leu, was classified as 'likely pathogenic' by ACMG and predicted as 'detrimental' by MetaRNN and AlphaMissense analyses. A total of 14 reviewed KDF1 cases revealed ED-associated variants (3 variants in 8 patients) clustering in the region of amino acids 251-275, within the DUF4656 domain, while NSTA-causing variants (4 variants in 6 patients) were typically found in amino- or carboxy-termini to this region. KDF1/NSTA cases exhibited an average of 15 missing teeth, with a higher prevalence in the mandible. CONCLUSION This study identifies a novel KDF1 variant-related NSTA in Thai people. The genotype-phenotype correlates suggest a distinctive pattern and tooth agenesis of KDF1-related NSTA.
Collapse
Affiliation(s)
- Narin Intarak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chawan Manaspon
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand
- Biomedical Engineering and Innovation Research Center, Chiang Mai, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sasiprapa Prommanee
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Lakshman Samaranayake
- Faculty of Dentistry, University of Hong Kong, Hong Kong and Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Mitscherling J, Sczakiel HL, Kiskemper-Nestorjuk O, Winterhalter S, Mundlos S, Bartzela T, Mensah MA. Whole genome sequencing in families with oligodontia. Oral Dis 2024; 30:3935-3950. [PMID: 38071191 DOI: 10.1111/odi.14816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/22/2023] [Accepted: 11/10/2023] [Indexed: 09/03/2024]
Abstract
BACKGROUND/OBJECTIVES Tooth agenesis (TA) is among the most common malformations in humans. Although several causative mutations have been described, the genetic cause often remains elusive. Here, we test whether whole genome sequencing (WGS) could bridge this diagnostic gap. METHODS In four families with TA, we assessed the dental phenotype using the Tooth Agenesis Code after intraoral examination and radiographic and photographic documentation. We performed WGS of index patients and subsequent segregation analysis. RESULTS We identified two variants of uncertain significance (a potential splice variant in PTH1R, and a 2.1 kb deletion abrogating a non-coding element in FGF7) and three pathogenic variants: a novel frameshift in the final exon of PITX2, a novel deletion in PAX9, and a known nonsense variant in WNT10A. Notably, the FGF7 variant was found in the patient, also featuring the WNT10A variant. While mutations in PITX2 are known to cause Axenfeld-Rieger syndrome 1 (ARS1) predominantly featuring ocular findings, accompanied by dental malformations, we found the PITX2 frameshift in a family with predominantly dental and varying ocular findings. CONCLUSION Severe TA predicts a genetic cause identifiable by WGS. Final exon PITX2 frameshifts can cause a predominantly dental form of ARS1.
Collapse
Affiliation(s)
- Janna Mitscherling
- Department of Orthodontics and Dentofacial Orthopedics, Charité - Centrum 03 für Zahn-, Mund- und Kieferheilkunde, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin, Germany
| | - Henrike L Sczakiel
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Biomedical Innovation Academy, Junior Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Olga Kiskemper-Nestorjuk
- Department of Orthodontics and Dentofacial Orthopedics, Charité - Centrum 03 für Zahn-, Mund- und Kieferheilkunde, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin, Germany
| | - Sibylle Winterhalter
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Theodosia Bartzela
- Department of Orthodontics and Dentofacial Orthopedics, Charité - Centrum 03 für Zahn-, Mund- und Kieferheilkunde, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, und Berlin Institute of Health, Berlin, Germany
- Department of Orthodontics, Technische Universität Dresden, Dresden, Germany
| | - Martin A Mensah
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- BIH Biomedical Innovation Academy, Digital Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Vetriselvan Y, Manoharan A, Murugan M, Jayakumar S, Govindasamy C, Ravikumar S. In Silico Characterization of Pathogenic Homeodomain Missense Mutations in the PITX2 Gene. Biochem Genet 2024:10.1007/s10528-024-10836-z. [PMID: 38802693 DOI: 10.1007/s10528-024-10836-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Paired homologous domain transcription factor 2 (PITX2) is critically involved in ocular and cardiac development. Mutations in PITX2 are consistently reported in association with Axenfeld-Rieger syndrome, an autosomal dominant genetic disorder and atrial fibrillation, a common cardiac arrhythmia. In this study, we have mined missense mutations in PITX2 gene from NCBI-dbSNP and Ensembl databases, evaluated the pathogenicity of the missense variants in the homeodomain and C-terminal region using five in silico prediction tools SIFT, PolyPhen2, GERP, Mutation Assessor and CADD. Fifteen homeodomain mutations G42V, G42R, R45W, S49Y, R53W, E53D, E55V, R62H, P65S, R69H, G75R, R84G, R86K, R87W, R91P were found to be highly pathogenic by both SIFT, PolyPhen2 were further functionally characterized using I-Mutant 2.0, Consurf, MutPred and Project Hope. The findings of the study can be used for prioritizing mutations in the context of genetic studies.
Collapse
Affiliation(s)
- Yogesh Vetriselvan
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India
| | - Aarthi Manoharan
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India
| | - Manoranjani Murugan
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India
| | - Swetha Jayakumar
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, 11433, Riyadh, Saudi Arabia
| | - Sambandam Ravikumar
- Department of Medical Biotechnology, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation (DU), Kirumampakkam, Puducherry, 607403, India.
| |
Collapse
|
6
|
Semjid D, Ahn H, Bayarmagnai S, Gantumur M, Kim S, Lee JH. Identification of novel candidate genes associated with non-syndromic tooth agenesis in Mongolian families. Clin Oral Investig 2023; 28:56. [PMID: 38157055 PMCID: PMC10756872 DOI: 10.1007/s00784-023-05415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES This study aimed to identify genetic variants associated with non-syndromic tooth agenesis (TA) in nine families from Mongolia using whole-exome sequencing (WES) and bioinformatics analysis. MATERIAL AND METHODS The study enrolled 41 participants, including three inherited and six non-inherited families. WES analysis was performed on 14 saliva samples from individuals with non-syndromic TA. The potential candidate genes were identified through variant filtering and segregation analysis. The filtered variants were then analyzed in silico mutation impact analysis. RESULTS WES analysis identified 21 variants associated with TA, and 5 of these variants met all filtering criteria. These variants were located in the exome region of MAST4, ITGA6, PITX2, CACNA1S, and CDON genes. The variant in PITX2 was found in eight participants from inherited and non-inherited families, while the MAST4 variant was identified in 6 participants from inherited families. CONCLUSIONS The study identified various genetic variant candidates associated with TA in different family groups, with PITX2 being the most commonly identified. Our findings suggest that MAST4 may also be a novel candidate gene for TA due to its association with the Wnt signaling pathway. Additionally, we found that five candidate genes related to focal adhesion and calcium channel complex were significant and essential in tooth development. CLINICAL RELEVANCE Identifying new pathogenic genes associated with TA can improve our understanding of the molecular mechanisms underlying the disease, leading to better diagnosis, prevention, and treatment. Early detection of TA based on biomarkers can improve dental management and facilitate orthodontic and prosthetic treatment.
Collapse
Affiliation(s)
- Dejidnorov Semjid
- Department of Prosthodontics, College of Dentistry at Yonsei University, 50-1 Yonsei-Ro, Seodaemoon-Gu, Seoul, 120-752, Republic of Korea
| | - Hyunsoo Ahn
- Department of Life Sciences, Pohang University of Science and Technology, 80 Jigok-Ro, Nam-Gu, Pohang, 790-784, Republic of Korea
| | - Sapaar Bayarmagnai
- Department of Prosthodontics, School of Dentistry, Mongolian National University of Medical Sciences, Chingeltei District, Nuuriin 2-21, Ulaanbaatar, Mongolia
| | - Munkhjargal Gantumur
- Department of Prosthodontics, School of Dentistry, Mongolian National University of Medical Sciences, Chingeltei District, Nuuriin 2-21, Ulaanbaatar, Mongolia
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, 80 Jigok-Ro, Nam-Gu, Pohang, 790-784, Republic of Korea.
| | - Jae Hoon Lee
- Department of Prosthodontics, College of Dentistry at Yonsei University, 50-1 Yonsei-Ro, Seodaemoon-Gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
7
|
Intarak N, Tongchairati K, Termteerapornpimol K, Chantarangsu S, Porntaveetus T. Tooth agenesis patterns and variants in PAX9: A systematic review. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:129-137. [PMID: 37159578 PMCID: PMC10163602 DOI: 10.1016/j.jdsr.2023.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/11/2023] Open
Abstract
Mutations in PAX9 are the most common genetic cause of tooth agenesis (TA). The aim of this study was to systematically review the profiles of the TA and PAX9 variants and establish their genotype-phenotype correlation. Forty articles were eligible for 178 patients and 61 mutations (26 in frame and 32 null mutations). PAX9 mutations predominantly affected molars, mostly the second molar, and the mandibular first premolar was the least affected. More missing teeth were found in the maxilla than the mandible, and with null mutations than in-frame mutations. The number of missing teeth was correlated with the locations of the in-frame mutations with the C-terminus mutations demonstrating the fewest missing teeth. The null mutation location did not influence the number of missing teeth. Null mutations in all locations predominantly affected molars. For the in-frame mutations, a missing second molar was commonly associated with mutations in the highly conserved paired DNA-binding domain, particularly the linking peptide (100% prevalence). In contrast, C-terminus mutations were rarely associated with missing second molars and anterior teeth, but were commonly related to an absent second premolar. These finding indicate that the mutation type and position contribute to different degrees of loss of PAX9 function that further differentially influences the manifestations of TA. This study provides novel information on the correlation of the PAX9 genotype-phenotype, aiding in the genetic counseling for TA.
Collapse
Affiliation(s)
- Narin Intarak
- Center of Excellent in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Soranun Chantarangsu
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellent in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- International Graduate Program in Geriatric Dentistry and Special Patients Care, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Correspondence to: Center of Excellent in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
8
|
Zhu Y, Zhang Y, Dong J, Ruan W, Yang S, Huang P, Duan X. MSX1 involved selective tooth agenesis and abnormal labial frenum, pedigree, and retrospective study. Oral Dis 2023; 29:3168-3172. [PMID: 36478500 DOI: 10.1111/odi.14459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Muscle segment homeobox gene 1 (MSX1) is widely expressed in craniofacial development and tooth formation. The aim of this study was to report a novel MSX1 mutation in a Chinese family with selective tooth agenesis and abnormal median maxillary labial frenum (MMLF). MATERIALS AND METHODS Mutation analysis was carried out by whole exome sequencing. The pMD18-T vector was used to verify the mutations. PubMed and Human Gene Mutation Database were searched to analyze the relationship between the mutations in MSX1 and related phenotypes. RESULTS A novel heterozygous mutation (c.75delG) in MSX1 was detected in the proband and her mother. They presented as oligodontia and lower attached hypertrophy median maxillary labial frenum. 60 MSX1 mutations from 39 reports did not declare malformed MMLF except our cases. Meanwhile, we found that the types and sites of MSX1 mutations may affect the selectivity of tooth agenesis and orofacial cleft. CONCLUSION This study suggests malformed MMLF as a new phenotype of MSX1 mutation and a specific relationship between MSX1 genotype and phenotype.
Collapse
Affiliation(s)
- Yulong Zhu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease; Shaanxi Key Laboratory of Stomatology; Department of Oral Biology, Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yanli Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease; Shaanxi Key Laboratory of Stomatology; Department of Oral Biology, Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jing Dong
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease; Shaanxi Key Laboratory of Stomatology; Department of Oral Biology, Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wenyan Ruan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease; Shaanxi Key Laboratory of Stomatology; Department of Oral Biology, Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shaoqing Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease; Shaanxi Key Laboratory of Stomatology; Department of Oral Biology, Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Ping Huang
- Department of Clinical Laboratory, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Disease; Shaanxi Key Laboratory of Stomatology; Department of Oral Biology, Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Tian L, Li X, Ying Y, Wang L, Qiao Y, Wang D, Song Y, Li N, Liu X. Pitx2 suppression at meiotic stages associates with seasonal inhibition of testis development in Rattus norvegicus caraco. Integr Zool 2023; 18:543-551. [PMID: 35639924 DOI: 10.1111/1749-4877.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bicoid-related transcription factor 2 (Pitx2) plays a crucial role in the development of many organs and tissues by affecting the mitotic cell cycle. Postnatal testis development is related to mitosis and meiosis in multiple cell types, but the role of Pitx2 gene in seasonal inhibition of testicular development remains unknown in rodents. We analyzed PITX2 protein and Pitx2 mRNA expression features using both laboratory and wild male Rattus norvegicus caraco. In postnatal testicle of laboratory colony, we found that PITX2 was expressed in Leydig cells, pachytene spermatocytes, round spermatids, and elongating spermatids rather than spermatogonia and leptotene/zygotene spermatocytes. Pitx2b expression significantly increased along with the occurrence of pachytene spermatocytes and round spermatids, while decreased along with the processes of elongated spermatids. In wild male rats with similar testes weight, a significantly suppressed Pitx2b expression occurred with an active meiotic stage in the inhibited testes in autumn and winter, compared with the normally developing testes in spring and summer. These results indicate that Pitx2b expression suppression plays a crucial role in the seasonal inhibition of testis development.
Collapse
Affiliation(s)
- Lin Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xixuan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqi Ying
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lewen Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaohui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Nowwarote N, Osathanon T, Fournier BPJ, Theerapanon T, Yodsanga S, Kamolratanakul P, Porntaveetus T, Shotelersuk V. PTEN regulates proliferation and osteogenesis of dental pulp cells and adipogenesis of human adipose-derived stem cells. Oral Dis 2023; 29:735-746. [PMID: 34558757 DOI: 10.1111/odi.14030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the role of phosphatase and tensin homolog (PTEN) in dental pulp cells (hDPs) and adipose-derived mesenchymal stem cells (hADSCs). MATERIALS AND METHODS Genetic variant was identified with exome sequencing. The hDPs isolated from a patient with Cowden syndrome were investigated for their proliferation, osteogenesis, adipogenesis, and gene expression compared with controls. The normal hDPs and hADSCs were treated with the PTEN inhibitor, VO-OHpic trihydrate (VOT), to investigate the effect of PTEN inhibition. RESULTS A heterozygous nonsense PTEN variant, c.289C>T (p.Gln97*), was identified in the Cowden patient's blood and intraoral lipomas. The mutated hDPs showed significantly decreased proliferation, but significantly upregulated RUNX2 and OSX expression and mineralization, indicating enhanced osteogenic ability in mutated cells. The normal hDPs treated with VOT showed the decreases in proliferation, colony formation, osteogenic marker genes, alkaline phosphatase activity, and mineral deposition, suggesting that PTEN inhibition diminishes proliferation and osteogenic potential of hDPs. Regarding adipogenesis, the VOT-treated hADSCs showed a reduced number of cells containing lipid droplets, suggesting that PTEN inhibition might compromise adipogenic ability of hADSCs. CONCLUSIONS PTEN regulates proliferation, enhances osteogenesis of hDPs, and induces adipogenesis of hADSCs. The gain-of-function PTEN variant, p.Gln97*, enhances osteogenic ability of PTEN in hDPs.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, Paris, France.,Dental Faculty Garanciere, Oral Biology Department, Universite de Paris, Paris, France
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Benjamin P J Fournier
- Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, Paris, France.,Dental Faculty Garanciere, Oral Biology Department, Universite de Paris, Paris, France
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Yodsanga
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Paksinee Kamolratanakul
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
11
|
Hii EPW, Ramanathan A, Pandarathodiyil AK, Wong GR, Sekhar EVS, Binti Talib R, Zaini ZM, Zain RB. Homeobox Genes in Odontogenic Lesions: A Scoping Review. Head Neck Pathol 2023; 17:218-232. [PMID: 36344906 PMCID: PMC10063701 DOI: 10.1007/s12105-022-01481-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Homeobox genes play crucial roles in tooth morphogenesis and development and thus mutations in homeobox genes cause developmental disorders such as odontogenic lesions. The aim of this scoping review is to identify and compile available data from the literatures on the topic of homeobox gene expression in odontogenic lesions. METHOD An electronic search to collate all the information on studies on homeobox gene expression in odontogenic lesions was carried out in four databases (PubMed, EBSCO host, Web of Science and Cochrane Library) with selected keywords. All papers which reported expression of homeobox genes in odontogenic lesions were considered. RESULTS A total of eleven (11) papers describing expression of homeobox genes in odontogenic lesions were identified. Methods of studies included next generation sequencing, microarray analysis, RT-PCR, Western blotting, in situ hybridization, and immunohistochemistry. The homeobox reported in odontogenic lesions includes LHX8 and DLX3 in odontoma; PITX2, MSX1, MSX2, DLX, DLX2, DLX3, DLX4, DLX5, DLX6, ISL1, OCT4 and HOX C in ameloblastoma; OCT4 in adenomatoid odontogenic tumour; PITX2 and MSX2 in primordial odontogenic tumour; PAX9 and BARX1 in odontogenic keratocyst; PITX2, ZEB1 and MEIS2 in ameloblastic carcinoma while there is absence of DLX2, DLX3 and MSX2 in clear cell odontogenic carcinoma. CONCLUSIONS This paper summarized and reviews the possible link between homeobox gene expression in odontogenic lesions. Based on the current available data, there are insufficient evidence to support any definite role of homeobox gene in odontogenic lesions.
Collapse
Affiliation(s)
- Erica Pey Wen Hii
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anand Ramanathan
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Gou Rean Wong
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | - E V Soma Sekhar
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | | | - Zuraiza Mohamad Zaini
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rosnah Binti Zain
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| |
Collapse
|
12
|
Kanchanasevee C, Chantarangsu S, Pittayapat P, Porntaveetus T. Patterns of nonsyndromic tooth agenesis and sexual dimorphism. BMC Oral Health 2023; 23:37. [PMID: 36691053 PMCID: PMC9869554 DOI: 10.1186/s12903-023-02753-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Sex dimorphism has been implicated in oral health differences and the pathogenesis of oral diseases, such as tooth agenesis, periodontal disease, dental caries, and tooth loss. Tooth agenesis (TA) is one of the most common developmental anomalies in humans, and its prevalence and patterns are different across ethnic groups. The aim of this study was to investigate the phenotypes and sex-associated patterns of nonsyndromic tooth agenesis (TA) in Thai dental patients. METHODS One thousand ninety panoramic radiographs were examined. One hundred and one subjects (37 males, 64 females, 15-20 years-old) with nonsyndromic TA were evaluated. Differences in TA prevalence between groups were analyzed using the chi-square or Fisher exact test. RESULTS The TA prevalence, excluding third molars, was 9.3% and more frequently found in the mandible compared with the maxilla. The maxilla demonstrated a higher prevalence of first premolar agenesis than the mandible (P = 0.012), while the mandible had a higher prevalence of second premolar agenesis than the maxilla (P = 0.031). There were significantly more males missing one tooth than females, however, there were more females missing two or more teeth than males (P = 0.042). A missing maxillary left lateral incisor was significantly more frequent in males (P = 0.019), while a missing mandibular right lateral incisor was more frequent in females (P = 0.025). In females, the pattern of two mandibular lateral incisors agenesis was the most common and significantly present in females more than males (P = 0.015). In contrast, the pattern of one mandibular left lateral incisor agenesis was only observed in males and significantly found in males more than females (P = 0.047). CONCLUSIONS We demonstrate sex-associated differences in nonsyndromic tooth agenesis. The prevalence of single tooth agenesis was higher in males, while that of two or more teeth agenesis was higher in females. We found different patterns of lateral incisor agenesis between males and females.
Collapse
Affiliation(s)
- Charinya Kanchanasevee
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Geriatric Dentistry and Special Patients Care Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Soranun Chantarangsu
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Pisha Pittayapat
- Department of Radiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
13
|
Arte S, Pöyhönen M, Myllymäki E, Ronkainen E, Rice DP, Nieminen P. Craniofacial and dental features of Axenfeld-Rieger syndrome patients with PITX2 mutations. Orthod Craniofac Res 2023. [PMID: 36620911 DOI: 10.1111/ocr.12631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023]
Abstract
We aimed to characterize the genetic basis and craniofacial and dental features of Finnish patients with Axenfeld-Rieger syndrome (ARS). Mutational analyses of seven patients in five families were performed by sequencing or comparative genomic hybridization. Phenotypic analysis was based on both clinical and radiographic examinations, as well as on medical data. Lateral cephalometric radiographs of five patients were analysed using Viewbox 3.1-Cephalometric Software. The cephalometric values were compared to Finnish population-standard values of the same age and gender. Two frameshift mutations and three whole gene deletions were detected in five families. Class III skeletal relationship with retrognathic maxilla and mildly retrognathic mandible were detected in all five patients studied. Significant differences compared with the control values were in SNA (P = .0014), ANB (P = .0043) and SNB angles (P = .013). Five patients had anterior crossbite. Six patients showed tooth agenesis. The average number of missing teeth (third molars excluded) was 9 (range 0-15). The tooth agenesis rate was 52% in maxilla and 26% in mandible. Maxillary central and lateral permanent incisors were most often missing (rate 71% equally) while no one lacked canines or first molars in mandible. Two patients had a supernumerary mandibular permanent incisor. Six patients had either taurodontic and/or single-rooted molars. Our results suggest that class III skeletal relationship with maxillary and mandibular retrognathism, anterior crossbite, maxillary incisor agenesis and taurodontic, even pyramidal, roots are common determinants of ARS caused by PITX2 mutations.
Collapse
Affiliation(s)
- Sirpa Arte
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Minna Pöyhönen
- Department of Genetics, HUSLAB, Helsinki University Hospital Diagnostic Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Emmi Myllymäki
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Elisa Ronkainen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| | - David P Rice
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Pekka Nieminen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Genotype-phenotype association of PITX2 and FOXC1 in Axenfeld-Rieger syndrome. Exp Eye Res 2023; 226:109307. [PMID: 36442680 DOI: 10.1016/j.exer.2022.109307] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
PITX2 and FOXC1 are the most common pathogenic genes associated with Axenfeld-Rieger syndrome (ARS). In this study, we aimed to explore the variation spectrum of PITX2 and FOXC1 and their associated phenotype based on data from our study and previously reported literatures. Whole exome sequencing was performed on eight probands in our study. Multistep bioinformatic and co-segregation analyses were performed to detect pathogenic variants. Genotype-phenotype correlations of PITX2 and FOXC1 and the differences between them were determined. We detected three variants of FOXC1 and two variants of PITX2 in five unrelated families with ARS. Macular retinoschisis had been observed in AR1 with variant in PITX2 and it is not reported before. Additionally, a review of published literature and our study led to the identification of 593 families with variants of PITX2 or FOXC1, including 316 families with heterozygous variants in FOXC1, 251 families with heterozygous variants in PITX2, 13 families with variants in double genes, seven families with homozygous or compound heterozygous variants in FOXC1, and six families with variants in ADAMTS17, PRDM5, COL4A1 or CYP1B1. Significant differences were observed between the prevalence of missense and in-frame, truncation, and large deletion variants in PITX2 (32.00%, 42.67%, and 25.33%, respectively) and FOXC1 (34.49%, 35.13%, 30.38%, respectively) (p = 1.16E-43). Enrichment and frequency analyses revealed that missense variants were concentrated in the forkhead domain of FOXC1 (76.14%) and homeodomain of PITX2 (87.50%). The percentage of Caucasians with variants in FOXC1 was significantly higher than that of PITX2 (p = 2.00E-2). Significant differences between PITX2 and FOXC1 were observed in glaucoma (p = 3.00E-2), corectopia (p = 3.050E-6), and polycoria (p = 5.21E-08). Additionally, we observed a significant difference in best-corrected visual acuity (BCVA) between FOXC1 and PITX2 (p = 3.80E-2). Among all the family members with PITX2 or FOXC1 variants, the prevalence of systemic abnormalities was significantly higher in PITX2 than in FOXC1 (89.16% vs. 58.77%, p = 5.44E-17). In conclusion, macular retinoschisis as a novel phenotype had been observed in patient with variant in PITX2. Significant differences were detected in phenotypes and genotypes between PITX2 and FOXC1.
Collapse
|
15
|
Yu K, Dou J, Huang W, Wang F, Wu Y. Expanding the genetic spectrum of tooth agenesis using whole-exome sequencing. Clin Genet 2022; 102:503-516. [PMID: 36071541 DOI: 10.1111/cge.14225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Tooth agenesis is a high genetic heterogeneous disorder with more than eighty genes identified as associated molecular causes. The present study aimed to detect the possible pathogenic variants in a cohort of well-characterized probands with a clinical diagnosis of tooth agenesis. METHODS We performed whole-exome sequencing (WES) in 131 tooth agenesis patients with no previously identified molecular diagnosis. All the potential pathogenic variants were verified by Sanger sequencing in patients and their family members. Results Seventy-three patients were genetically diagnosed in 131 unrelated Chinese patients with tooth agenesis, providing a positive molecular diagnostic rate of 55.7%, including 53.8% (49/91) in the non-syndromic tooth agenesis (NSTA) group, and 60.0% (24/40) in syndromic tooth agenesis (STA) group. A total of 75 variants from 13 different genes were identified, including 33 novel variants, and WNT10A and EDA are the most common causative genes associated with non-syndromic and syndromic tooth agenesis, respectively. CONCLUSIONS This study further extends the variant spectrum and clinical profiles of tooth agenesis, which has a positive significance for clinical practice, genetic diagnosis, prenatal counseling and future treatment.
Collapse
Affiliation(s)
- Kang Yu
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Jiaqi Dou
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Wei Huang
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Feng Wang
- Department of Oral Implantology, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| | - Yiqun Wu
- Department of Second Dental Center, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China
| |
Collapse
|
16
|
Yue H, Liang J, Song G, Cheng J, Li J, Zhi Y, Bian Z, He M. Mutation analysis in patients with nonsyndromic tooth agenesis using exome sequencing. Mol Genet Genomic Med 2022; 10:e2045. [PMID: 36017684 PMCID: PMC9544223 DOI: 10.1002/mgg3.2045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Tooth agenesis (TA) is a congenital abnormality that may present as syndromic or nonsyndromic. Considering its complex genetic aetiology, the aim of this study was to uncover the pathogenic mutants in patients with nonsyndromic TA and analyse the characteristics of these mutants. METHODS Exome sequencing was performed to detect pathogenic variants in 72 patients from 43 unrelated families with nonsyndromic TA. All candidate variants were validated using Sanger sequencing. Bioinformatics and conformational analyses were performed to determine the pathogenic mechanisms of the mutants. RESULTS The following eight mutations (six novel and two known) in six genes were identified in eight families: WNT10A [c.742C > T (p.R248*)], LRP6 [c.1518G > A (p.W506*), c.2791 + 1G > T], AXIN2 [c.133_134insGCCAGG (p.44_45insGQ)], PAX9 [c.439C > T (p.Q147*), c.453_454insCCAGC (p.L154QfsTer60)], MSX1 [c.603_604del (p.A203GfsTer10)] and PITX2 [c.522C > G (p.Y174*)]. Bioinformatics and conformational analyses showed that the protein structures were severely altered in these mutants, and indicated that these structural abnormalities may cause functional disabilities. CONCLUSIONS Our study extends the mutation spectrum in patients with nonsyndromic TA and provides valuable data for genetic counselling. The pathogenic mechanisms of TA in patients/families with unknown causative variants need to be explored further.
Collapse
Affiliation(s)
- Haitang Yue
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jia Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guangtai Song
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Cheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiahui Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yusheng Zhi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Miao He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Intarak N, Theerapanon T, Porntaveetus T, Shotelersuk V. Patterns of molar agenesis associated with p.P20L and p.R77Q variants in PAX9. Eur J Oral Sci 2022; 130:e12855. [PMID: 35182440 DOI: 10.1111/eos.12855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022]
Abstract
Nonsyndromic tooth agenesis is associated with variants in several genes. There are numerous genotype-phenotype publications involving many patients and kindreds. Here, we identified six Thai individuals in two families with nonsyndromic tooth agenesis, performed exome sequencing, and conducted functional experiments. Family 1 had four affected members carrying the heterozygous PAX9 variant, c.59C>T (p.Pro20Leu). The p.Pro20Leu was previously reported in two families having four and three affected members. These seven cases and Proband-1 had agenesis of at least three third molars. Family 2 comprised two affected members with agenesis of all 12 molars. Both individuals were heterozygous for c.230G>A (p.Arg77Gln) in PAX9, which has not been reported previously. This variant is predicted to be damaging, evolutionarily conserved, and resides in the PAX9 linking peptide. The BMP4 RNA levels in Proband-1's leukocytes were not significantly different from those in the controls, whereas BMP4 levels observed in Proband-2 were significantly increased. Moreover, the p.Arg77Gln variant demonstrated nuclear localization similar to the wild-type but resulted in significantly impaired transactivation of BMP4, a PAX9 downstream gene. In conclusion, we demonstrate that the PAX9 p.Pro20Leu is highly associated with absent third molars, while the novel PAX9 p.Arg77Gln impairs BMP4 transactivation and is associated with total molar agenesis.
Collapse
Affiliation(s)
- Narin Intarak
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thanakorn Theerapanon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
18
|
Lo Faro V, Siddiqui SN, Khan MI, Villanueva‐Mendoza C, Cortés‐González V, Jansonius N, Bergen AAB, Micheal S. Novel mutations in the PITX2 gene in Pakistani and Mexican families with Axenfeld-Rieger syndrome. Mol Genet Genomic Med 2020; 8:e1215. [PMID: 32400113 PMCID: PMC7336731 DOI: 10.1002/mgg3.1215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Axenfeld-Rieger syndrome (ARS) is a rare autosomal dominant disorder that affects the anterior segment of the eye. The aim of this study was to examine the PITX2 gene to identify possible novel mutations in Pakistani and Mexican families affected by the ARS phenotype. METHODS Three unrelated probands with a diagnosis of ARS were recruited for this study. Genomic DNA was isolated from the peripheral blood of the probands and their family members. Polymerase chain reaction and Sanger sequencing were used for the analysis of coding exons and the flanking intronic regions of the PITX2 gene. Bioinformatics tools and database (VarSome, Provean, and MutationTaster, SIFT, PolyPhen-2, and HOPE) were evaluated to explore missense variants. RESULTS We identified novel heterozygous variations in the PITX2 gene that segregated with the ARS phenotype within the families. The variant NM_153426.2(PITX2):c.226G > T or p.(Ala76Ser) and the mutation NM_153426.2(PITX2):c.455G > A or p.(Cys152Tyr) were identified in two Pakistani pedigrees, and the mutation NM_153426.2(PITX2):c.242_265del or p.(Lys81_Gln88del), segregated in a Mexican family. CONCLUSION Our study extends the spectrum of PITX2 mutations in individuals with ARS, enabling an improved diagnosis of this rare but serious syndrome.
Collapse
Affiliation(s)
- Valeria Lo Faro
- Department of Clinical GeneticsUniversity Medical Center (UMC)University of Amsterdam (UvA)AmsterdamThe Netherlands
- Department of OphthalmologyUniversity Medical Center Groningen (UMCG)University of Groningen (RUG)GroningenThe Netherlands
| | - Sorath N. Siddiqui
- Department of Pediatric Ophthalmology and StrabismusAl‐Shifa Eye Trust HospitalRawalpindiPakistan
| | - Muhammad I. Khan
- Department of Human GeneticsDonders Institute for BrainCognition and BehaviourRadboud UMCNijmegenThe Netherlands
| | | | | | - Nomdo Jansonius
- Department of OphthalmologyUniversity Medical Center Groningen (UMCG)University of Groningen (RUG)GroningenThe Netherlands
| | - Arthur A. B. Bergen
- Department of Clinical GeneticsUniversity Medical Center (UMC)University of Amsterdam (UvA)AmsterdamThe Netherlands
- Department of OphthalmologyUniversitair Medische Centre (UMC)University of Amsterdam (UvA)AmsterdamThe Netherlands
- The Netherlands Institute for Neurosciences (NIN‐KNAW)AmsterdamThe Netherlands
| | - Shazia Micheal
- Department of Clinical GeneticsUniversity Medical Center (UMC)University of Amsterdam (UvA)AmsterdamThe Netherlands
| |
Collapse
|
19
|
Fan Z, Sun S, Liu H, Yu M, Liu Z, Wong SW, Liu Y, Han D, Feng H. Novel PITX2 mutations identified in Axenfeld-Rieger syndrome and the pattern of PITX2-related tooth agenesis. Oral Dis 2019; 25:2010-2019. [PMID: 31529555 DOI: 10.1111/odi.13196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/25/2019] [Accepted: 09/07/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To investigate the mutations in patients with Axenfeld-Rieger syndrome (ARS) and the pattern of PITX2-related tooth agenesis. METHODS Whole-exome sequencing (WES) and copy number variation (CNV) array were used to screen the mutations in four ARS probands. After Sanger sequencing and quantitative polymerase chain reaction (qPCR) validation, secondary structure prediction and dual-luciferase assay were employed to investigate the functional impact. Eighteen PITX2-mutated patients with definite dental records were retrieved from our database and literatures, and the pattern of PITX2-related tooth agenesis was analyzed. RESULTS A novel de novo segmental deletion of chromosome 4q25 (GRCh37/hg19 chr4:111, 320, 052-111, 754, 236) encompassing PITX2 and three novel PITX2 mutations c.148C > T, c.257G > A, and c.630insCG were identified. Preliminary functional studies indicated the transactivation capacity of mutant PITX2 on Distal-less homeobox 2 (DLX2) promoter was compromised. The maxillary teeth showed significantly higher rate of agenesis (57.94%) than the mandibular teeth (44.05%). The most often missing teeth were upper lateral incisors (83.33%) and upper second premolars (69.44%). Teeth with the least agenesis rate were the lower second molars (19.44%) and lower first molars (8.33%). CONCLUSIONS We identified a novel 4q25 microdeletion including PITX2 and three novel PITX2 mutations, and statistically analyzed the PITX2-related tooth agenesis pattern.
Collapse
Affiliation(s)
- Zhuangzhuang Fan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, Beijing, China
- Peking University School and Hospital of Stomatology, Beijing, China
| | - Shichen Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, Beijing, China
- Peking University School and Hospital of Stomatology, Beijing, China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, Beijing, China
- Peking University School and Hospital of Stomatology, Beijing, China
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, Beijing, China
- Peking University School and Hospital of Stomatology, Beijing, China
| | - Ziyuan Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Sing-Wai Wong
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, Beijing, China
- Peking University School and Hospital of Stomatology, Beijing, China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, Beijing, China
- Peking University School and Hospital of Stomatology, Beijing, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, Beijing, China
- Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
20
|
Manaspon C, Thaweesapphithak S, Osathanon T, Suphapeetiporn K, Porntaveetus T, Shotelersuk V. A novel de novo mutation substantiates KDF1 as a gene causing ectodermal dysplasia. Br J Dermatol 2019; 181:419-420. [PMID: 30977908 DOI: 10.1111/bjd.18007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- C Manaspon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - S Thaweesapphithak
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - T Osathanon
- Department of Anatomy, Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - K Suphapeetiporn
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - T Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - V Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
21
|
Shotelersuk V, Tongsima S, Pithukpakorn M, Eu‐ahsunthornwattana J, Mahasirimongkol S. Precision medicine in Thailand. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:245-253. [DOI: 10.1002/ajmg.c.31694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of MedicineChulalongkorn University Bangkok Thailand
- Excellence Center for Medical GeneticsKing Chulalongkorn Memorial Hospital, the Thai Red Cross Society Bangkok Thailand
| | - Sissades Tongsima
- National Center for Genetic Engineering and BiotechnologyNational Science and Technology Development Agency Pathum Thani Thailand
| | - Manop Pithukpakorn
- Division of Medical Genetics, Department of MedicineFaculty of Medicine Siriraj Hospital, Mahidol University Bangkok Thailand
- Siriraj Center of Research Excellence in Precision MedicineFaculty of Medicine Siriraj Hospital, Mahidol University Bangkok Thailand
| | - Jakris Eu‐ahsunthornwattana
- Department of Community MedicineFaculty of Medicine Ramathibodi Hospital, Mahidol University Bangkok Thailand
- Division of Medical Genetics and Molecular Medicine, Department of Internal Medicine, Faculty of Medicine Ramathibodi HospitalMahidol University Bangkok Thailand
| | - Surakameth Mahasirimongkol
- Medical Genetics Center, Medical Life Sciences Institute, Department of Medical SciencesMinistry of Public Health Nonthaburi Thailand
| |
Collapse
|
22
|
Porntaveetus T, Abid MF, Theerapanon T, Srichomthong C, Ohazama A, Kawasaki K, Kawasaki M, Suphapeetiporn K, Sharpe PT, Shotelersuk V. Expanding the Oro-Dental and Mutational Spectra of Kabuki Syndrome and Expression of KMT2D and KDM6A in Human Tooth Germs. Int J Biol Sci 2018; 14:381-389. [PMID: 29725259 PMCID: PMC5930470 DOI: 10.7150/ijbs.23517] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Kabuki syndrome is a rare genetic disorder characterized by distinct dysmorphic facial features, intellectual disability, and multiple developmental abnormalities. Despite more than 350 documented cases, the oro-dental spectrum associated with kabuki syndrome and expression of KMT2D (histone-lysine N-methyltransferase 2D) or KDM6A (lysine-specific demethylase 6A) genes in tooth development have not been well defined. Here, we report seven unrelated Thai patients with Kabuki syndrome having congenital absence of teeth, malocclusion, high-arched palate, micrognathia, and deviated tooth shape and size. Exome sequencing successfully identified that six patients were heterozygous for mutations in KMT2D, and one in KDM6A. Six were novel mutations, of which five were in KMT2D and one in KDM6A. They were truncating mutations including four frameshift deletions and two nonsense mutations. The predicted non-functional KMT2D and KDM6A proteins are expected to cause disease by haploinsufficiency. Our study expands oro-dental, medical, and mutational spectra associated with Kabuki syndrome. We also demonstrate for the first time that KMT2D and KDM6A are expressed in the dental epithelium of human tooth germs.
Collapse
Affiliation(s)
- Thantrira Porntaveetus
- Craniofacial Genetics and Stem Cells Research Group, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mushriq F Abid
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, London, SE1 9RT, UK
| | - Thanakorn Theerapanon
- Excellence Center in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| | - Atsushi Ohazama
- Division of Oral Anatomy, Niigata University, Niigata 951-8514, Japan
| | | | - Maiko Kawasaki
- Division of Oral Anatomy, Niigata University, Niigata 951-8514, Japan
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, London, SE1 9RT, UK
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genetics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.,Excellence Center for Medical Genetics, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|