1
|
Zakaria MF, Sonoda S, Kato H, Ma L, Uehara N, Kyumoto-Nakamura Y, Sharifa MM, Yu L, Dai L, Yamauchi-Tomoda E, Aijima R, Yamaza H, Nishimura F, Yamaza T. Erythropoietin receptor signal is crucial for periodontal ligament stem cell-based tissue reconstruction in periodontal disease. Sci Rep 2024; 14:6719. [PMID: 38509204 PMCID: PMC10954634 DOI: 10.1038/s41598-024-57361-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
Alveolar bone loss caused by periodontal disease eventually leads to tooth loss. Periodontal ligament stem cells (PDLSCs) are the tissue-specific cells for maintaining and repairing the periodontal ligament, cementum, and alveolar bone. Here, we investigated the role of erythropoietin receptor (EPOR), which regulates the microenvironment-modulating function of mesenchymal stem cells, in PDLSC-based periodontal therapy. We isolated PDLSCs from patients with chronic periodontal disease and healthy donors, referred to as PD-PDLSCs and Cont-PDLSCs, respectively. PD-PDLSCs exhibited reduced potency of periodontal tissue regeneration and lower expression of EPOR compared to Cont-PDLSCs. EPOR-silencing suppressed the potency of Cont-PDLSCs mimicking PD-PDLSCs, whereas EPO-mediated EPOR activation rejuvenated the reduced potency of PD-PDLSCs. Furthermore, we locally transplanted EPOR-silenced and EPOR-activated PDLSCs into the gingiva around the teeth of ligament-induced periodontitis model mice and demonstrated that EPOR in PDLSCs participated in the regeneration of the periodontal ligament, cementum, and alveolar bone in the ligated teeth. The EPOR-mediated paracrine function of PDLSCs maintains periodontal immune suppression and bone metabolic balance via osteoclasts and osteoblasts in the periodontitis model mice. Taken together, these results suggest that EPOR signaling is crucial for PDLSC-based periodontal regeneration and paves the way for the development of novel options for periodontal therapy.
Collapse
Affiliation(s)
- Mhd Fouad Zakaria
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Periodontology, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Lan Ma
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Guangdong Provincial Key Laboratory of Stomatology, South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Norihisa Uehara
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yukari Kyumoto-Nakamura
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - M Majd Sharifa
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Liting Yu
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Lisha Dai
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Erika Yamauchi-Tomoda
- Department of Oral and Maxillofacial Radiology, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Reona Aijima
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Fusanori Nishimura
- Department of Periodontology, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
2
|
Zheng Q, Li W, Zhang Y, Liu X, Fu Y, Luo S, Deng X, Zeng C. Circulating Metabolites and Dental Traits: A Mendelian Randomization Study. J Dent Res 2023; 102:1460-1467. [PMID: 37864545 DOI: 10.1177/00220345231196536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023] Open
Abstract
It is of great importance to uncover causal biomarkers to gain insight into the pathogenesis of oral diseases and identify novel treatment targets for prevention and treatment thereof. This study aimed to systematically evaluate the causal effects of hundreds of metabolites on 10 dental traits using a 2-sample Mendelian randomization (MR) approach. Genetic variants from genome-wide association studies of 309 known metabolites were used as instrumental variables. We selected 10 dental traits, including clinical measures of dental diseases, from the Gene-Lifestyle Interactions in Dental Endpoints Consortium and self-reported oral health data from the UK Biobank. The causal relationships between metabolites and dental traits were inferred using the inverse variance-weighted approach and further controlled for horizontal pleiotropy using 5 additional MR methods. After correcting for multiple tests, 5 metabolites were identified as causal biomarkers. Genetically predicted increased levels of mannose were associated with lower risk of bleeding gums (odds ratio [OR] = 0.72; 95% confidence interval [CI], 0.61-0.85; P = 9.9 × 10-5). MR also indicated 4 metabolites on the causal pathway to dentures, with fructose (OR = 0.50; 95% CI, 0.36-0.70; P = 5.2 × 10-5) and 1-palmitoleoyl-glycerophosphocholine (OR = 0.67; 95% CI, 0.56-0.81; P = 4.8 × 10-5) as potential protective factors and glycine (OR = 1.22; 95% CI, 1.11-1.35; P = 5.6×10-5) and 1,5-anhydroglucitol (OR = 1.32; 95% CI, 1.14-1.52; P = 1.5 × 10-4) as risk factors. The causal associations were robust in various sensitivity analyses. We further observed some shared metabolites among different dental traits, implying similar biological mechanisms underlying the pathogenic processes. Finally, the pathway analysis revealed several significant metabolic pathways that may be involved in the development of dental disorders. Our study provides novel insights into the combination of metabolomics and genomics to reveal the pathogenesis of and therapeutic strategies for dental disorders. It highlighted 5 metabolites and several pathways as causal candidates, warranting further investigation.
Collapse
Affiliation(s)
- Q Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - W Li
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- Key Laboratory of Dental Material, National Medical Products Administration, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Y Zhang
- Henan Academy of Sciences, Zhengzhou, Henan, China
| | - X Liu
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- Key Laboratory of Dental Material, National Medical Products Administration, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y Fu
- Department of Prosthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - S Luo
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - X Deng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- Key Laboratory of Dental Material, National Medical Products Administration, Beijing, China
| | - C Zeng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- Henan Academy of Sciences, Zhengzhou, Henan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Sonoda S, Yamaza T. Extracellular vesicles rejuvenate the microenvironmental modulating function of recipient tissue-specific mesenchymal stem cells in osteopenia treatment. Front Endocrinol (Lausanne) 2023; 14:1151429. [PMID: 37033255 PMCID: PMC10073676 DOI: 10.3389/fendo.2023.1151429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Systemic transplantation of mesenchymal stem cells (MSCs), such as bone marrow MSCs (BMMSCs) and stem cells from human exfoliated deciduous teeth (SHED), is considered a prominent treatment for osteopenia. However, the mechanism of action of the transplanted MSCs has been poorly elucidated. In the recipient target tissue, including bone and bone marrow, only a few donor MSCs can be detected, suggesting that the direct contribution of donor MSCs may not be expected for osteopenia treatment. Meanwhile, secretomes, especially contents within extracellular vesicles (EVs) released from donor MSCs (MSC-EVs), play key roles in the treatment of several diseases. In this context, administrated donor MSC-EVs may affect bone-forming function of recipient cells. In this review, we discuss how MSC-EVs contribute to bone recovery recipient tissue in osteopenia. We also summarize a novel mechanism of action of systemic administration of SHED-derived EVs (SHED-EVs) in osteopenia. We found that reduced telomerase activity in recipient BMMSCs caused the deficiency of microenvironmental modulating function, including bone and bone marrow-like niche formation and immunomodulation in estrogen-deficient osteopenia model mice. Systemic administration of SHED-EVs could exert therapeutic effects on bone reduction via recovering the telomerase activity, leading to the rejuvenation of the microenvironmental modulating function in recipient BMMSCs, as seen in systemic transplantation of SHED. RNase-preconditioned donor SHED-EVs diminished the therapeutic benefits of administrated SHED-EVs in the recipient osteopenia model mice. These facts suggest that MSC-EV therapy targets the recipient BMMSCs to rejuvenate the microenvironmental modulating function via telomerase activity, recovering bone density. We then introduce future challenges to develop the reproducible MSC-EV therapy in osteopenia.
Collapse
|
4
|
Sonoda S, Murata S, Yamaza H, Yuniartha R, Fujiyoshi J, Yoshimaru K, Matsuura T, Oda Y, Ohga S, Tajiri T, Taguchi T, Yamaza T. Targeting hepatic oxidative stress rescues bone loss in liver fibrosis. Mol Metab 2022; 66:101599. [PMID: 36113772 PMCID: PMC9515604 DOI: 10.1016/j.molmet.2022.101599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Chronic liver diseases often involve metabolic damage to the skeletal system. The underlying mechanism of bone loss in chronic liver diseases remains unclear, and appropriate therapeutic options, except for orthotopic liver transplantation, have proved insufficient for these patients. This study aimed to investigate the efficacy and mechanism of transplantation of immature hepatocyte-like cells converted from stem cells from human exfoliated deciduous teeth (SHED-Heps) in bone loss of chronic liver fibrosis. METHODS Mice that were chronically treated with CCl4 received SHED-Heps, and trabecular bone density, reactive oxygen species (ROS), and osteoclast activity were subsequently analyzed in vivo and in vitro. The effects of stanniocalcin 1 (STC1) knockdown in SHED-Heps were also evaluated in chronically CCl4 treated mice. RESULTS SHED-Hep transplantation (SHED-HepTx) improved trabecular bone loss and liver fibrosis in chronic CCl4-treated mice. SHED-HepTx reduced hepatic ROS production and interleukin 17 (Il-17) expression under chronic CCl4 damage. SHED-HepTx reduced the expression of both Il-17 and tumor necrosis factor receptor superfamily 11A (Tnfrsf11a) and ameliorated the imbalance of osteoclast and osteoblast activities in the bone marrow of CCl4-treated mice. Functional knockdown of STC1 in SHED-Heps attenuated the benefit of SHED-HepTx including anti-bone loss effect by suppressing osteoclast differentiation through TNFSF11-TNFRSF11A signaling and enhancing osteoblast differentiation in the bone marrow, as well as anti-fibrotic and anti-ROS effects in the CCl4-injured livers. CONCLUSIONS These findings suggest that targeting hepatic ROS provides a novel approach to treat bone loss resulting from chronic liver diseases.
Collapse
Affiliation(s)
- Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Sara Murata
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Ratih Yuniartha
- Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Junko Fujiyoshi
- Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichiro Yoshimaru
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Toshiharu Matsuura
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tasturo Tajiri
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan,Fukuoka College of Health Sciences, Fukuoka, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka, Japan,Corresponding author. Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. Fax: +81 92 642 6304.
| |
Collapse
|
5
|
Sonoda S, Yamaza H, Yoshimaru K, Taguchi T, Yamaza T. Protocol to generate xenogeneic-free/serum-free human dental pulp stem cells. STAR Protoc 2022; 3:101386. [PMID: 35592060 PMCID: PMC9112100 DOI: 10.1016/j.xpro.2022.101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Human dental pulp stem cell (hDPSCs)-based therapy is a feasible option for regenerative medicine, such as dental pulp regeneration. Here, we show the steps needed to colony-forming unit-fibroblasts (CFU-F)-based isolation, expansion, and cryopreservation of hDPSCs for manufacturing clinical-grade products under a xenogeneic-free/serum-free condition. We also demonstrate the characterization of hDPSCs by CFU-F, flow cytometric, and in vitro multipotent assays. For complete details on the use and execution of this protocol, please refer to Iwanaka et al. (2020).
Collapse
Affiliation(s)
- Soichiro Sonoda
- Department of Molecular Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Koichiro Yoshimaru
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.,Fukuoka College of Health Sciences, Fukuoka 814-0193, Japan
| | - Takayoshi Yamaza
- Department of Molecular Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Sonoda S, Yamaza T. A New Target of Dental Pulp-Derived Stem Cell-Based Therapy on Recipient Bone Marrow Niche in Systemic Lupus Erythematosus. Int J Mol Sci 2022; 23:ijms23073479. [PMID: 35408840 PMCID: PMC8998830 DOI: 10.3390/ijms23073479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in mesenchymal stem/stromal cell (MSC) research have led us to consider the feasibility of MSC-based therapy for various diseases. Human dental pulp-derived MSCs (hDPSCs) have been identified in the dental pulp tissue of deciduous and permanent teeth, and they exhibit properties with self-renewal and in vitro multipotency. Interestingly, hDPSCs exhibit superior immunosuppressive functions toward immune cells, especially T lymphocytes, both in vitro and in vivo. Recently, hDPSCs have been shown to have potent immunomodulatory functions in treating systemic lupus erythematosus (SLE) in the SLE MRL/lpr mouse model. However, the mechanisms underlying the immunosuppressive efficacy of hDPSCs remain unknown. This review aims to introduce a new target of hDPSC-based therapy on the recipient niche function in SLE.
Collapse
|
7
|
Sonoda S, Yoshimaru K, Yamaza H, Yuniartha R, Matsuura T, Yamauchi-Tomoda E, Murata S, Nishida K, Oda Y, Ohga S, Tajiri T, Taguchi T, Yamaza T. Biliary atresia-specific deciduous pulp stem cells feature biliary deficiency. Stem Cell Res Ther 2021; 12:582. [PMID: 34809720 PMCID: PMC8607730 DOI: 10.1186/s13287-021-02652-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Biliary atresia (BA) is a severe hepatobiliary disease in infants that ultimately results in hepatic failure; however, its pathological mechanism is poorly elucidated. Current surgical options, including Kasai hepatoportoenterostomy and orthotopic liver organ transplantations, are palliative; thus, innovation in BA therapy is urgent. METHODS To examine whether BA-specific post-natal stem cells are feasible for autologous cell source for BA treatment, we isolated from human exfoliated deciduous teeth, namely BA-SHED, using a standard colony-forming unit fibroblast (CFU-F) method and compared characteristics as mesenchymal stem cells (MSCs) to healthy donor-derived control SHED, Cont-SHED. BA-SHED and Cont-SHED were intrasplenically transplanted into chronic carbon tetrachloride (CCl4)-induced liver fibrosis model mice, followed by the analysis of bile drainage function and donor integration in vivo. Immunohistochemical assay was examined for the regeneration of intrahepatic bile ducts in the recipient's liver using anti-human specific keratin 19 (KRT19) antibody. RESULTS BA-SHED formed CFU-F, expressed MSC surface markers, and exhibited in vitro mesenchymal multipotency similar to Cont-SHED. BA-SHED showed less in vitro hepatogenic potency than Cont-SHED. Cont-SHED represented in vivo bile drainage function and KRT19-positive biliary regeneration in chronic carbon tetrachloride-induced liver fibrosis model mice. BA-SHED failed to show in vivo biliary potency and bile drainage function compared to Cont-SHED. CONCLUSION These findings indicate that BA-SHED are not feasible source for BA treatment, because BA-SHED may epigenetically modify the underlying prenatal and perinatal BA environments. In conclusion, these findings suggest that BA-SHED-based studies may provide a platform for understanding the underlying molecular mechanisms of BA development and innovative novel modalities in BA research and treatment.
Collapse
Affiliation(s)
- Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koichiro Yoshimaru
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Ratih Yuniartha
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Jogjakarta, Indonesia
| | - Toshiharu Matsuura
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Erika Yamauchi-Tomoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Oral and Maxillofacial Radiology, Kyushu University Graduate School of Dental Science, Fukuoka, Japan
| | - Sara Murata
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kento Nishida
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tasturo Tajiri
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Fukuoka College of Health Sciences, Fukuoka, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
8
|
Yamaza H. Bilirubin induces discoloration and hypodontia on tooth. PEDIATRIC DENTAL JOURNAL 2021. [DOI: 10.1016/j.pdj.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Wang JH, Yang K, Zhang BZ, Zhou ZF, Wang ZR, Ge X, Wang LL, Chen YJ, Wang XJ. Effects of Er:YAG laser pre-treatment on dentin structure and bonding strength of primary teeth: an in vitro study. BMC Oral Health 2020; 20:316. [PMID: 33172456 PMCID: PMC7653740 DOI: 10.1186/s12903-020-01315-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/04/2020] [Indexed: 01/28/2023] Open
Abstract
Background To investigate the effects of Er:YAG laser pre-treatment on the dentin structure and shear bond strength of primary teeth. Methods Dentin specimens were prepared using freshly extracted intact primary molars and divided randomly into four groups based on the surface treatment applied. The control and etchant groups received no treatment and conventional acid etching treatment, respectively, while the energy and frequency groups received laser surface treatment with variable energy (50–300 mJ) and frequency (5–30 Hz) parameters. The morphology was observed using scanning electron microscopy. The surface-treated dentin slices were bonded to resin tablets, followed by thermocycle treatment. The shear strength was determined using a universal testing machine and de-bonded surfaces were observed using a stereomicroscope. Results SEM observation showed that the surface morphology of the dentin slices changed after etching as well as after Er:YAG laser pre-treatment with different energy and frequency values. The dentin tubules opened within a specific energy (50–200 mJ) and frequency (5–20 Hz) range. Beyond this range, the intertubular dentin showed cracks and structural disintegration. Shear strength tests showed no significant changes after acid etching. The shear strength increased significantly (P < 0.05) after Er:YAG laser pre-treatment compared with that of the control group. The shear strength increased within the same energy (50–200 mJ) and frequency (5–20 Hz) range as the tubule opening, but not significantly (P > 0.05). The most common mode of interface failure was adhesive (interface) failure, followed by mixed and resin cohesive failure. Conclusions Pre-treatment using Er:YAG laser opens the dentinal tubules without the formation of a smear layer and improves the bonding strength between the primary teeth dentin and the resin composites.
Collapse
Affiliation(s)
- Jun Hui Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Disease and Shaanxi Clinical Research Center for Oral Diseases, Stomatology Department of Children, School of Stomatology, The Fourth Military Medical University, No. 145, Changle West Road, Xincheng District, Xi'an, Shaanxi, China
| | - Kuan Yang
- Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, No. 98, Xiwu Road, Xincheng District, Xi'an, Shaanxi, China
| | - Bai Ze Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Disease and Shaanxi Clinical Research Center for Oral Diseases, Stomatology Department of Children, School of Stomatology, The Fourth Military Medical University, No. 145, Changle West Road, Xincheng District, Xi'an, Shaanxi, China
| | - Zhi Fei Zhou
- Department of Stomatology, General Hospital of Tibet Military Region, Chinese People's Liberation Army, Lhasa, Tibet, China
| | - Zi Rui Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Disease and Shaanxi Clinical Research Center for Oral Diseases, Stomatology Department of Children, School of Stomatology, The Fourth Military Medical University, No. 145, Changle West Road, Xincheng District, Xi'an, Shaanxi, China
| | - Xin Ge
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Disease and Shaanxi Clinical Research Center for Oral Diseases, Stomatology Department of Children, School of Stomatology, The Fourth Military Medical University, No. 145, Changle West Road, Xincheng District, Xi'an, Shaanxi, China
| | | | - Yu Jiang Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Disease and Shaanxi Clinical Research Center for Oral Diseases, Stomatology Department of Children, School of Stomatology, The Fourth Military Medical University, No. 145, Changle West Road, Xincheng District, Xi'an, Shaanxi, China
| | - Xiao Jing Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Disease and Shaanxi Clinical Research Center for Oral Diseases, Stomatology Department of Children, School of Stomatology, The Fourth Military Medical University, No. 145, Changle West Road, Xincheng District, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Abstract
Alagille syndrome (AGS) is a multisystem disorder classically involving liver and heart failure, characteristic vertebral and facial features and ocular abnormalities. AGS is caused by heterozygous mutations in JAG1 or NOTCH2, with variable phenotype penetrance. We report two cases of AGS in children with tooth defects characterised by green discolouration and hypomineralisation. The role of hyperbilirubinaemia (HB) in this atypical colour, a classical feature of AGS, has been well described. However, it does not totally explain the dental phenotype. As JAG1 and NOTCH2 mutations can affect bone development and considering common physiological pathways between bone and tooth mineralisation, both mutations could participate in this unusual dental phenotype. The role of HB and genetics in the development of the dental phenotype of AGS is discussed in two prototypical cases. Future research should focus on the underlying genetic component of tooth abnormalities.
Collapse
Affiliation(s)
- Anne-Laure Bonnet
- EA2496, Université de Paris, F-92120 Montrouge, France.,Department of Dentistry, AP-HP. Sorbonne Université, Paris, France
| | - Victor Greset
- Faculté d'odontologie, Université de Lorraine, Nancy, France
| | - Tiphaine Davit-Beal
- Department of Dentistry, AP-HP. Sorbonne Université, Paris, France .,Pediatric Dentistry, Université de Paris, F-92120 Montrouge, France
| |
Collapse
|
11
|
Ko CS, Chen JH, Su WT. Stem Cells from Human Exfoliated Deciduous Teeth: A Concise Review. Curr Stem Cell Res Ther 2020; 15:61-76. [DOI: 10.2174/1574888x14666191018122109] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/08/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023]
Abstract
Stem Cells from Human Exfoliated Deciduous Teeth (SHED) originate from the embryonic
neural crest as ectodermal mesenchymal stem cells and are isolated from human deciduous teeth.
SHED expresses the same cell markers as Embryonic Stem Cells (ESCs), such as OCT4 and NANOG,
which make SHED to have a significant impact on clinical applications. SHED possess higher rates of
proliferation, higher telomerase activity, increased cell population doubling, form sphere-like clusters,
and possess immature and multi-differentiation capacity; such high plasticity makes SHED one of the
most popular sources of stem cells for biomedical engineering. In this review, we describe the isolation
and banking method, the current development of SHED in regenerative medicine and tissue engineering
in vitro and in vivo.
Collapse
Affiliation(s)
| | - Jen-Hao Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
12
|
Tanaka Y, Sonoda S, Yamaza H, Murata S, Nishida K, Kyumoto-Nakamura Y, Uehara N, Nonaka K, Kukita T, Yamaza T. Acetylsalicylic Acid Treatment and Suppressive Regulation of AKT Accelerate Odontogenic Differentiation of Stem Cells from the Apical Papilla. J Endod 2019; 45:591-598.e6. [DOI: 10.1016/j.joen.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/07/2019] [Accepted: 01/17/2019] [Indexed: 01/26/2023]
|
13
|
Tanaka Y, Sonoda S, Yamaza H, Murata S, Nishida K, Hama S, Kyumoto-Nakamura Y, Uehara N, Nonaka K, Kukita T, Yamaza T. Suppression of AKT-mTOR signal pathway enhances osteogenic/dentinogenic capacity of stem cells from apical papilla. Stem Cell Res Ther 2018; 9:334. [PMID: 30486861 PMCID: PMC6264601 DOI: 10.1186/s13287-018-1077-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stem cells from apical papilla (SCAP) are a subpopulation of mesenchymal stem cells (MSCs) isolated from the apical papilla of the developing tooth root apex of human teeth. Because of their osteogenic/dentinogenic capacity, SCAP are considered as a source for bone and dentin regeneration. However, little is understood about the molecular mechanism of osteogenic/dentinogenic differentiation of SCAP. Phosphoinositide 3 kinase (PI3K)-AKT-mammalian target of rapamycin (mTOR) signal pathway participates in regulating the differentiation of various cell types, such as MSCs. In this study, we examined the role of the PI3K-AKT-mTOR signal pathway in the osteogenic/dentinogenic differentiation of SCAP. Moreover, we challenge to fabricate scaffold-free SCAP-based spheroidal calcified constructs. METHODS SCAP were pretreated with or without small interfering RNA for AKT (AKT siRNA), PI3K inhibitor LY294402, and mTOR inhibitor rapamycin and were cultured under osteogenic/dentinogenic differentiation to examine in vitro and in vivo calcified tissue formation. Moreover, SCAP-based cell aggregates were pretreated with or without LY294402 and rapamycin. The cell aggregates were cultured under osteogenic/dentinogenic condition and were analyzed the calcification of the aggregates. RESULTS Pretreatment with AKT siRNA, LY294402, and rapamycin enhances the in vitro and in vivo calcified tissue-forming capacity of SCAP. SCAP were fabricated as scaffold-free spheroids and were induced into forming calcified 3D constructs. The calcified density of the spheroidal constructs was enhanced when the spheroids were pretreated with LY294402 and rapamycin. CONCLUSIONS Our findings indicate that the suppression of PI3K-AKT-mTOR signal pathway plays a role in not only enhancing the in vivo and in vitro osteogenic/dentinogenic differentiation of SCAP, but also promoting the calcification of scaffold-free SCAP-based calcified constructs. These findings suggest that a suppressive regulation of PI3K-AKT-mTOR signal pathway is a novel approach for SCAP-based bone and dentin regeneration.
Collapse
Affiliation(s)
- Yosuke Tanaka
- Division of Oral Biological Sciences, Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Soichiro Sonoda
- Division of Oral Biological Sciences, Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Haruyoshi Yamaza
- Division of Oral Health, Department of Pediatric Dentistry, Growth & Development, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Sara Murata
- Division of Oral Biological Sciences, Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kento Nishida
- Division of Oral Biological Sciences, Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Kyushu University School of Dentistry, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shion Hama
- Division of Oral Biological Sciences, Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Kyushu University School of Dentistry, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yukari Kyumoto-Nakamura
- Division of Oral Biological Sciences, Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Norihisa Uehara
- Division of Oral Biological Sciences, Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuaki Nonaka
- Division of Oral Health, Department of Pediatric Dentistry, Growth & Development, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshio Kukita
- Division of Oral Biological Sciences, Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takayoshi Yamaza
- Division of Oral Biological Sciences, Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
14
|
Yamaza H, Sonoda S, Nonaka K, Kukita T, Yamaza T. Pamidronate decreases bilirubin-impaired cell death and improves dentinogenic dysfunction of stem cells from human deciduous teeth. Stem Cell Res Ther 2018; 9:303. [PMID: 30409185 PMCID: PMC6225573 DOI: 10.1186/s13287-018-1042-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hyperbilirubinemia that occurs in pediatric liver diseases such as biliary atresia can result in the development of not only jaundice in the brain, eyes, and skin, but also tooth abnormalities including green pigmentation and dentin hypoplasia in the developing teeth. However, hyperbilirubinemia-induced tooth impairments remain after liver transplantation. No effective dental management to prevent hyperbilirubinemia-induced tooth impairments has been established. METHODS In this study, we focused on pamidronate, which is used to treat pediatric osteopenia, and investigated its effects on hyperbilirubinemia-induced tooth impairments. We cultured stem cells from human exfoliated deciduous teeth (SHED) under high and low concentrations of unconjugated bilirubin in the presence or absence of pamidronate. We then analyzed the effects of pamidronate on the cell death, associated signal pathways, and dentinogenic function in SHED. RESULTS We demonstrated that a high concentration of unconjugated bilirubin induced cell death in SHED via the mitochondrial pathway, and this was associated with the suppression of AKT and extracellular signal-related kinase 1 and 2 (ERK1/2) signal pathways and activation of the nuclear factor kappa B (NF-κB) signal pathway. The high concentration of unconjugated bilirubin impaired the in vitro and in vivo dentinogenic capacity of SHED, but not the low concentration. We then demonstrated that pamidronate decreased the bilirubin-induced cell death in SHED via the altered AKT, ERK1/2, and NF-κB signal pathways and recovered the bilirubin-impaired dentinogenic function of SHED. CONCLUSIONS Our findings suggest that pamidronate may prevent tooth abnormalities in pediatric patients with hyperbilirubinemia.
Collapse
Affiliation(s)
- Haruyoshi Yamaza
- Department of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuaki Nonaka
- Department of Pediatric Dentistry, Division of Oral Health, Growth and Development, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshio Kukita
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Division of Oral Biological Sciences, Kyushu University Graduate School of Dental Science, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|