1
|
Wang H, Zhang W, Sun Y, Xu X, Chen X, Zhao K, Yang Z, Liu H. Nanotherapeutic strategies exploiting biological traits of cancer stem cells. Bioact Mater 2025; 50:61-94. [PMID: 40242505 PMCID: PMC12002948 DOI: 10.1016/j.bioactmat.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells that orchestrate cancer initiation, progression, metastasis, and therapeutic resistance. Despite advances in conventional therapies, the persistence of CSCs remains a major obstacle to achieving cancer eradication. Nanomedicine-based approaches have emerged for precise CSC targeting and elimination, offering unique advantages in overcoming the limitations of traditional treatments. This review systematically analyzes recent developments in nanomedicine for CSC-targeted therapy, emphasizing innovative nanomaterial designs addressing CSC-specific challenges. We first provide a detailed examination of CSC biology, focusing on their surface markers, signaling networks, microenvironmental interactions, and metabolic signatures. On this basis, we critically evaluate cutting-edge nanomaterial engineering designed to exploit these CSC traits, including stimuli-responsive nanodrugs, nanocarriers for drug delivery, and multifunctional nanoplatforms capable of generating localized hyperthermia or reactive oxygen species. These sophisticated nanotherapeutic approaches enhance selectivity and efficacy in CSC elimination, potentially circumventing drug resistance and cancer recurrence. Finally, we present an in-depth analysis of current challenges in translating nanomedicine-based CSC-targeted therapies from bench to bedside, offering critical insights into future research directions and clinical implementation. This review aims to provide a comprehensive framework for understanding the intersection of nanomedicine and CSC biology, contributing to more effective cancer treatment modalities.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Wenjing Zhang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xican Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kexu Zhao
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhao Yang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Huiyu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
2
|
Miao Q, Li S, Lyu W, Zhang J, Han Y. Exosomes in Oral Diseases: Mechanisms and Therapeutic Applications. Drug Des Devel Ther 2025; 19:457-469. [PMID: 39867866 PMCID: PMC11766710 DOI: 10.2147/dddt.s505355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
Exosomes, small extracellular vesicles secreted by various cells, play crucial roles in the pathogenesis and treatment of oral diseases. Recent studies have highlighted their involvement in orthodontics, periodontitis, oral squamous cell carcinoma (OSCC), and hand, foot, and mouth disease (HFMD). Exosomes have a positive effect on the inflammatory environment of the oral cavity, remodeling and regeneration of oral tissues, and offer promising therapeutic options for bone and periodontal tissue restoration. In OSCC tumor-derived exosomes promote cancer progression through cell proliferation, migration, invasion, and angiogenesis, and serve as potential biomarkers for early diagnosis and prognosis. Additionally, engineered exosomes constructed specifically based on exosome properties hold great promise for targeted drug delivery and regenerative therapies such as bone regeneration in orthodontics and periodontal healing. With continued research, exosomes hold great potential for improving diagnosis and treatment in oral diseases, advancing personalized and regenerative therapies.
Collapse
Affiliation(s)
- Qiandai Miao
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Shaoqing Li
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Weijia Lyu
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Jianxia Zhang
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| | - Yan Han
- Department of Stomatology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, 100091, People’s Republic of China
| |
Collapse
|
3
|
Wang L, Liu H, Chen G, Wu Q, Xu S, Zhou Q, Zhao Y, Wang Q, Yan T, Cheng X. Bubble Ticket Trip: Exploring the Mechanism of miRNA Sorting into Exosomes and Maintaining the Stability of Tumor Microenvironment. Int J Nanomedicine 2024; 19:13671-13685. [PMID: 39723172 PMCID: PMC11669276 DOI: 10.2147/ijn.s498599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Exosomes are vesicles ranging from 30 to 100 nanometers in size that show great potential as carriers for therapeutic uses and drug delivery. Enriching a specific set of miRNAs in exosomes emphasizes the existence of particular sorting mechanisms that manage the targeted cargo packaging. The molecular mechanism for miRNA sorting has not been understood. It is crucial to understand the mechanism of exosome encapsulation to develop its therapeutic potential. In this review, we will explore the particular processes through which exosomes naturally encapsulate miRNA, as well as discuss the effect on tumors after encapsulation of miRNAs. We also summarize the effects of targeted drug delivery using genetic engineering and chemical methods to modify exosome-encapsulated miRNA. Finally, gaining insight into how exosome cargo is sorted could be applied in clinical settings for precise drug delivery and to hinder the progression of diseases.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Huijuan Liu
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Guohui Chen
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Qinglu Wu
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Songrui Xu
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Qichao Zhou
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Yadong Zhao
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Qiaorong Wang
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Ting Yan
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology of the Ministry of Education, & Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, People's Republic of China
| |
Collapse
|
4
|
Nieszporek A, Wierzbicka M, Labedz N, Zajac W, Cybinska J, Gazinska P. Role of Exosomes in Salivary Gland Tumors and Technological Advances in Their Assessment. Cancers (Basel) 2024; 16:3298. [PMID: 39409917 PMCID: PMC11475412 DOI: 10.3390/cancers16193298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Backgroud: Salivary gland tumors (SGTs) are rare and diverse neoplasms, presenting significant challenges in diagnosis and management due to their rarity and complexity. Exosomes, lipid bilayer vesicles secreted by almost all cell types and present in all body fluids, have emerged as crucial intercellular communication agents. They play multifaceted roles in tumor biology, including modulating the tumor microenvironment, promoting metastasis, and influencing immune responses. Results: This review focuses on the role of exosomes in SGT, hypothesizing that novel diagnostic and therapeutic approaches can be developed by exploring the mechanisms through which exosomes influence tumor occurrence and progression. By understanding these mechanisms, we can leverage exosomes as diagnostic and prognostic biomarkers, and target them for therapeutic interventions. The exploration of exosome-mediated pathways contributing to tumor progression and metastasis could lead to more effective treatments, transforming the management of SGT and improving patient outcomes. Ongoing research aims to elucidate the specific cargo and signaling pathways involved in exosome-mediated tumorigenesis and to develop standardized techniques for exosome-based liquid biopsies in clinical settings. Conclusions: Exosome-based liquid biopsies have shown promise as non-invasive, real-time systemic profiling tools for tumor diagnostics and prognosis, offering significant potential for enhancing patient care through precision and personalized medicine. Methods like fluorescence, electrochemical, colorimetric, and surface plasmon resonance (SPR) biosensors, combined with artificial intelligence, improve exosome analysis, providing rapid, precise, and clinically valid cancer diagnostics for difficult-to-diagnose cancers.
Collapse
Affiliation(s)
- Artur Nieszporek
- Biobank Research Group, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Małgorzata Wierzbicka
- Institute of Human Genetics Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
- Department of Otolaryngology, Regional Specialist Hospital Wroclaw, Research & Development Centre, Kamienskiego Street 73a, 51-124 Wroclaw, Poland
| | - Natalia Labedz
- Biobank Research Group, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Weronika Zajac
- Faulty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
- Materials Science and Engineering Center, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Joanna Cybinska
- Faulty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
- Materials Science and Engineering Center, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| | - Patrycja Gazinska
- Biobank Research Group, Łukasiewicz Research Network–PORT Polish Centre for Technology Development, Stablowicka Street 147, 54-066 Wroclaw, Poland
| |
Collapse
|
5
|
Wang KN, Li ZZ, Zhou K, Liu B, Rao L, Bu LL. Cell Membrane-Coated Nanoparticles for Dental, Oral, and Craniofacial Diseases. RESEARCH (WASHINGTON, D.C.) 2024; 7:0478. [PMID: 39296987 PMCID: PMC11409001 DOI: 10.34133/research.0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024]
Abstract
Dental, oral, and craniofacial diseases can substantially impact the quality of human life, thereby posing a serious public health concern. Although conventional therapies such as surgery have solved these problems largely, the prognosis of patients is not always satisfactory. Cell membrane-coated nanoparticles (CMCNPs) carry nanodrugs with the help of natural cell membranes, therefore utilizing their remarkable ability to interface and interact with their surrounding environment. These nanoparticles have demonstrated substantial advantages in drug targeting, prolonging blood circulation time, penetrating biofilms, and immune escape. With the assistance of CMCNPs, the therapeutic effects of dental, oral, and craniofacial diseases can reach a higher level. CMCNPs have been applied for dental, oral, and craniofacial diseases for various conditions such as head and neck cancer, periodontal disease, and oral biosignal detection. For the therapies of head and neck cancer, CMCNPs have been widely utilized as a tool of chemotherapy, phototherapy, and immunotherapy, while yet to be exploited in imaging technique. In the end, we summarized the challenges and prospectives of CMCNPs for dental, oral, and craniofacial diseases: large-scale production with uniform standards and high quantity, extensive application directions in dental, oral, and craniofacial regions (implant, endodontics), and the promotion of its clinical application.
Collapse
Affiliation(s)
- Kang-Ning Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
6
|
Gupta S, Singh B, Abhishek R, Gupta S, Sachan M. The emerging role of liquid biopsy in oral squamous cell carcinoma detection: advantages and challenges. Expert Rev Mol Diagn 2024; 24:311-331. [PMID: 38607339 DOI: 10.1080/14737159.2024.2340997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Oral Squamous Cell Carcinoma (OSCC), the sixth most widespread malignancy in the world, accounts for 90% of all cases of oral cancer. The primary risk factors are tobacco chewing, alcohol consumption, viral infection, and genetic modifications. OSCC has a high morbidity rate due to the lack of early diagnostic methods. Nowadays, liquid biopsy plays a vital role in the initial diagnosis of oral cancer. ctNAs extracted from saliva and serum/plasma offer meaningful insights into tumor genetics and dynamics. The interplay of these elements in saliva and serum/plasma showcases their significance in advancing noninvasive, effective OSCC detection and monitoring. AREAS COVERED This review mainly focused on the role of liquid biopsy as an emerging point in the diagnosis and prognosis of OSCC and the current advancements and challenges associated with liquid biopsy. EXPERT OPINION Liquid biopsy is regarded as a new, minimally invasive, real-time monitoring tool for cancer diagnosis and prognosis. Many biomolecules found in bodily fluids, including ctDNA, ctRNA, CTCs, and EVs, are significant biomarkers to identify cancer in its early stages. Despite these groundbreaking strides, challenges persist. Standardization of sample collection, isolation, processing, and detection methods is imperative for ensuring result reproducibility across diverse studies.
Collapse
Affiliation(s)
- Sudha Gupta
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Brijesh Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Rajul Abhishek
- Department of Surgical Oncology, Motilal Nehru Medical College, Prayagraj, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
7
|
Jiang B, Xiao S, Zhang S, Xiao F. The miR-1290/OGN axis in ovarian cancer-associated fibroblasts modulates cancer cell proliferation and invasion. J Ovarian Res 2024; 17:52. [PMID: 38402185 PMCID: PMC10893657 DOI: 10.1186/s13048-024-01364-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024] Open
Abstract
Despite receiving first-line treatment, ovarian cancer patients continue to experience a high rate of recurrence; nearly all women with ovarian cancer develop chemoresistance and succumb to the disease. In this study, cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) were isolated from tumor-containing and normal omenta, respectively, and the downregulation of osteoglycin (OGN) in CAFs was observed. OGN overexpression in CAFs significantly inhibited ovarian cancer cell viability, DNA synthesis, and cell invasion. OGN overexpression also changed epithelial-mesenchymal transition (EMT) markers and promoted mTOR and Akt phosphorylation in ovarian cancer cells. miR-1290 targeted OGN and inhibited OGN expression. miR-1290 overexpression in CAFs significantly promoted ovarian cancer cell viability, DNA synthesis, and cell invasion. Moreover, miR-1290 overexpression in CAFs also changed EMT markers and promoted mTOR and Akt phosphorylation within ovarian carcinoma cells. Finally, when ovarian cancer cells in a conditioned medium derived from CAFs co-transduced with miR-1290 mimics and OGN-OE were cultured, the effects of miR-1290 overexpression were partially reversed by OGN overexpression. In nude mouse xenograft tumor models, OGN overexpression in CAFs suppressed tumor growth, whereas miR-1290 overexpression in CAFs increased tumor growth. In conclusion, a miRNA/mRNA axis in ovarian cancer CAFs modulating the proliferative and invasive abilities of ovarian cancer cells, possibly via the Akt/mTOR pathway, was demonstrated.
Collapse
Affiliation(s)
- Biyao Jiang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Songshu Xiao
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Shan Zhang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Fang Xiao
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, NO.138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China.
| |
Collapse
|
8
|
Nijakowski K, Owecki W, Jankowski J, Surdacka A. Salivary Biomarkers for Parkinson's Disease: A Systematic Review with Meta-Analysis. Cells 2024; 13:340. [PMID: 38391952 PMCID: PMC10887027 DOI: 10.3390/cells13040340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Parkinson's Disease (PD) is a common neurodegenerative disease which manifests with motor features, such as bradykinesia, resting tremor, rigidity, and postural instability. Using the non-invasive technique of saliva collection, we designed a systematic review to answer the question "Are salivary biomarkers reliable for the diagnosis of Parkinson's Disease?". Following inclusion and exclusion criteria, 30 studies were included in this systematic review (according to the PRISMA statement guidelines). Mostly proteins were reported as potential biomarkers in saliva. Based on meta-analysis, in PD patients, salivary levels of total alpha-synuclein were significantly decreased, and those of oligomeric alpha-synuclein were significantly increased. Also, according to pooled AUC, heme oxygenase-1 demonstrated significant predictive value for saliva-based PD diagnosis. In conclusion, some potential biomarkers, especially alpha-synuclein, can be altered in the saliva of PD patients, which could be reliably useful for early diagnosis of this neurodegenerative disease differentiating other synucleopathies.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Wojciech Owecki
- Student’s Scientific Group in Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.O.); (J.J.)
| | - Jakub Jankowski
- Student’s Scientific Group in Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.O.); (J.J.)
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| |
Collapse
|
9
|
Nail HM, Chiu CC, Leung CH, Ahmed MMM, Wang HMD. Exosomal miRNA-mediated intercellular communications and immunomodulatory effects in tumor microenvironments. J Biomed Sci 2023; 30:69. [PMID: 37605155 PMCID: PMC10440907 DOI: 10.1186/s12929-023-00964-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
Extracellular communication, in other words, crosstalk between cells, has a pivotal role in the survival of an organism. This communication occurs by different methods, one of which is extracellular vesicles. Exosomes, which are small lipid extracellular vesicles, have recently been discovered to have a role in signal transduction between cells inside the body. These vesicles contain important bioactive molecules including lipids, proteins, DNA, mRNA, and noncoding RNAs such as microRNAs (miRNAs). Exosomes are secreted by all cells including immune cells (macrophages, lymphocytes, granulocytes, dendritic cells, mast cells) and tumor cells. The tumor microenvironment (TME) represents a complex network that supports the growth of tumor cells. This microenvironment encompasses tumor cells themselves, the extracellular matrix, fibroblasts, endothelial cells, blood vessels, immune cells, and non-cellular components such as exosomes and cytokines. This review aims to provide insights into the latest discoveries concerning how the immune system communicates internally and with other cell types, with a specific focus on research involving exosomal miRNAs in macrophages, dendritic cells, B lymphocytes, and T lymphocytes. Additionally, we will explore the role of exosomal miRNA in the TME and the immunomodulatory effect.
Collapse
Affiliation(s)
- Howida M Nail
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City, 402, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao, China
| | - Mahmoud M M Ahmed
- Department of Soil and Environmental Sciences, National Chung Hsing University, 404, Taichung City, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City, 402, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
10
|
Extracellular Vesicles as Biomarkers in Head and Neck Squamous Cell Carcinoma: From Diagnosis to Disease-Free Survival. Cancers (Basel) 2023; 15:cancers15061826. [PMID: 36980712 PMCID: PMC10046514 DOI: 10.3390/cancers15061826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) arising from different anatomical sites present with different incidences and characteristics, which requires a personalized treatment strategy. Despite the extensive research that has conducted on this malignancy, HNSCC still has a poor overall survival rate. Many attempts have been made to improve the outcomes, but one of the bottlenecks is thought to be the lack of an effective biomarker with high sensitivity and specificity. Extracellular vesicles (EVs) are secreted by various cells and participate in a great number of intercellular communications. Based on liquid biopsy, EV detection in several biofluids, such as blood, saliva, and urine, has been applied to identify the existence and progression of a variety of cancers. In HNSCC, tumor-derived EVs exhibit many functionalities by transporting diverse cargoes, which highlights their importance in tumor screening, the determination of multidisciplinary therapy, prediction of prognosis, and evaluation of therapeutic effects. This review illustrates the classification and formation of EV subtypes, the cargoes conveyed by these vesicles, and their respective functions in HNSCC cancer biology, and discloses their potential as biomarkers during the whole process of tumor diagnosis, treatment, and follow-up.
Collapse
|
11
|
Song M, Bai H, Zhang P, Zhou X, Ying B. Promising applications of human-derived saliva biomarker testing in clinical diagnostics. Int J Oral Sci 2023; 15:2. [PMID: 36596771 PMCID: PMC9810734 DOI: 10.1038/s41368-022-00209-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 01/05/2023] Open
Abstract
Saliva testing is a vital method for clinical applications, for its noninvasive features, richness in substances, and the huge amount. Due to its direct anatomical connection with oral, digestive, and endocrine systems, clinical usage of saliva testing for these diseases is promising. Furthermore, for other diseases that seeming to have no correlations with saliva, such as neurodegenerative diseases and psychological diseases, researchers also reckon saliva informative. Tremendous papers are being produced in this field. Updated summaries of recent literature give newcomers a shortcut to have a grasp of this topic. Here, we focused on recent research about saliva biomarkers that are derived from humans, not from other organisms. The review mostly addresses the proceedings from 2016 to 2022, to shed light on the promising usage of saliva testing in clinical diagnostics. We recap the recent advances following the category of different types of biomarkers, such as intracellular DNA, RNA, proteins and intercellular exosomes, cell-free DNA, to give a comprehensive impression of saliva biomarker testing.
Collapse
Affiliation(s)
- Mengyuan Song
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Bai
- grid.13291.380000 0001 0807 1581Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Diseases & Human Saliva Laboratory & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Krishnan A, Bhattacharya B, Mandal D, Dhar R, Muthu S. Salivary exosomes: A theranostics secret of oral cancer - Correspondence. Int J Surg 2022; 108:106990. [PMID: 36368419 DOI: 10.1016/j.ijsu.2022.106990] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa Department of Applied Microbiology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India Department of Microbiology, Bidhannagar College, Kolkata, 700064, India Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, TamilNadu, 603203, India Department of Biotechnology, School of Engineering and Technology, Sharda University, New Delhi, India
| | | | | | | | | |
Collapse
|
13
|
Liu J, Huang D, Cai Y, Cao Z, Liu Z, Zhang S, Zhao L, Wang X, Wang Y, Huang F, Wu Z. Saliva diagnostics: emerging techniques and biomarkers for salivaomics in cancer detection. Expert Rev Mol Diagn 2022; 22:1077-1097. [PMID: 36631426 DOI: 10.1080/14737159.2022.2167556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The pursuit of easy-to-use, non-invasive and inexpensive diagnostics is an urgent task for clinicians and scientists. Saliva is an important component of body fluid with regular changes of contents under various pathophysiological conditions, and the biomarkers identified from saliva shows high application potentials and values in disease diagnostics. This review introduces the latest developments in saliva research, with an emphasis on the detection and application of salivary biomarkers in cancer detection. AREAS COVERED Detection of disease-specific biomarkers in saliva samples by existing salivaomic methods can be used to diagnose various human pathological conditions and was introduced in details. This review also covers the saliva collection methods, the analytical techniques as well as the corresponding commercial products, with an aim to describe an holistic process for saliva-based diagnostics. EXPERT OPINION Saliva, as a non-invasive and collectable body fluid, can reflect the pathophysiological changes of the human body to a certain extent. Identification of reliable saliva biomarkers can provide a convenient way for cancer detection in clinical applications.
Collapse
Affiliation(s)
- Jieren Liu
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| | - Dongna Huang
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Yuanzhe Cai
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Zhihua Cao
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Zhiyu Liu
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Shuo Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Lin Zhao
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xin Wang
- School of Big Data and Internet, Shenzhen Technology University, Pingshan District, Shenzhen, Guangdong, China
| | - Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Feijuan Huang
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| | - Zhengzhi Wu
- Graduate School of Hunan University of Chinese Medicine, Changsha, Hunan, China
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Futian District, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Wu L, Ye S, Yao Y, Zhang C, Liu W. Oral Cancer Stem Cell-Derived Small Extracellular Vesicles Promote M2 Macrophage Polarization and Suppress CD4 + T-Cell Activity by Transferring UCA1 and Targeting LAMC2. Stem Cells Int 2022; 2022:5817684. [PMID: 36483681 PMCID: PMC9723417 DOI: 10.1155/2022/5817684] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/14/2022] [Indexed: 08/15/2023] Open
Abstract
Cancer-derived small extracellular vesicles (sEVs) are emerging as crucial mediators of intercellular communication between cancer cells and M2-tumor-associated macrophages (M2-TAMs) via transferring lncRNAs. We previously reported that miR-134 blocks the expression of its targeting protein LAMC2 via the PI3K/AKT pathway and inhibits cancer stem cell (CSC) migration and invasion in oral squamous cell carcinoma (OSCC). This study hypothesize that OSCC-CSC-derived small extracellular vesicles (OSCC-CSC-sEVs) transfer a ceRNA of miR-134 and consequently promote M2 macrophage polarization by targeting LAMC2 via the PI3K/AKT pathway through in vitro and in vivo experiment methods. The results showed that sEVs derived from CD133+CD44+ OSCC cells promoted M2 polarization of macrophages by detecting several M2 macrophage markers (CD163, IL-10, Arg-1, and CD206+CD11b+). Mechanistically, we revealed that the lncRNA UCA1, by binding to miR-134, modulated the PI3K/AKT pathway in macrophages via targeting LAMC2. Importantly, OSCC-CSC-sEV transfer of UCA1, by targeting LAMC2, promoted M2 macrophage polarization and inhibited CD4+ T-cell proliferation and IFN-γ production in vitro and in vivo. Functionally, we demonstrated that M2-TAMs, by transferring exosomal UCA and consequently targeting LAMC2, enhanced cell migration and invasion of OSCC in vitro and the tumorigenicity of OSCC xenograft in nude mice. In conclusion, our results indicated that OSCC-CSC-sEV transfer of UCA1 promotes M2 macrophage polarization via a LAMC2-mediated PI3K/AKT axis, thus facilitating tumor progression and immunosuppression. Our findings provide a new understanding of OSCC-CSC molecular mechanisms and suggest a potential therapeutic strategy for OSCC through targeting CSC-sEVs and M2-TAMs.
Collapse
Affiliation(s)
- Lan Wu
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Sai Ye
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yilin Yao
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chenping Zhang
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Li C, Guo H, Xiong J, Feng B, Zhu P, Jiang W, Jiang P, Su X, Huang X. Exosomal long noncoding RNAs MAGI2-AS3 and CCDC144NL-AS1 in oral squamous cell carcinoma development via the PI3K-AKT-mTOR signaling pathway. Pathol Res Pract 2022; 240:154219. [DOI: 10.1016/j.prp.2022.154219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/14/2022]
|
16
|
Srivastava A, Rathore S, Munshi A, Ramesh R. Organically derived exosomes as carriers of anticancer drugs and imaging agents for cancer treatment. Semin Cancer Biol 2022; 86:80-100. [PMID: 35192929 PMCID: PMC9388703 DOI: 10.1016/j.semcancer.2022.02.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), is the umbrella term used for different types of vesicles produced by the cells, among which exosomes form the largest group. Exosomes perform intercellular communication by carrying several biologics from donor or parental cells and delivering them to recipient cells. Their unique cargo-carrying capacity has recently been explored for use as delivery vehicles of anticancer drugs and imaging agents. Being naturally produced, exosomes have many advantages over synthetic lipid-based nanoparticles currently being used clinically to treat cancer and other diseases. The finding of the role of exosomes in human diseases has led to numerous preclinical and clinical studies exploring their use as an amenable drug delivery vehicle and a theranostic in cancer diagnosis and treatment. However, there are certain limitations associated with exosomes, with the most important being the selection of the biological source for producing highly biocompatible exosomes on a large scale. This review article explores the various sources from which therapeutically viable exosomes can be isolated for use as drug carriers for cancer treatment. The methods of exosome isolation and the process of loading them with cancer therapeutics and imaging agents are also discussed in the follow-up sections. Finally, the article concludes with future directions for exosome-based applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shipra Rathore
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
17
|
Bano A, Vats R, Yadav P, Bhardwaj R. Exosomics in oral cancer diagnosis, prognosis, and therapeutics - An emergent and imperative non-invasive natural nanoparticle-based approach. Crit Rev Oncol Hematol 2022; 178:103799. [PMID: 36031170 DOI: 10.1016/j.critrevonc.2022.103799] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022] Open
Abstract
Exosomes- the natural nanoparticles belonging to heterogeneous vesicles are released via nearly all sorts of cells, including tumour cells, to oprate intercellular communication. Selective packaging of exosomes amid nucleic acids, phospholipids, and proteins makes them ideal for intercellular communications occurring among different cells. The existence of exosomes has been validated in various biofluids, including saliva. Being non-invasive and in direct contact with oral malignant cells, saliva establishes itself as a preeminent source of early cancer biomarkers. In context, the role and providence of both recipient and donor secreting cells are persuaded through exosomal cargo.Several studies have emphasized the influence of exosomal contents in different stages of cancer development, reconciling interactions between tumour cells and their surrounding niche. More explicitly, a transformation of exosomal contents such as nucleic acids, lipids, and proteins can endorse tumour progression and help ascertain a secluded pre-metastatic niche crammed with substances that errand cancer cell proliferation,angiogenesis, metastasis, and drug resistance. The blooming field of exosomes has directed the evolution of high-end isolation and characterization techniques along with the development of an entirely new field- exosomics that comprises complete analysis of exosomal cargo in various physiological conditions, including oral cancer. Researchers have discovered multiple pathways involved in exosome biogenesis to understand numerous events associated with cancer progression. Tissue-specific packaging of exosomes makes them a novel source of prognostic and diagnostic biomarkers and potential therapeutic targets. The extent of the current review confers the contemporary perception of the versatile task of exosomes, especially salivary exosomes, as potential biomarkers in the progression and diagnosis as well as therapeutics of oral cancers and their potential employment in clinical applications.
Collapse
Affiliation(s)
- Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
18
|
Liu H, Huang Y, Huang M, Huang Z, Wang Q, Qing L, Li L, Xu S, Jia B. Current Status, Opportunities, and Challenges of Exosomes in Oral Cancer Diagnosis and Treatment. Int J Nanomedicine 2022; 17:2679-2705. [PMID: 35733418 PMCID: PMC9208818 DOI: 10.2147/ijn.s365594] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
Oral cancer is one of the most common cancers in the world, with more than 300,000 cases diagnosed each year, of which oral squamous cell carcinoma accounts for more than 90%, with a 5-year survival rate of only 40–60%, and poor prognosis. Exploring new strategies for the early diagnosis and treatment of oral cancer is key to improving the survival rate. Exosomes are nanoscale lipid bilayer membrane vesicles that are secreted by almost all cell types. During the development of oral cancer, exosomes can transport their contents (DNA, RNA, proteins, etc) to target cells and promote or inhibit the proliferation, invasion, and metastasis of oral cancer cells by influencing the host immune response, drug-resistant metastasis, and tumour angiogenesis. Therefore, exosomes have great potential and advantages as biomarkers for oral cancer diagnosis, and as drug delivery vehicles or targets for oral cancer therapy. In this review, we first describe the biogenesis, biological functions, and isolation methods of exosomes, followed by their relationship with oral cancer. Here, we focused on the potential of exosomes as oral cancer biomarkers, drug carriers, and therapeutic targets. Finally, we provide an insightful discussion of the opportunities and challenges of exosome application in oral cancer diagnosis and treatment, intending to offer new ideas for the clinical management of oral cancer.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qin Wang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ling Qing
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Li Li
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Shuaimei Xu
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
19
|
Impact of Non-Coding RNAs on Chemotherapeutic Resistance in Oral Cancer. Biomolecules 2022; 12:biom12020284. [PMID: 35204785 PMCID: PMC8961659 DOI: 10.3390/biom12020284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Drug resistance in oral cancer is one of the major problems in oral cancer therapy because therapeutic failure directly results in tumor recurrence and eventually in metastasis. Accumulating evidence has demonstrated the involvement of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in processes related to the development of drug resistance. A number of studies have shown that ncRNAs modulate gene expression at the transcriptional or translational level and regulate biological processes, such as epithelial-to-mesenchymal transition, apoptosis, DNA repair and drug efflux, which are tightly associated with drug resistance acquisition in many types of cancer. Interestingly, these ncRNAs are commonly detected in extracellular vesicles (EVs) and are known to be delivered into surrounding cells. This intercellular communication via EVs is currently considered to be important for acquired drug resistance. Here, we review the recent advances in the study of drug resistance in oral cancer by mainly focusing on the function of ncRNAs, since an increasing number of studies have suggested that ncRNAs could be therapeutic targets as well as biomarkers for cancer diagnosis.
Collapse
|
20
|
Cui Y, Yang M, Zhu J, Zhang H, Duan Z, Wang S, Liao Z, Liu W. Developments in diagnostic applications of saliva in Human Organ Diseases. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
21
|
Trevisan França de Lima L, Müller Bark J, Rasheduzzaman M, Weeramange CE, Punyadeera C. Isolation and Characterization of Salivary Exosomes for Cancer Biomarker Discovery. Methods Mol Biol 2022; 2504:101-112. [PMID: 35467282 DOI: 10.1007/978-1-0716-2341-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exosomes are small extracellular vesicles secreted by cells and are known to play a key role in intercellular communication. Several studies have associated exosomes with various roles in tumorigenesis and explored their potential as a source of biomarkers for diagnosis and prognosis in cancer research. Exosomes can be isolated from several body fluids, including those that are noninvasively accessible, such as human saliva. This book chapter provides a step-by-step detailed description of techniques that are used for the isolation, quantification, and characterization of exosomes from saliva. These include ultracentrifugation for the isolation, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and western blot (WB) for characterization of exosomes. The NTA approach explores the Brownian motion and light scattering of particles to predict size and concentration. TEM enables visualization of the exosomes which often present a cup-shaped morphology. Western blot is used to detect commonly expressed exosome-associated proteins. Finally, salivary exosomes isolated using these protocols can further be characterized for downstream analysis according to their cargo (proteins, DNA, RNA, miRNA) and utilized for cancer biomarker discovery.
Collapse
Affiliation(s)
- Lucas Trevisan França de Lima
- Queensland University of Technology, The School of Biomedical Sciences, Saliva and Liquid Biopsy Translational Laboratory, Kelvin Grove, QLD, Australia
| | - Juliana Müller Bark
- Queensland University of Technology, The School of Biomedical Sciences, Saliva and Liquid Biopsy Translational Laboratory, Kelvin Grove, QLD, Australia
| | - Mohammad Rasheduzzaman
- Queensland University of Technology, The School of Biomedical Sciences, Saliva and Liquid Biopsy Translational Laboratory, Kelvin Grove, QLD, Australia
| | - Chameera Ekanayake Weeramange
- Queensland University of Technology, The School of Biomedical Sciences, Saliva and Liquid Biopsy Translational Laboratory, Kelvin Grove, QLD, Australia
| | - Chamindie Punyadeera
- Queensland University of Technology, The School of Biomedical Sciences, Saliva and Liquid Biopsy Translational Laboratory, Kelvin Grove, QLD, Australia.
- Saliva and Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery (GRIDD) and Menzies Health Institute Queensland (MIHQ), Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
22
|
He L, Shao M, Xu J, Chen H. Engineered red blood cell membrane for sensitive and precise electrochemical detection of salivary exosomes. ANALYTICAL METHODS 2021; 13:5859-5865. [PMID: 34874025 DOI: 10.1039/d1ay01507a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As a kind of promising non-invasive biomarker, exosomes naturally occurring in saliva have recently attracted considerable attention in view of their potential use in the diagnosis of oral diseases. Herein, we propose a new electrochemical method for the sensitive and precise detection of salivary exosomes. A red blood cell membrane (RBCM) engineered with CD63 aptamer is the core element of the method and is used to camouflage a gold electrode, thus giving the electrode superior antifouling and targeting ability. Target exosomes presented in saliva are recognized and captured by the highly specific interaction between the exosomal CD63 and the aptamers engineered in RBCM. Then, silver nanoparticles modified with CD63 aptamers are recruited onto the electrode surface to generate significant electrochemical signals, which enables the sensitive detection of target exosomes. By using human oral squamous cell carcinoma CAL27 cell-derived exosomes as a model, the method allows target salivary exosome detection in a wide linear range from 5 × 102 to 1 × 106 particles per mL and a low detection limit of 2.07 × 102 particles per mL. Moreover, the method displays good reproducibility and is feasible for detecting target exosomes with high precision in saliva samples. Overall, the method may provide a useful tool for salivary exosome detection and may have great potential for practical use in the clinical diagnosis of oral diseases.
Collapse
Affiliation(s)
- Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Meiying Shao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jue Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hao Chen
- School of Medicine, Tongji University, Shanghai 200072, China
| |
Collapse
|
23
|
Cucu I, Nicolescu MI. A Synopsis of Signaling Crosstalk of Pericytes and Endothelial Cells in Salivary Gland. Dent J (Basel) 2021; 9:dj9120144. [PMID: 34940041 PMCID: PMC8700478 DOI: 10.3390/dj9120144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
The salivary gland (SG) microvasculature constitutes a dynamic cellular organization instrumental to preserving tissue stability and homeostasis. The interplay between pericytes (PCs) and endothelial cells (ECs) culminates as a key ingredient that coordinates the development, maturation, and integrity of vessel building blocks. PCs, as a variety of mesenchymal stem cells, enthrall in the field of regenerative medicine, supporting the notion of regeneration and repair. PC-EC interconnections are pivotal in the kinetic and intricate process of angiogenesis during both embryological and post-natal development. The disruption of this complex interlinkage corresponds to SG pathogenesis, including inflammation, autoimmune disorders (Sjögren’s syndrome), and tumorigenesis. Here, we provided a global portrayal of major signaling pathways between PCs and ECs that cooperate to enhance vascular steadiness through the synergistic interchange. Additionally, we delineated how the crosstalk among molecular networks affiliate to contribute to a malignant context. Additionally, within SG microarchitecture, telocytes and myoepithelial cells assemble a labyrinthine companionship, which together with PCs appear to synchronize the regenerative potential of parenchymal constituents. By underscoring the intricacy of signaling cascades within cellular latticework, this review sketched a perceptive basis for target-selective drugs to safeguard SG function.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
- Correspondence:
| |
Collapse
|
24
|
Periodontal and Dental Pulp Cell-Derived Small Extracellular Vesicles: A Review of the Current Status. NANOMATERIALS 2021; 11:nano11071858. [PMID: 34361246 PMCID: PMC8308278 DOI: 10.3390/nano11071858] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound lipid particles that are secreted by all cell types and function as cell-to-cell communicators through their cargos of protein, nucleic acid, lipids, and metabolites, which are derived from their parent cells. There is limited information on the isolation and the emerging therapeutic role of periodontal and dental pulp cell-derived small EVs (sEVs, <200 nm, or exosome). In this review, we discuss the biogenesis of three EV subtypes (sEVs, microvesicles and apoptotic bodies) and the emerging role of sEVs from periodontal ligament (stem) cells, gingival fibroblasts (or gingival mesenchymal stem cells) and dental pulp cells, and their therapeutic potential in vitro and in vivo. A review of the relevant methodology found that precipitation-based kits and ultracentrifugation are the two most common methods to isolate periodontal (dental pulp) cell sEVs. Periodontal (and pulp) cell sEVs range in size, from 40 nm to 2 μm, due to a lack of standardized isolation protocols. Nevertheless, our review found that these EVs possess anti-inflammatory, osteo/odontogenic, angiogenic and immunomodulatory functions in vitro and in vivo, via reported EV cargos of EV–miRNAs, EV–circRNAs, EV–mRNAs and EV–lncRNAs. This review highlights the considerable therapeutic potential of periodontal and dental pulp cell-derived sEVs in various regenerative applications.
Collapse
|
25
|
Leung LL, Riaz MK, Qu X, Chan J, Meehan K. Profiling of extracellular vesicles in oral cancer, from transcriptomics to proteomics. Semin Cancer Biol 2021; 74:3-23. [PMID: 33460766 DOI: 10.1016/j.semcancer.2021.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Oral cancers occurring in different subsites can have distinct etiologies' and are a significant problem worldwide. In general, the incidence of oral cancers has declined over the last decade due to improvements in modifiable risk factors (tobacco and alcohol consumption). However, recent data suggest that the incidence of squamous cell carcinomas in the oral tongue and oropharynx are increasing. Human papilloma virus (HPV) is an important risk factor for oropharyngeal cancer and is associated with better treatment responses when compared with HPV-unrelated oropharyngeal cancer. Regardless of the subsite, there are no clinically available biomarkers for the early detection of these cancers and many are detected at an advanced stage and are associated with poor 5-year survival rates. Tumor tissue and serial needle biopsies are used to diagnose and prognosticate oral cancers but have important limitations. Besides being invasive and physically painful, these types of biopsies offer a limited view of a complex tumor due to inter- and intra-tumoral heterogeneity and a dynamic tumor microenvironment. Liquid biopsies offer a promising and alternative way to measure disease in real-time. Extracellular vesicles (EVs) are small particles that are secreted by all cells types and can be readily isolated from a wide range of biofluids. EVs are structurally stable and can horizontally transfer bioactive molecules to distant sites throughout the body in concentrated forms that exceed what can be delivered in a soluble format. As EVs represent their cell of origin, biofluid derived EVs are heterogeneous and are comprised of a complex repertoire of host- and cancer-derived particles. This review article has focused on studies that have used transcriptomics and proteomics to explore the function and clinical significance of EVs in oral cavity and oropharyngeal cancers.
Collapse
Affiliation(s)
- Leanne L Leung
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Muhammad Kashif Riaz
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xinyu Qu
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jason Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Katie Meehan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
26
|
Small extracellular vesicles containing miR-30a-3p attenuate the migration and invasion of hepatocellular carcinoma by targeting SNAP23 gene. Oncogene 2021; 40:233-245. [PMID: 33110233 DOI: 10.1038/s41388-020-01521-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Cancer cells under hypoxic, endoplasmic reticulum, and reactive oxygen species stress secrete copious amounts of small extracellular vesicles (sEVs) to promote tumor metastasis. The effects of blocking stress-induced sEV release on tumor metastasis remain unknown. We found that miR-30a-3p was selectively sorted into sEVs by hepatocellular carcinoma (HCC) cells under the influence of multiple stressors. miR-30a-3p removal from cancer cells through sEVs promoted HCC cell migration and invasion, whereas exogenous overexpression of miR-30a-3p could inhibit migration, invasion, and sEV release by directly targeting SNAP23. HCC cells efficiently absorbed hepatic stellate cell (HSC) sEVs, providing an advantage in the treatment of HCC using HSC sEVs. Treatment with HSC sEVs rich in miR-30a-3p cargo effectively attenuated HCC migration, invasion, and metastasis. Overall, sEVs containing miR-30a-3p decreased sEV secretion as well as the migration, invasion, and metastasis of HCC by directly targeting SNAP23, thereby providing an effective strategy to attenuate metastasis of HCC.
Collapse
|
27
|
Zhao C, Zhang G, Liu J, Zhang C, Yao Y, Liao W. Exosomal cargoes in OSCC: current findings and potential functions. PeerJ 2020; 8:e10062. [PMID: 33194377 PMCID: PMC7646305 DOI: 10.7717/peerj.10062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy in head and neck cancer, with high recurrence and mortality. Early diagnosis and efficient therapeutic strategies are vital for the treatment of OSCC patients. Exosomes can be isolated from a broad range of different cell types, implicating them as important factors in the regulation of human physiological and pathological processes. Due to their abundant cargo including proteins, lipids, and nucleic acids, exosomes have played a valuable diagnostic and therapeutic role across multiple diseases, including cancer. In this review, we summarize recent findings concerning the content within and participation of exosomes relating to OSCC and their roles in tumorigenesis, proliferation, migration, invasion, metastasis, and chemoresistance. We conclude this review by looking ahead to their potential utility in providing new methods for treating OSCC to inspire further research in this field.
Collapse
Affiliation(s)
- Chengzhi Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jialing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenghao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Coon J, Kingsley K, Howard KM. miR-365 (microRNA): Potential Biomarker in Oral Squamous Cell Carcinoma Exosomes and Extracellular Vesicles. Int J Mol Sci 2020; 21:ijms21155317. [PMID: 32727045 PMCID: PMC7432426 DOI: 10.3390/ijms21155317] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction: miR-365 is a non-coding microRNA that regulates transcription and has been demonstrated to promote oncogenesis and metastasis in some cancers, while suppressing these effects in others. Many microRNAs are produced and then exported extracellularly in exosomes, which are small extracellular vesicles ranging from 30 to 100 nm that are found in eukaryotic fluids and facilitate many cellular functions. Exosomes and extracellular vesicles are produced by many cell types, including oral cancer cells—although no study to date has evaluated miR-365 and oral cancer exosomes or extracellular vesicles. Based on this information, our research question was to evaluate whether oral cancers produce exosomes or extracellular vesicles containing miR-365. Materials and Methods: Two commercially available oral cancer cell lines (SCC25 and CAL27) and a normal oral keratinocyte (OKF4) were grown in serum-free media, supplemented with exosome-depleted fetal bovine serum. Extracellular vesicles and exosomes were then isolated using the Invitrogen total exosome RNA and protein isolation kit for processing using the hsa-miR-365a-5p microRNA qPCR assay kit. Results: RNA was successfully isolated from the exosome-depleted supernatant from each cell line—SCC9, SCC15, SCC25, and CAL27 (oral squamous cell carcinomas) and OKF4 (oral epithelial cell line). Relative concentrations of RNA were similar among each cell line, which were not significantly different, p = 0.233. RNA quality was established by A260:A280 absorbance using a NanoDrop, revealing purity ranging 1.73–1.86. Expression of miR-16 was used to confirm the presence of microRNA from the extracted exosomes and extracellular vesicles. The presence of miR-365 was then confirmed and normalized to miR-16 expression, which demonstrated an increased level of miR-365 in both CAL27 and SCC25. In addition, the normalized relative quantity (RQ) for miR-365 exhibited greater variation among SCC25 (1.382–4.363) than CAL27 cells (1.248–1.536). Conclusions: These results confirm that miR-365 is not only expressed in oral cancer cell lines, but also is subsequently exported into exosomes and extracellular vesicles derived from these cultures. These data may help to contextualize the potential for this microRNA to contribute to the phenotypes and behaviors of oral cancers that express this microRNA. Future research will begin to investigate these potential mechanisms and pathways and to determine if miR-365 may be useful as an oral cancer biomarker for salivary or liquid biopsies.
Collapse
Affiliation(s)
- Jeffery Coon
- Department of Clinical Sciences, Las Vegas—School of Dental Medicine, University of Nevada, 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| | - Karl Kingsley
- Department of Biomedical Sciences and Director of Student Research, Las Vegas—School of Dental Medicine, University of Nevada, 1001 Shadow Lane, Las Vegas, NV 89106, USA
- Correspondence: ; Tel.: +1-702-774-2623; Fax: +1-702-774-2721
| | - Katherine M. Howard
- Department of Biomedical Sciences, Las Vegas—School of Dental Medicine, University of Nevada, 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| |
Collapse
|
29
|
Tan S, Xia L, Yi P, Han Y, Tang L, Pan Q, Tian Y, Rao S, Oyang L, Liang J, Lin J, Su M, Shi Y, Cao D, Zhou Y, Liao Q. Exosomal miRNAs in tumor microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:67. [PMID: 32299469 PMCID: PMC7164281 DOI: 10.1186/s13046-020-01570-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
Tumor microenvironment (TME) is the internal environment in which tumor cells survive, consisting of tumor cells, fibroblasts, endothelial cells, and immune cells, as well as non-cellular components, such as exosomes and cytokines. Exosomes are tiny extracellular vesicles (40-160nm) containing active substances, such as proteins, lipids and nucleic acids. Exosomes carry biologically active miRNAs to shuttle between tumor cells and TME, thereby affecting tumor development. Tumor-derived exosomal miRNAs induce matrix reprogramming in TME, creating a microenvironment that is conducive to tumor growth, metastasis, immune escape and chemotherapy resistance. In this review, we updated the role of exosomal miRNAs in the process of TME reshaping.
Collapse
Affiliation(s)
- Shiming Tan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Pin Yi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Lu Tang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Qing Pan
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Yutong Tian
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.,University of South China, Hengyang, 421001, Hunan, China
| | - Shan Rao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiaxin Liang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yingrui Shi
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.,Department of Medical Microbiology, Immunology & Cell Biology, Simmons Cancer Institute, Southern Illinois University School of Medicine, 913 N. Rutledge Street, Springfield, IL 62794,, USA
| | - Yujuan Zhou
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
30
|
Rodríguez Zorrilla S, García García A, Blanco Carrión A, Gándara Vila P, Somoza Martín M, Gallas Torreira M, Pérez Sayans M. Exosomes in head and neck cancer. Updating and revisiting. J Enzyme Inhib Med Chem 2020; 34:1641-1651. [PMID: 31496355 PMCID: PMC6746279 DOI: 10.1080/14756366.2019.1662000] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exosomes have gone from being considered simple containers of intracellular waste substances to be considered important carriers of cellular signals. Its broad capacity to promote tumour growth, both in situ and metastatic, has greatly intensified scientific research on them. In the same way and depending on its content, its tumour suppressive properties have opened a window of light and hope in the fight against cancer. In the present review we try to gather in a simple and understandable way the most relevant knowledge to date on the role of exosomes in oral squamous cell carcinoma, helping to understand their process of formation, release and activity on the tumour microenvironment.
Collapse
Affiliation(s)
- Samuel Rodríguez Zorrilla
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Abel García García
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS) , Santiago de Compostela , Spain
| | - Andrés Blanco Carrión
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Pilar Gándara Vila
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Manuel Somoza Martín
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Mercedes Gallas Torreira
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Mario Pérez Sayans
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS) , Santiago de Compostela , Spain
| |
Collapse
|