1
|
Tang Y, Leng J, Luo Y, Luo F. Focusing on ferroptosis in alveolar bone loss during periodontitis: From mechanisms to therapies. Int Immunopharmacol 2025; 156:114683. [PMID: 40252463 DOI: 10.1016/j.intimp.2025.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/04/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Periodontitis is an oral immunoinflammatory disease induced by bacterial infection. During periodontitis, the aggravating destruction of the alveolar bone can result in tooth movement and even tooth loss. Current conventional treatments for periodontitis primarily focus on infection control, but their effectiveness in halting and restoring alveolar bone destruction is limited. To identify additional therapeutic targets, researchers have been dedicated to investigating other pathological mechanisms underlying alveolar bone loss during periodontitis. Recently, findings indicate that ferroptosis plays a role in the development of periodontitis. Ferroptosis is a nonapoptotic type of cell death marked by iron accumulation and lipid peroxidation. Recent investigations have revealed the complex interplay of ferroptosis and inflammation. The positive feedback loop between ferroptosis and inflammation may significantly contribute to the exacerbation of alveolar bone loss. In light of the advancements in research within this field in recent years, this review intends to thoroughly summarize the processes by which ferroptosis aggravates alveolar bone loss during periodontitis, along with relevant ferroptosis-targeted therapeutic agents. By highlighting the latest advancements in this area, we hope this review will inspire researchers to develop novel therapeutic strategies for more effective inflammation control and regeneration of alveolar bone.
Collapse
Affiliation(s)
- Yuting Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyan Leng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of General Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Zhou W, Huang W, You H, Zhang M, Ma Y, Liu L, Lin M, He S, Huang Y. EZH2 knockout in mice activates STAT3 signalling via STAT3 methylation and modulates ferroptosis in pulpitis-affected dental pulp vascular endothelial cells: A laboratory investigation. Int Endod J 2025. [PMID: 40164972 DOI: 10.1111/iej.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/05/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
AIM Recent findings suggest that mitigating ferroptosis could serve as an effective strategy for treating inflammation. This study aimed to investigate the role that the enhancer of zeste homologue 2 (EZH2) mediated the signal transducer and activator of transcription 3 (stat3) methylation plays in the modulation of ferroptosis in pulpitis. The study results offer potential advancements in the therapeutic approaches for pulpitis and provide new insights and strategies for managing this condition. METHODOLOGY Bioinformatics analysis combined with methylation capture sequencing of EZH2fl/flCre+/- pulp tissue was used to explore the association between pulpitis and ferroptosis. In this study, we used an EZH2 knockout model prepared through lentiviral transduction and an LPS-induced inflammatory model of endometrial mesenchymal stromal cells to confirm the role that the EZH2/STAT3 axis plays in ferroptosis. RESULTS Bioinformatics analysis identified a link between pulpitis and DNA methylation. Methylation sequencing further revealed the association of methylation with ferroptosis and the regulation of STAT3 methylation by EZH2. In vitro, lipopolysaccharide (LPS) stimulation induced ferroptosis, whereas EZH2 disruption suppressed STAT3 expression but increased Glutathione Peroxidase 4 (GPX4) expression, leading to the escalation of oxidative stress and exacerbation of ferroptosis. This illustrates the complex interactions between methylation, ferroptosis and oral inflammation, highlighting potential therapeutic targets. CONCLUSIONS Overall, pulpitis plays a crucial role in EZH2-mediated STAT3 methylation and activates ferroptosis by regulating GPX4 expression. This study provides new insights and strategies for treatment and advances our understanding of the pathogenesis of pulpitis.
Collapse
Affiliation(s)
- Weilin Zhou
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Weili Huang
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Hongjing You
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minyi Zhang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Ma
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Lingjie Liu
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Mengxuan Lin
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Shuqi He
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Yi Huang
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Jiao R, Long H. Ferroptosis: A New Challenge and Target in Oral Diseases. Oral Dis 2025. [PMID: 40096652 DOI: 10.1111/odi.15303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/05/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVE Ferroptosis, an iron-dependent intracellular programmed cell death mechanism discovered in the last decade, has emerged as a novel and intriguing concept in oral diseases, distinct from apoptosis, necrosis, and pyroptosis. This process plays a critical role in the pathophysiology of inflammation, trauma, and tumors, with evidence of its presence in multiple organ systems, including the liver, kidneys, and heart. In recent years, many studies have found that ferroptosis is closely related to oral diseases, and a number of pathogenic pathways and therapeutic strategies have been reported. However, ferroptosis remains an underexplored area in oral diseases, with multiple secrets waiting to be uncovered. METHOD We collected articles related to ferroptosis and oral diseases and analyzed the mechanisms and therapeutic strategies associated with ferroptosis in different oral diseases. RESULTS In this review, we present a comprehensive analysis of ferroptosis and oral diseases, emphasizing its core mechanisms and associated therapeutic approaches. Furthermore, we give an outlook for future explorations of ferroptosis related to oral diseases. CONCLUSION This review provides dental researchers and clinicians with a current state of ferroptosis in oral diseases, thereby inspiring noval investigations and discoveries.
Collapse
Affiliation(s)
- Ruijie Jiao
- West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hu Long
- West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Park JS, Jeong YI, Kim BH. Helium cold atmospheric pressure plasma reduces erastin induced inflammation and ferroptosis in human gingival fibroblasts. Sci Rep 2025; 15:7440. [PMID: 40032893 DOI: 10.1038/s41598-025-89903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
Oral soft tissue damage can lead to hard tissue damage in the oral cavity, such as periodontal lesions, periapical disorders, cysts, and oral tumors. Cold plasma is known to alleviate inflammation and oxidative stress and promote tissue regeneration, yet the effects of helium plasma on human gingival cells remain poorly understood. In this study, we examined whether helium (He) cold atmospheric pressure plasma (CAP) can induce anti-inflammatory and anti-ferroptotic effects in oral soft tissues by ionizing He gas. Erastin treatment followed by He CAP exposure in human gingival fibroblast-1 (HGF-1) cells reduced the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor-α (TNFα), and interleukin-6 (IL-6), which are linked to inflammatory responses. Additionally, He CAP exposure decreased nuclear receptor coactivator 4 (NCOA4) expression and increased glutathione peroxidase 4 (GPX4) expression. Furthermore, mitochondrial membrane potential was restored by increased voltage-dependent anion channel 1 (VDAC1) expression, and reactive oxygen species (ROS) levels in mitochondria and cytoplasm were reduced. These results suggest that He CAP exposure may be associated with modulation of mitochondrial ROS production and reduction of inflammation and ferroptosis, but whether mitochondrial repair contributes to these effects requires further investigation.
Collapse
Affiliation(s)
- Jung Sun Park
- Convergence Research Center for Treatment of Oral Soft Tissue Disease (MRC), 7 Chosundaegil, Gwangju, 61452, Republic of Korea
| | - Young-Il Jeong
- Convergence Research Center for Treatment of Oral Soft Tissue Disease (MRC), 7 Chosundaegil, Gwangju, 61452, Republic of Korea
| | - Byung-Hoon Kim
- Convergence Research Center for Treatment of Oral Soft Tissue Disease (MRC), 7 Chosundaegil, Gwangju, 61452, Republic of Korea.
- Department of Dental Materials, School of Dentistry, Chosun University, 7 Chosundaegil, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
5
|
Wang L, Wang C, He H. The Potential Regulatory Role of Ferroptosis in Orthodontically Induced Inflammatory Root Resorption. Int J Mol Sci 2024; 25:13617. [PMID: 39769377 PMCID: PMC11728003 DOI: 10.3390/ijms252413617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
People, in increasing numbers, are seeking orthodontic treatment to correct malocclusion, while some of them are suffering from orthodontically induced inflammatory root resorption (OIIRR). Recent evidence suggests that the immune-inflammatory response occurring during bone remodeling may be responsible for OIIRR. Ferroptosis, a new type of programmed cell death (PCD), has been found to have a close interrelation with inflammation during disease progression. While ferroptosis has been extensively studied in bone-related diseases, its role in OIIRR is poorly understood. Considering that the tooth root shares a lot of similar characteristics with bone, it is reasonable to hypothesize that ferroptosis contributes to the development of OIIRR. Nevertheless, direct evidence supporting this theory is currently lacking. In this review, we introduced ferroptosis and elucidated the mechanisms underlying orthodontic tooth movement (OTM) and OIIRR, with a special focus on the pivotal role inflammation plays in these processes. Additionally, we covered recent research exploring the connections between inflammation and ferroptosis. Lastly, we emphasized the important regulatory function of ferroptosis in bone homeostasis. Further investigations are required to clarify the modulation mechanisms of ferroptosis in OIIRR and to develop novel and potential therapeutic strategies for the management of OIIRR.
Collapse
Affiliation(s)
- Leilei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
6
|
Zhang X, Tian X, Wang Y, Yan Y, Wang Y, Su M, Lv H, Li K, Hao X, Xing X, Song S. Application of lipopolysaccharide in establishing inflammatory models. Int J Biol Macromol 2024; 279:135371. [PMID: 39244120 DOI: 10.1016/j.ijbiomac.2024.135371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Lipopolysaccharide (LPS), a unique component of the outer membrane of Gram-negative bacteria, possesses immune-activating properties. It induces an immune response by stimulating host cells to produce a lot of inflammatory cytokines with a thermogenic effect, which may cause an inflammatory response. In the past few decades, the structure and function of LPS and its mechanism leading to inflammation have been extensively analyzed. Since LPS can cause inflammation, it is often used to establish inflammation models. These models are crucial in the study of inflammatory diseases that pose a serious threat to human health. In addition, the non-pro-inflammatory effects of LPS under certain circumstances are also being studied widely. This review summarizes the methods by which LPS has been used to establish inflammatory models at the cellular and animal levels to study related diseases. It also introduces in detail the evaluation indicators necessary for the successful establishment of these models, providing a reference for future research.
Collapse
Affiliation(s)
- Xiao Zhang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiao Tian
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yong Yan
- JD Berry Agricultural Development Co., Ltd, Weihai, Shandong 264209, China.
| | - Yuan Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Meicai Su
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Haifei Lv
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Kaitao Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiaobin Hao
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Xiang Xing
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| | - Shuliang Song
- Marine College, Shandong University, Weihai, Shandong 264209, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| |
Collapse
|
7
|
Chen J, Hu C, Lu X, Yang X, Zhu M, Ma X, Yang Y. ALDH2 alleviates inflammation and facilitates osteogenic differentiation of periodontal ligament stem cells in periodontitis by blocking ferroptosis via activating Nrf2. Funct Integr Genomics 2024; 24:184. [PMID: 39370484 DOI: 10.1007/s10142-024-01465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
This paper elucidated the effects and mechanisms of aldehyde dehydrogenase 2 (ALDH2) on periodontitis. Rat model of periodontitis and periodontal ligament stem cell (PDLSC) model of periodontitis were constructed. PDLSC were transfected by ALDH2 overexpression vectors, and then treated by ML385 (Nrf2 inhibitor), ferrostatin-1 (ferroptosis inhibitor) and FIN56 (ferroptosis inducer), respectively. ALDH2, nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4) proteins was evaluated by immunohistochemistry and Western blot. Ferroptosis-related factors, including Fe2+ and glutathione (GSH), were assessed by commercial kits. Pro-inflammatory factors (interleukin-6 [IL-6] and tumor necrosis factor-α [TNF-α]) and osteogenic differentiation-related proteins (osteocalcin [OCN] and runt-related transcription factor 2 [RUNX2]) were scrutinized by commercial kits and Western blot. In both periodontal tissues of periodontitis rats and PDLSC model of periodontitis, down-regulated ALDH2, Nrf2, GPX4 and GSH, but elevated Fe2+ level was discovered. ALDH2 overexpression in PDLSC resulted in an increase in Nrf2 expression. In PDLSC model of periodontitis, ALDH2 increased GPX4 and GSH levels, decreased Fe2+, IL-6 and TNF-α levels, and elevated OCN and RUNX2 expression. However, these effects of ALDH2 were counteracted by ML385. Additionally, the suppression of ALDH2 on IL-6 and TNF-α levels and promotion of it on OCN and RUNX2 expression in PDLSC model of periodontitis was further intensified by ferrostatin-1, but reversed by FIN56. ALDH2 may alleviate inflammation and facilitate osteogenic differentiation of PDLSC in periodontitis by hindering ferroptosis via activating Nrf2, suggesting it to be a promising candidate for treating periodontitis.
Collapse
Affiliation(s)
- Jia Chen
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Chen Hu
- Department of Oral and Maxillofacial Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xun Lu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Xiaoqin Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Meng Zhu
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Xiaozhou Ma
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Yiqiang Yang
- Department of Orthodontics, Stomatological Hospital, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
8
|
Fan Y, Liu W, Qi L, Zhao Q, Li S, Zou H, Kong C, Li Z, Ren J, Liu Z, Wang B. Correlation of disulfidptosis and periodontitis: New insights and clinical significance. Arch Oral Biol 2024; 166:106046. [PMID: 38991331 DOI: 10.1016/j.archoralbio.2024.106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVES This study aims to investigate and predict the therapeutic agents associated with disulfidptosis in periodontitis. DESIGN The dataset GSE10334 was downloaded from the Gene Expression Omnibus (GEO) database and used to train a least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE) algorithm to identify genes associated with disulfidptosis in periodontitis. GSE16134 validation sets, polymerase chain reaction (PCR), and gingival immunofluorescence were used to verify the results.Single-gene Gene Set Enrichment Analysis (GSEA) was performed to explore the potential mechanisms and functions of the characterized genes. Immune infiltration and correlation analyses were performed, and competing endogenous RNA (ceRNA) networks were constructed. Effective therapeutic drugs were then predicted using the DGIdb database, and molecular docking was used to validate binding affinity. RESULTS Six genes (SLC7A11, SLC3A2, RPN1, NCKAP1, LRPPRC, and NDUFS1) associated with disulfidptosis in periodontitis were obtained. Validation results from external datasets and experiments were consistent with the screening results. Single-gene GSEA analysis was mainly enriched for antigen presentation and immune-related pathways and functions.Immune infiltration and correlation analyses revealed significant regulatory relationships between these genes and plasma cells, resting dendritic cell, and activated NK cells. The ceRNA network was visualized. And ME-344, NV-128, and RILUZOLE, which have good affinity to target genes, were identified as promising agents for the treatment of periodontitis. CONCLUSIONS SLC7A11, SLC3A2, RPN1, NCKAP1, LRPPRC, and NDUFS1 are targets associated with disulfidptosis in periodontitis, and ME-344, NV-128, and RILUZOLE are promising agents for the treatment of periodontitis.
Collapse
Affiliation(s)
- Yixin Fan
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Wantong Liu
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Le Qi
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Qi Zhao
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Sining Li
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - He Zou
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Chen Kong
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Zhiwei Li
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Jiwei Ren
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Zhihui Liu
- Hospital of Stomatology, Jilin University, Changchun, China.
| | - Bowei Wang
- The Second Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
9
|
Li X, Yao C, Lan DM, Wang Y, Qi SC. Porphyromonas gingivalis Induces Chronic Kidney Disease through Crosstalk between the NF-κB/NLRP3 Pathway and Ferroptosis in GMCs. Curr Med Sci 2024; 44:932-946. [PMID: 39446285 DOI: 10.1007/s11596-024-2923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/16/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE Porphyromonas gingivalis (P.gingivalis) is a gram-negative bacterium found in the human oral cavity and is a recognized pathogenic bacterium associated with chronic periodontitis and systemic diseases, including chronic kidney disease (CKD), but the roles and molecular mechanism of P.gingivalis in CKD pathogenesis are unclear. METHODS In this study, an animal model of oral P.gingivalis administration and glomerular mesangial cells (GMCs) cocultured with M1-polarized macrophages and P.gingivalis supernatant were constructed. After seven weeks of P.gingivalis gavaged, peripheral blood was collected to detect the changes in renal function. By collecting the teeth and kidneys of mice, H&E staining and IHC were used to analyze the expression of periodontal inflammatory factors in mice, PAS staining was used to analyze glomerular lesions. The supernatant of macrophages was treated with 5% P.gingivalis supernatant. H&E staining, IHC, Western blot and RT-PCR were applied to analyze renal inflammatory factors, macrophage M1 polarization, NF-κB, NLRP3 and ferroptosis changes in vitro. RESULTS We found that oral P.gingivalis administration induced CKD in mice. P.gingivalis supernatant induced macrophage polarization and inflammatory factor upregulation, which triggered the activation of the NF-κB/NLRP3 pathway and ferroptosis in GMCs. By inhibiting the NF-κB/NLRP3 pathway and ferroptosis in GMCs, cell viability and the inflammatory response were partially alleviated in vitro. CONCLUSION We demonstrated that P.gingivalis induced CKD in mice by triggering crosstalk between the NF κB/NLRP3 pathway and ferroptosis in GMCs. Overall, our study suggested that periodontitis can promote the pathogenesis of CKD in mice, which provides evidence of the importance of periodontitis therapy in the prevention and treatment of CKD. P.gingivalis promotes ferroptosis in kidneys and accelerates the progression of CKD through NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Xue Li
- Medical College, Anhui University of Science and Technology, Huainan, 232007, China
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology Fudan University, Shanghai, 200002, China
| | - Chao Yao
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
| | - Dong-Mei Lan
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
| | - Yan Wang
- Medical College, Anhui University of Science and Technology, Huainan, 232007, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology Fudan University, Shanghai, 200002, China.
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200433, China.
| | - Sheng-Cai Qi
- Medical College, Anhui University of Science and Technology, Huainan, 232007, China.
- Department of Oral Prosthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital & School of Stomatology Fudan University, Shanghai, 200002, China.
| |
Collapse
|
10
|
Li TQ, Liu Y, Feng C, Bai J, Wang ZR, Zhang XY, Wang XX. Saikosaponin A attenuates osteoclastogenesis and bone loss by inducing ferroptosis. Front Mol Biosci 2024; 11:1390257. [PMID: 39114369 PMCID: PMC11303733 DOI: 10.3389/fmolb.2024.1390257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 08/10/2024] Open
Abstract
To alleviate bone loss, most current drugs target osteoclasts. Saikosaponin A (Ssa), a triterpene saponin derived from Bupleurum falcatum (also known as Radix bupleuri), has immunoregulatory, neuromodulatory, antiviral, anticancer, anti-convulsant, anti-inflammatory, and anti-proliferative effects. Recently, modulation of bone homeostasis was shown to involve ferroptosis. Herein, we aimed to determine Ssa's inhibitory effects on osteoclastogenesis and differentiation, whether ferroptosis is involved, and the underlying mechanisms. Tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining, and pit formation assays were conducted to confirm Ssa-mediated inhibition of RANKL-induced osteoclastogenesis in vitro. Ssa could promote osteoclast ferroptosis and increase mitochondrial damage by promoting lipid peroxidation, as measured by iron quantification, FerroOrange staining, Dichloro-dihydro-fluorescein diacetate, MitoSOX, malondialdehyde, glutathione, and boron-dipyrromethene 581/591 C11 assays. Pathway analysis showed that Ssa can promote osteoclasts ferroptosis by inhibiting the Nrf2/SCL7A11/GPX4 axis. Notably, we found that the ferroptosis inhibitor ferrostatin-1 and the Nrf2 activator tert-Butylhydroquinone reversed the inhibitory effects of Ssa on RANKL-induced osteoclastogenesis. In vivo, micro-computed tomography, hematoxylin and eosin staining, TRAP staining, enzyme-linked immunosorbent assays, and immunofluorescence confirmed that in rats with periodontitis induced by lipopolysaccharide, treatment with Ssa reduced alveolar bone resorption dose-dependently. The results suggested Ssa as a promising drug to treat osteolytic diseases.
Collapse
Affiliation(s)
- Tian-Qi Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chong Feng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jin Bai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Zi-Rou Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiang-Yu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Xin-Xing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
11
|
Chen J, Ou L, Liu W, Gao F. Exploring the molecular mechanisms of ferroptosis-related genes in periodontitis: a multi-dataset analysis. BMC Oral Health 2024; 24:611. [PMID: 38802844 PMCID: PMC11129485 DOI: 10.1186/s12903-024-04342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE This study aims to elucidate the biological functions of ferroptosis-related genes in periodontitis, along with their correlation to tumor microenvironment (TME) features such as immune infiltration. It aims to provide potential diagnostic markers of ferroptosis for clinical management of periodontitis. METHODS Utilizing the periodontitis-related microarray dataset GSE16134 from the Gene Expression Omnibus (GEO) and a set of 528 ferroptosis-related genes identified in prior studies, this research unveils differentially expressed ferroptosis-related genes in periodontitis. Subsequently, a protein-protein interaction network was constructed. Subtyping of periodontitis was explored, followed by validation through immune cell infiltration and gene set enrichment analyses. Two algorithms, randomForest and SVM(Support Vector Machine), were employed to reveal potential ferroptosis diagnostic markers for periodontitis. The diagnostic efficacy, immune correlation, and potential transcriptional regulatory networks of these markers were further assessed. Finally, potential targeted drugs for differentially expressed ferroptosis markers in periodontitis were predicted. RESULTS A total of 36 ferroptosis-related genes (30 upregulated, 6 downregulated) were identified from 829 differentially expressed genes between 9 periodontitis samples and the control group. Subsequent machine learning algorithm screening highlighted 4 key genes: SLC1A5(Solute Carrier Family 1 Member 5), SLC2A14(Solute Carrier Family 1 Member 14), LURAP1L(Leucine Rich Adaptor Protein 1 Like), and HERPUD1(Homocysteine Inducible ER Protein With Ubiquitin Like Domain 1). Exploration of these 4 key genes, supported by time-correlated ROC analysis, demonstrated reliability, while immune infiltration results indicated a strong correlation between key genes and immune factors. Furthermore, Gene Set Enrichment Analysis (GSEA) was conducted for the four key genes, revealing enrichment in GO/KEGG pathways that have a significant impact on periodontitis. Finally, the study predicted potential transcriptional regulatory networks and targeted drugs associated with these key genes in periodontitis. CONCLUSIONS The ferroptosis-related genes identified in this study, including SLC1A5, SLC2A14, LURAP1L, and HERPUD1, may serve as novel diagnostic and therapeutic targets for periodontitis. They are likely involved in the occurrence and development of periodontitis through mechanisms such as immune infiltration, cellular metabolism, and inflammatory chemotaxis, potentially linking the ferroptosis pathway to the progression of periodontitis. Targeted drugs such as flurofamide, L-733060, memantine, tetrabenazine, and WAY-213613 hold promise for potential therapeutic interventions in periodontitis associated with these ferroptosis-related genes.
Collapse
Affiliation(s)
- Jili Chen
- Department of Periodontics, Panyu Branch, Stomatological Hospital, School of Stomatology, Southern Medical University, No.366 Jiangnan Dadao Nan, Haizhu District, Guangzhou, Guangdong, 510220, China
| | - Lijia Ou
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha, 410006, China
| | - Weizhen Liu
- Department of Periodontics, Panyu Branch, Stomatological Hospital, School of Stomatology, Southern Medical University, No.366 Jiangnan Dadao Nan, Haizhu District, Guangzhou, Guangdong, 510220, China
| | - Feng Gao
- Department of Periodontics, Panyu Branch, Stomatological Hospital, School of Stomatology, Southern Medical University, No.366 Jiangnan Dadao Nan, Haizhu District, Guangzhou, Guangdong, 510220, China.
| |
Collapse
|
12
|
Liu W, Yu W, Zhou L, Ling D, Xu Y, He F. Inhibition of ZDHHC16 promoted osteogenic differentiation and reduced ferroptosis of dental pulp stem cells by CREB. BMC Oral Health 2024; 24:388. [DOI: https:/doi.org/10.1186/s12903-024-04107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2025] Open
Abstract
Abstract
Background
The repair of bone defects caused by periodontal diseases is a difficult challenge in clinical treatment. Dental pulp stem cells (DPSCs) are widely studied for alveolar bone repair. The current investigation aimed to examine the specific mechanisms underlying the role of Zinc finger DHHC-type palmitoyl transferases 16 (ZDHHC16) in the process of osteogenic differentiation (OD) of DPSCs.
Methods
The lentiviral vectors ZDHHC16 or si-ZDHHC16 were introduced in the DPSCs and then the cells were induced by an odontogenic medium for 21 days. Subsequently, Quantitate Polymerase Chain Reaction (PCR), immunofluorescent staining, proliferation assay, ethynyl deoxyuridine (EdU) staining, and western blot analysis were used to investigate the specific details of ZDHHC16 contribution in OD of DPSCs.
Results
Our findings indicate that ZDHHC16 exhibited a suppressive effect on cellular proliferation and oxidative phosphorylation, while concurrently inducing ferroptosis in DPSCs. Moreover, the inhibition of ZDHHC16 promoted cell development and OD and reduced ferroptosis of DPSCs. The expression of p-CREB was suppressed by ZDHHC16, and immunoprecipitation (IP) analysis revealed that ZDHHC16 protein exhibited interconnection with cAMP-response element binding protein (CREB) of DPSCs. The CREB suppression reduced the impacts of ZDHHC16 on OD and ferroptosis of DPSCs. The activation of CREB also reduced the influences of si-ZDHHC16 on OD and ferroptosis of DPSCs.
Conclusions
These findings provide evidences to support a negative association between ZDHHC16 and OD of DPSCs, which might be mediated by ferroptosis of DPSCs via CREB.
Collapse
|
13
|
Liu W, Yu W, Zhou L, Ling D, Xu Y, He F. Inhibition of ZDHHC16 promoted osteogenic differentiation and reduced ferroptosis of dental pulp stem cells by CREB. BMC Oral Health 2024; 24:388. [PMID: 38532349 PMCID: PMC10964552 DOI: 10.1186/s12903-024-04107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The repair of bone defects caused by periodontal diseases is a difficult challenge in clinical treatment. Dental pulp stem cells (DPSCs) are widely studied for alveolar bone repair. The current investigation aimed to examine the specific mechanisms underlying the role of Zinc finger DHHC-type palmitoyl transferases 16 (ZDHHC16) in the process of osteogenic differentiation (OD) of DPSCs. METHODS The lentiviral vectors ZDHHC16 or si-ZDHHC16 were introduced in the DPSCs and then the cells were induced by an odontogenic medium for 21 days. Subsequently, Quantitate Polymerase Chain Reaction (PCR), immunofluorescent staining, proliferation assay, ethynyl deoxyuridine (EdU) staining, and western blot analysis were used to investigate the specific details of ZDHHC16 contribution in OD of DPSCs. RESULTS Our findings indicate that ZDHHC16 exhibited a suppressive effect on cellular proliferation and oxidative phosphorylation, while concurrently inducing ferroptosis in DPSCs. Moreover, the inhibition of ZDHHC16 promoted cell development and OD and reduced ferroptosis of DPSCs. The expression of p-CREB was suppressed by ZDHHC16, and immunoprecipitation (IP) analysis revealed that ZDHHC16 protein exhibited interconnection with cAMP-response element binding protein (CREB) of DPSCs. The CREB suppression reduced the impacts of ZDHHC16 on OD and ferroptosis of DPSCs. The activation of CREB also reduced the influences of si-ZDHHC16 on OD and ferroptosis of DPSCs. CONCLUSIONS These findings provide evidences to support a negative association between ZDHHC16 and OD of DPSCs, which might be mediated by ferroptosis of DPSCs via CREB.
Collapse
Affiliation(s)
- Wei Liu
- Department of Oral Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China
| | - Wenwei Yu
- Department of Oral Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Lili Zhou
- Department of Oral Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Danhua Ling
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China
- Department of General Dentistry, the Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jianghong Road, Hangzhou, Hangzhou, Zhejiang, 310052, China
| | - Yangbo Xu
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China
| | - Fuming He
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China.
| |
Collapse
|
14
|
Wu W, Li G, Dong S, Huihan Chu C, Ma S, Zhang Z, Yuan S, Wu J, Guo Z, Shen Y, Wang J, Tang C. Bomidin attenuates inflammation of periodontal ligament stem cells and periodontitis in mice via inhibiting ferroptosis. Int Immunopharmacol 2024; 127:111423. [PMID: 38141410 DOI: 10.1016/j.intimp.2023.111423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
AIM Periodontitis is a prevalent oral immunoinflammatory condition that is distinguished by the compromised functionality of periodontal ligament stem cells (PDLSCs). Bomidin, a new recombinant antimicrobial peptide (AMP), exhibits antibacterial properties and modulates immune responses. Nevertheless, the precise anti-inflammatory impact of bomidin in periodontitis has yet to be fully elucidated. Thus, the study aimed to clarified the role of bomidin in modulating inflammation and its underlying mechanisms. METHODS TNF-α was applied to treating PDLSCs for establishing a cell model of periodontitis. Bomidin, RSL3, ML385 and cycloheximide were also used to treat PDLSCs. Transcriptome sequencing, RT-qPCR, western blot, immunofluorescence, immunohistochemistry, Fe2+ detection probe, molecular docking, Co-IP assay, ubiquitination assay and murine models of periodontitis were used. RESULTS Our study demonstrated that bomidin effectively suppressed inflammation in PDLSCs stimulated by TNF-α, through down-regulating the MAPK and NF-κB signaling pathways. Furthermore, bomidin exerted inhibitory effects on ferroptosis and activated the Keap1/Nrf2 pathway in the TNF-α group. There is a strong likelihood of bonding bomidin with Keap1 protein, which facilitated the degradation of Keap1 protein via the ubiquitin-proteasome pathway, leading to an enhanced translocation of Nrf2 protein to the nucleus. CONCLUSIONS Bomidin can directly bond to Keap1 protein, resulting in the degradation of Keap1 through the ubiquitin-proteasome pathway, thereby further activating the Keap1/Nrf2 pathway. The upregulation of the Keap1/Nrf2 signaling pathway was found to contribute to the suppression of ferroptosis, ultimately alleviating inflammation in treatment of periodontitis.
Collapse
Affiliation(s)
- Wei Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Guoqing Li
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shuo Dong
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Catherine Huihan Chu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China; Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shanshan Ma
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Zhewei Zhang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shanshan Yuan
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jin Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Zixiang Guo
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yue Shen
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jiaohong Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chunbo Tang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
15
|
Deng Y, Xiao J, Ma L, Wang C, Wang X, Huang X, Cao Z. Mitochondrial Dysfunction in Periodontitis and Associated Systemic Diseases: Implications for Pathomechanisms and Therapeutic Strategies. Int J Mol Sci 2024; 25:1024. [PMID: 38256098 PMCID: PMC10816612 DOI: 10.3390/ijms25021024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Periodontitis is a chronic infectious disorder damaging periodontal tissues, including the gingiva, periodontal ligament, cementum, and alveolar bone. It arises from the complex interplay between pathogenic oral bacteria and host immune response. Contrary to the previous view of "energy factories", mitochondria have recently been recognized as semi-autonomous organelles that fine-tune cell survival, death, metabolism, and other functions. Under physiological conditions, periodontal tissue cells participate in dynamic processes, including differentiation, mineralization, and regeneration. These fundamental activities depend on properly functioning mitochondria, which play a crucial role through bioenergetics, dynamics, mitophagy, and quality control. However, during the initiation and progression of periodontitis, mitochondrial quality control is compromised due to a range of challenges, such as bacterial-host interactions, inflammation, and oxidative stress. Currently, mounting evidence suggests that mitochondria dysfunction serves as a common pathological mechanism linking periodontitis with systemic conditions like type II diabetes, obesity, and cardiovascular diseases. Therefore, targeting mitochondria to intervene in periodontitis and multiple associated systemic diseases holds great therapeutic potential. This review provides advanced insights into the interplay between mitochondria, periodontitis, and associated systemic diseases. Moreover, we emphasize the significance of diverse therapeutic modulators and signaling pathways that regulate mitochondrial function in periodontal and systemic cells.
Collapse
Affiliation(s)
- Yifei Deng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (Y.D.)
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
16
|
Fu E, Kuo CY, Hsia YJ, Huang YM, Tseng HH, Fu MW, Shih KC. Role of ferroptosis in periodontitis: An animal study in rats. J Periodontal Res 2023; 58:1031-1040. [PMID: 37477155 DOI: 10.1111/jre.13165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVE This study aimed to investigate (1) the temporal pattern of ferroptosis, an iron-dependent cell death, in ligation-induced rat periodontitis and (2) the effect of ferrostatin-1, a ferroptosis inhibitor, on the model. BACKGROUND Ferroptosis may contribute to various diseases. However, the role of ferroptosis in periodontitis is still fully understood. METHODS In the first experiment, 25 rats with ligation-induced periodontitis were sacrificed on days 0, 1, 2, 7, and 10. Gingivae were obtained to determine tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and ferroptotic biomarkers, including solute carrier family 3 member 2 (SLC3A2) and solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (Gpx4), via immunoblotting. Using microcomputed tomography (μCT) and histology, the periodontal soft and hard tissue lesions, including dental alveolar bone crest level, bony characteristics of the surrounding alveolus, periodontal tissue inflammation, and periodontal tissue losses, were evaluated. In study two, 16 rats with induced periodontitis were grouped according to ferrostatin-1 treatment. The rats were intraperitoneally injected with solvent or ferrostatin-1 (1.5 mg/kg/day) 1 day before ligation and sacrificed on days 7 and 10. Gingival protein changes and periodontal tissue damage were also examined. RESULTS In study one, SLC3A2/SLC7A11 and Gpx4 decreased since day 1; however, TNF-α/IL-1β increased on days 7 and 10. Moreover, the μCT/histology revealed resorptive bony characteristics, inflamed gingival tissue, and periodontal attachment loss. In study two, ferrostatin-1-injected rats exhibited significantly increased SLC3A2/SLC7A11 and Gpx4 but decreased TNF-α/IL-1β than vehicle rats. They also revealed lessened bone resorption, tissue inflammation, and attachment loss. CONCLUSION This study highlights the role of ferroptosis, via the system Xc/Gpx4 pathway, in experimental periodontitis and may serve as a regulatory strategy.
Collapse
Affiliation(s)
- Earl Fu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yi-Jan Hsia
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yiao-Mien Huang
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Hui-Hwa Tseng
- Department of Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Min-Wen Fu
- Department of Endodontics, College of Dentistry, New York University, New York City, New York, USA
| | - Kuang-Chung Shih
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Division of Endocrinology & Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Division of Endocrinology & Metabolism, Cheng Hsin General Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Xiong K, Yang P, Wei W, Li J, Cui Y, Li Y, Tang B. Periodontitis contributes to COPD progression via affecting ferroptosis. BMC Oral Health 2023; 23:664. [PMID: 37710216 PMCID: PMC10500905 DOI: 10.1186/s12903-023-03397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Periodontitis has emerged as a potential risk factor for chronic obstructive pulmonary disease (COPD). However, the precise mechanism through which periodontitis influences the progression of COPD requires further investigation. Ferroptosis is one of the crucial pathogenesis of COPD and recent researches suggested that periodontitis was associated with ferroptosis. Nonetheless, the relationship among periodontitis, COPD and ferroptosis remains unclear. This study aimed to elucidate whether periodontitis contributes to COPD exacerbation and to assess the potential impact of ferroptosis on periodontitis affecting COPD. METHODS The severity of COPD was assessed using Hematoxylin and eosin (H&E) staining and lung function tests. Iron assays, malondialdehyde (MDA) measurement and RT-qPCR were used to investigate the potential involvement of ferroptosis in the impact of periodontitis on COPD. Co-cultures of periodontitis associated pathogen Phophyromonas gingivalis (P. gingivalis) and lung tissue cells were used to evaluate the effect of P. gingivalis on inducing the ferroptosis of lung tissue via RT-qPCR analysis. Clinical Bronchoalveolar Lavage Fluid (BALF) samples from COPD patients were collected to further validate the role of ferroptosis in periodontal pathogen-associated COPD. RESULTS Periodontitis aggravated the COPD progression and the promotion was prolonged over time. For the first time, we demonstrated that periodontitis promoted the ferroptosis-associated iron accumulation, MDA contents and gene expressions in the COPD lung with a time-dependent manner. Moreover, periodontitis-associated pathogen P. gingivalis could promote the ferroptosis-associated gene expression in single lung tissue cell suspensions. Clinical BALF sample detection further indicated that ferroptosis played essential roles in the periodontal pathogen-associated COPD. CONCLUSION Periodontitis could contribute to the exacerbation of COPD through up-regulating the ferroptosis in the lung tissue.
Collapse
Affiliation(s)
- Kaixin Xiong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Peng Yang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wei Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jia Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Boyu Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, Department of Conservation Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Lamont RJ, Miller DP, Bagaitkar J. Illuminating the oral microbiome: cellular microbiology. FEMS Microbiol Rev 2023; 47:fuad045. [PMID: 37533213 PMCID: PMC10657920 DOI: 10.1093/femsre/fuad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Epithelial cells line mucosal surfaces such as in the gingival crevice and provide a barrier to the ingress of colonizing microorganisms. However, epithelial cells are more than a passive barrier to microbial intrusion, and rather constitute an interactive interface with colonizing organisms which senses the composition of the microbiome and communicates this information to the underlying cells of the innate immune system. Microorganisms, for their part, have devised means to manipulate host cell signal transduction pathways to favor their colonization and survival. Study of this field, which has become known as cellular microbiology, has revealed much about epithelial cell physiology, bacterial colonization and pathogenic strategies, and innate host responses.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, KY40202, United States
| | - Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, VA23298, United States
| | - Juhi Bagaitkar
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, OH43205, United States
- Department of Pediatrics, The Ohio State College of Medicine, Columbus, OH, OH43210, United States
| |
Collapse
|
19
|
Wang Y, Lin H, Huang W, Liu Z, Chen Z, Zhao X, Ding T, Qin W, Shen Y. Curcumin Attenuates Periodontal Injury via Inhibiting Ferroptosis of Ligature-Induced Periodontitis in Mice. Int J Mol Sci 2023; 24:9835. [PMID: 37372983 DOI: 10.3390/ijms24129835] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Periodontitis is a chronic infectious disease characterized by the destruction of connective tissue and alveolar bone that eventually leads to tooth loss. Ferroptosis is an iron-dependent regulated cell death and is involved in ligature-induced periodontitis in vivo. Studies have demonstrated that curcumin has a potential therapeutic effect on periodontitis, but the mechanism is still unclear. The purpose of this study was to investigate the protective effects of curcumin on alleviating ferroptosis in periodontitis. Ligature-induced periodontal-diseased mice were used to detect the protective effect of curcumin. The level of superoxide dismutase (SOD), malondialdehyde (MDA) and total glutathione (GSH) in gingiva and alveolar bone were assayed. Furthermore, the mRNA expression levels of acsl4, slc7a11, gpx4 and tfr1 were measured using qPCR and the protein expression of ACSL4, SLC7A11, GPX4 and TfR1 were investigated by Western blot and immunocytochemistry (IHC). Curcumin reduced the level of MDA and increased the level of GSH. Additionally, curcumin was proven to significantly increase the expression levels of SLC7A11 and GPX4 and inhibit the expression of ACSL4 and TfR1. In conclusion, curcumin plays a protective role by inhibiting ferroptosis in ligature-induced periodontal-diseased mice.
Collapse
Affiliation(s)
- Yawei Wang
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Hongbing Lin
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Wenxin Huang
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Zixian Liu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Zhen Chen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Xuetao Zhao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tong Ding
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Wenguang Qin
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
20
|
Huang Z, Chen G, Wu H, Huang X, Xu R, Deng F, Li Y. Ebselen restores peri-implantitis-induced osteogenic inhibition via suppressing BMSCs ferroptosis. Exp Cell Res 2023; 427:113612. [PMID: 37116735 DOI: 10.1016/j.yexcr.2023.113612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
It is hard to reconstruct bone defects in peri-implantitis due to osteogenesis inhibited by excessive ROS. Ferroptosis, a recently identified regulated cell death characterized by iron- and reactive oxygen species- (ROS-) dependent lipid peroxidation, provides us with a new explanation. Our study aims to explore whether ferroptosis is involved in peri-implantitis-inhibited osteogenesis and confirm ebselen, an antioxidant with glutathione peroxidase (GPx)-like activity, could inhibit ferroptosis and promote osteogenesis in peri-implantitis. In this study, we used LPS to mimic the microenvironment of peri-implantitis. The osteogenic differentiation of bone-marrow-derived mesenchymal stem cells (BMSCs) was assessed by alkaline phosphatase (ALP), Alizarin Red S, and mRNA and protein expression of osteogenic-related markers. Ferroptosis index analysis included iron metabolism, ROS production, lipid peroxidation and mitochondrial morphological changes. Iron overload, reduced antioxidant capability, excessive ROS, lipid peroxidation and the characteristic mitochondrial morphological changes of ferroptosis were observed in LPS-treated BMSCs, and adding Ferrostatin-1 (Fer-1) restored the inhibitory effect of ferroptosis on osteogenic differentiation of BMSCs. Furthermore, ebselen ameliorated LPS-induced ferroptosis and osteogenic inhibition, which was reversed by erastin. Our results demonstrated that ferroptosis is involved in osteogenic inhibition in peri-implantitis and ebselen could attenuate osteogenic dysfunction of BMSCs via inhibiting ferroptosis.
Collapse
Affiliation(s)
- Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Guanhui Chen
- Department of Stomatology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Hiokuan Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Xiaoqiong Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Ruogu Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| |
Collapse
|
21
|
Xu Z, Tan R, Li X, Pan L, Ji P, Tang H. Development of a classification model and an immune-related network based on ferroptosis in periodontitis. J Periodontal Res 2023; 58:403-413. [PMID: 36653725 DOI: 10.1111/jre.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis is an immunoinflammatory disease characterized by irreversible periodontal attachment loss and bone destruction. Ferroptosis is a kind of immunogenic cell death that depends on the participation of iron ions and is involved in various inflammatory and immune processes. However, information regarding the relationship between ferroptosis and immunomodulation processes in periodontitis is extremely limited. The purpose of this study was to investigate the correlation between ferroptosis and immune responses in periodontitis. METHODS Gene expression profiles of gingivae were collected from the Gene Expression Omnibus data portal. After detecting differentially expressed ferroptosis-related genes (FRGs), we used univariate logistic regression analysis followed by logistic least absolute shrinkage and selection operator (LASSO) regression to establish a ferroptosis-related classification model in an attempt to accurately distinguish periodontitis gingival tissues from healthy samples. The infiltration level of immunocytes in periodontitis was then assessed through single-sample gene-set enrichment analysis. Subsequently, we screened out immune-related genes by weighted correlation network analysis and protein-protein interaction (PPI) analysis and constructed an immune-related network based on FRGs and immune-related genes. RESULTS A total of 24 differentially expressed FRGs were detected, and an 8-FRG combined signature constituted the classification model. The established model showed outstanding discriminating ability according to the results of receiver operating characteristic (ROC) curve analysis. In addition, the periodontitis samples had a higher degree of immunocyte infiltration. Activated B cells had the strongest positive correlation while macrophages had a strong negative correlation with certain FRGs, and we found that XBP1, ALOX5 and their interacting genes might be crucial genes in the immune-related network. CONCLUSIONS The FRG-based classification model had a satisfactory determination ability, which could bring new insights into the pathogenesis of periodontitis. Those genes in the immune-related network, especially hub genes along with XBP1 and ALOX5, would have the potential to serve as promising targets of immunomodulatory treatments for periodontitis.
Collapse
Affiliation(s)
- Zhihong Xu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,The People's Hospital of Dadukou District, Chongqing, China
| | - Ruolan Tan
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Lanlan Pan
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Han Tang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Pan S, Li Y, He H, Cheng S, Li J, Pathak JL. Identification of ferroptosis, necroptosis, and pyroptosis-associated genes in periodontitis-affected human periodontal tissue using integrated bioinformatic analysis. Front Pharmacol 2023; 13:1098851. [PMID: 36686646 PMCID: PMC9852864 DOI: 10.3389/fphar.2022.1098851] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction: Periodontitis is a chronic inflammatory oral disease that destroys soft and hard periodontal support tissues. Multiple cell death modes including apoptosis, necroptosis, pyroptosis, and ferroptosis play a crucial role in the pathogenicity of inflammatory diseases. This study aimed to identify genes associated with ferroptosis, necroptosis, and pyroptosis in different cells present in the periodontium of periodontitis patients. Methods: Gingival tissues' mRNA sequencing dataset GSE173078 of 12 healthy control and 12 periodontitis patients' and the microarray dataset GSE10334 of 63 healthy controls and 64 periodontitis patients' were obtained from Gene Expression Omnibus (GEO) database. A total of 910 differentially expressed genes (DEGs) obtained in GSE173078 were intersected with necroptosis, pyroptosis, and ferroptosis-related genes to obtain the differential genes associated with cell death (DCDEGs), and the expression levels of 21 differential genes associated with cell death were verified with dataset GSE10334. Results: Bioinformatic analysis revealed 21 differential genes associated with cell death attributed to ferroptosis, pyroptosis, and necroptosis in periodontitis patients compared with healthy controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that 21 differential genes associated with cell death were related to various cellular and immunological pathways including inflammatory responses, necroptosis, and osteoclast differentiation. Additionally, the single-cell RNA (scRNA) sequencing data GSE171213 of 4 healthy controls and 5 periodontitis patients' periodontal tissue was analyzed to obtain cell clustering and cell types attributed to differential genes associated with cell death. We found that among 21 DCDEGs, SLC2A3, FPR2, TREM1, and IL1B were mainly upregulated in neutrophils present in the periodontium of periodontitis patients. Gene overlapping analysis revealed that IL-1B is related to necroptosis and pyroptosis, TREM1 and FPR2 are related to pyroptosis, and SLC2A3 is related to ferroptosis. Finally, we utilized the CIBERSORT algorithm to assess the association between DCDEGs and immune infiltration phenotypes, based on the gene expression profile of GSE10334. The results revealed that the upregulated SLC2A3, FPR2, TREM1, and IL1B were positively correlated with neutrophil infiltration in the periodontium. Discussion: The findings provide upregulated SLC2A3, FPR2, TREM1, and IL1B in neutrophils as a future research direction on the mode and mechanism of cell death in periodontitis and their role in disease pathogenicity.
Collapse
Affiliation(s)
| | | | | | | | - Jiang Li
- *Correspondence: Janak L. Pathak, ; Jiang Li,
| | | |
Collapse
|