1
|
Li W, Alimujiang A. METTL3 Promotes Osteogenic Differentiation of Human Periodontal Ligament Stem Cells Under the Inflammatory Microenvironment Through the miR-141-3p/ZEB1 Axis. Cell Biochem Biophys 2025; 83:1771-1783. [PMID: 39681812 DOI: 10.1007/s12013-024-01586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 12/18/2024]
Abstract
Periodontitis, a chronic inflammatory condition, often results in gum tissue damage and can lead to tooth loss. This study explores the role of methyltransferase-like 3 (METTL3) in promoting osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) within an inflammatory microenvironment. An inflammatory environment was simulated in hPDLSCs using lipopolysaccharide (LPS). Both adipogenic and osteogenic differentiation capacities of hPDLSCs were assessed. In LPS-treated hPDLSCs, METTL3 was overexpressed, and alkaline phosphatase (ALP) staining was performed alongside measurements of ALP activity, pro-inflammatory cytokines, METTL3, miR-141-3p, pri-miR-141, Zinc finger E-box binding homeobox 1 (ZEB1), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN). N6-methyladenosine (m6A) and pri-miR-141 levels were quantified, and the binding of miR-141-3p to ZEB1 was analyzed. The results demonstrated that osteogenic differentiation in hPDLSCs was diminished under inflammatory conditions, coinciding with downregulated METTL3 expression. However, METTL3 overexpression enhanced osteogenic differentiation. METTL3 facilitated the conversion of pri-miR-141 into miR-141-3p via m6A modification, resulting in increased miR-141-3p levels, which in turn suppressed ZEB1 expression. Inhibition of miR-141-3p or overexpression of ZEB1 partially counteracted the positive effects of METTL3 on osteogenic differentiation. In conclusion, these findings suggest that METTL3-mediated m6A modification promotes osteogenic differentiation of hPDLSCs within an inflammatory microenvironment through the miR-141-3p/ZEB1 axis.
Collapse
Affiliation(s)
- Weijia Li
- School of Stomatology, Jinan University, Guangzhou, China
| | | |
Collapse
|
2
|
Liu Y, Chen L, Chang L, Wang S. EZH1-DNMT1 axis inhibits the expression of TFPI2 to promote osteogenic differentiation of periosteum-derived stem cells and accelerate fracture repair. Tissue Cell 2025; 93:102759. [PMID: 39892329 DOI: 10.1016/j.tice.2025.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND The periosteum lies in a dynamic environment with a niche of periosteum-derived stem cells (PDSCs) for their reparative needs. Here, we report that epigenetic repression of tissue factor pathway inhibitor 2 (TFPI2) mediates the osteogenic potential of PDSCs and the ensuing fracture repair. METHODS Significantly overexpressed TFPI2 after fracture was screened using the GSE152677 dataset, and the expression of TFPI2 in bone tissues of post-fracture mice was verified by RT-qPCR and immunohistochemistry. Loss- and gain-of-function assays were conducted using adenoviruses. Primary mouse PDSCs were extracted, and their osteogenic potential was assessed using ALP staining, alizarin red staining, and western blot analysis. The epigenetic modifiers of TFPI2 were verified using ChIP-qPCR, Co-IP, and qMSP. RESULTS TFPI2 expression was elevated after fracture, whereas enhancer of zeste homolog 1 (EZH1) expression was significantly downregulated. Inhibition of TFPI2 expression promoted fracture repair in mice, which was correlated with enhanced osteogenic differentiation of PDSCs. EZH1 repressed TFPI2 expression by modifying trimethylation of histone H3 at lysine 27 (H3K27me3). EZH1 promoted TFPI2 promoter DNA methylation by recruiting DNA-methyltransferase 1 (DNMT1), leading to transcriptional repression of TFPI2. Overexpression of DNMT1 and EZH1 significantly promoted recovery in fractured mice, which was reversed by inhibition of TFPI2. CONCLUSIONS These results suggest that artificial overexpression EZH1 mediates TFPI2 inhibition by recruiting DNMT1, promoting osteogenic differentiation of PDSCs to accelerate fracture repair.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150000, PR China
| | - Lu Chen
- Department of Orthopaedics, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150000, PR China
| | - Liang Chang
- Department of Orthopaedics, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150000, PR China
| | - Shuren Wang
- Department of Orthopaedics, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150000, PR China.
| |
Collapse
|
3
|
Hu M, Fan Z. Role and mechanisms of histone methylation in osteogenic/odontogenic differentiation of dental mesenchymal stem cells. Int J Oral Sci 2025; 17:24. [PMID: 40133254 PMCID: PMC11937254 DOI: 10.1038/s41368-025-00353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/01/2025] [Accepted: 02/11/2025] [Indexed: 03/27/2025] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are pivotal for tooth development and periodontal tissue health and play an important role in tissue engineering and regenerative medicine because of their multidirectional differentiation potential and self-renewal ability. The cellular microenvironment regulates the fate of stem cells and can be modified using various optimization techniques. These methods can influence the cellular microenvironment, activate disparate signaling pathways, and induce different biological effects. "Epigenetic regulation" refers to the process of influencing gene expression and regulating cell fate without altering DNA sequences, such as histone methylation. Histone methylation modifications regulate pivotal transcription factors governing DMSCs differentiation into osteo-/odontogenic lineages. The most important sites of histone methylation in tooth organization were found to be H3K4, H3K9, and H3K27. Histone methylation affects gene expression and regulates stem cell differentiation by maintaining a delicate balance between major trimethylation sites, generating distinct chromatin structures associated with specific downstream transcriptional states. Several crucial signaling pathways associated with osteogenic differentiation are susceptible to modulation via histone methylation modifications. A deeper understanding of the regulatory mechanisms governing histone methylation modifications in osteo-/odontogenic differentiation and immune-inflammatory responses of DMSCs will facilitate further investigation of the epigenetic regulation of histone methylation in DMSC-mediated tissue regeneration and inflammation. Here is a concise overview of the pivotal functions of epigenetic histone methylation at H3K4, H3K9, and H3K27 in the regulation of osteo-/odontogenic differentiation and renewal of DMSCs in both non-inflammatory and inflammatory microenvironments. This review summarizes the current research on these processes in the context of tissue regeneration and therapeutic interventions.
Collapse
Affiliation(s)
- Meijun Hu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Long L, Zhang C, He Z, Liu O, Yang H, Fan Z. LncRNA NR_045147 modulates osteogenic differentiation and migration in PDLSCs via ITGB3BP degradation and mitochondrial dysfunction. Stem Cells Transl Med 2025; 14:szae088. [PMID: 39674578 PMCID: PMC11878762 DOI: 10.1093/stcltm/szae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/16/2024] [Indexed: 12/16/2024] Open
Abstract
Periodontitis is an inflammation of the alveolar bone and soft tissue surrounding the teeth. Although mesenchymal stem cells (MSCs) have been implicated in periodontal regeneration, the mechanisms by which they promote osteogenesis remain unclear. We examined whether epigenetic modifications mediated by the long-noncoding RNA (lncRNA) NR_045147, which plays a crucial role in cancer, influence the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Alkaline phosphatase staining, alizarin red staining, and western blotting were used to detect the effects of NR_045147 on PDLSC osteogenic differentiation. Scratch migration and transwell chemotaxis assays were used to evaluate the effects of NR_045147 on PDLSC migration. Mitochondrial function was evaluated via Seahorse XF analysis to measure changes in cellular respiration upon manipulation of NR_045147 expression. Ubiquitination assays were performed to examine the protein stability and degradation pathways affected by the NR_045147-MDM2 interaction. An in vivo nude rat calvarial defect model was established and gene-edited PDLSCs were re-implanted to examine the osteogenic effects of NR_045147. NR_045147 significantly reduced PDLSC osteogenic differentiation and migration ability both in vitro and in vivo. Under inflammatory conditions, the loss of NR_045147 rescued osteogenesis. NR_045147 significantly blocked the expression of integrin beta3-binding protein (ITGB3BP). Mechanistically, NR_045147 promoted the ITGB3BP-MDM2 interaction, thus increasing ITGB3BP ubiquitination and degradation. NR_045147 regulated PDLSC mitochondrial respiration and ITGB3BP upregulation efficiently promoted their osteogenic differentiation and migration ability. Concluding, NR_045147 downregulation enhances PDLSC osteogenic differentiation and migration, connects changes in cellular metabolism to functional outcomes via mitochondrial respiration, and promotes ITGB3BP degradation by mediating its interaction with MDM2.
Collapse
Affiliation(s)
- Lujue Long
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’s Republic of China
| | - Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’s Republic of China
| | - Zhengquan He
- Department of Orthodontics, Changsha Stomatology Hospital, Changsha, Hunan, People’s Republic of China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-Maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, People’s Republic of China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’s Republic of China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People’s Republic of China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, People’s Republic of China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Long L, Zhang C, He Z, Liu O, Yang H, Fan Z. LncRNA NR_045147 modulates osteogenic differentiation and migration in PDLSCs via ITGB3BP degradation and mitochondrial dysfunction. Stem Cells Transl Med 2025; 14. [DOI: 2.doi: 10.1093/stcltm/szae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025] Open
Abstract
Abstract
Periodontitis is an inflammation of the alveolar bone and soft tissue surrounding the teeth. Although mesenchymal stem cells (MSCs) have been implicated in periodontal regeneration, the mechanisms by which they promote osteogenesis remain unclear. We examined whether epigenetic modifications mediated by the long-noncoding RNA (lncRNA) NR_045147, which plays a crucial role in cancer, influence the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Alkaline phosphatase staining, alizarin red staining, and western blotting were used to detect the effects of NR_045147 on PDLSC osteogenic differentiation. Scratch migration and transwell chemotaxis assays were used to evaluate the effects of NR_045147 on PDLSC migration. Mitochondrial function was evaluated via Seahorse XF analysis to measure changes in cellular respiration upon manipulation of NR_045147 expression. Ubiquitination assays were performed to examine the protein stability and degradation pathways affected by the NR_045147–MDM2 interaction. An in vivo nude rat calvarial defect model was established and gene-edited PDLSCs were re-implanted to examine the osteogenic effects of NR_045147. NR_045147 significantly reduced PDLSC osteogenic differentiation and migration ability both in vitro and in vivo. Under inflammatory conditions, the loss of NR_045147 rescued osteogenesis. NR_045147 significantly blocked the expression of integrin beta3-binding protein (ITGB3BP). Mechanistically, NR_045147 promoted the ITGB3BP-MDM2 interaction, thus increasing ITGB3BP ubiquitination and degradation. NR_045147 regulated PDLSC mitochondrial respiration and ITGB3BP upregulation efficiently promoted their osteogenic differentiation and migration ability. Concluding, NR_045147 downregulation enhances PDLSC osteogenic differentiation and migration, connects changes in cellular metabolism to functional outcomes via mitochondrial respiration, and promotes ITGB3BP degradation by mediating its interaction with MDM2.
Collapse
Affiliation(s)
- Lujue Long
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing ,
| | - Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing ,
| | - Zhengquan He
- Department of Orthodontics, Changsha Stomatology Hospital , Changsha, Hunan ,
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-Maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University , Changsha, Hunan ,
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing ,
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology , Beijing ,
- Beijing Laboratory of Oral Health, Capital Medical University , Beijing ,
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences , Beijing ,
| |
Collapse
|
6
|
Zhao DZ, Yang RL, Wei HX, Yang K, Yang YB, Wang NX, Zhang Q, Chen F, Zhang T. Advances in the research of immunomodulatory mechanism of mesenchymal stromal/stem cells on periodontal tissue regeneration. Front Immunol 2025; 15:1449411. [PMID: 39830512 PMCID: PMC11739081 DOI: 10.3389/fimmu.2024.1449411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Periodontal disease is a highly prevalent disease worldwide that seriously affects people's oral health, including gingivitis and periodontitis. Although the current treatment of periodontal disease can achieve good control of inflammation, it is difficult to regenerate the periodontal supporting tissues to achieve a satisfactory therapeutic effect. In recent years, due to the good tissue regeneration ability, the research on Mesenchymal stromal/stem cells (MSCs) and MSC-derived exosomes has been gradually deepened, especially its ability to interact with the microenvironment of the body in the complex immunoregulatory network, which has led to many new perspectives on the therapeutic strategies for many diseases. This paper systematically reviews the immunomodulatory (including bone immunomodulation) properties of MSCs and their role in the periodontal inflammatory microenvironment, summarizes the pathways and mechanisms by which MSCs and MSC-EVs have promoted periodontal regeneration in recent years, lists potential areas for future research, and describes the issues that should be considered in future basic research and the direction of development of "cell-free therapies" for periodontal regeneration.
Collapse
Affiliation(s)
- De-Zhi Zhao
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Rui-Lin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Han-Xiao Wei
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Kang Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi-Bing Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Nuo-Xin Wang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fang Chen
- Department of Prosthetics, Affiliated Stomatology Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
7
|
Erturk PA, Altuntas S, Irmak G, Buyukserin F. Fabrication of anodic and atomic layer deposition-alumina coated titanium implants for effective osteointegration applications. J Biomed Mater Res A 2025; 113:e37792. [PMID: 39237474 DOI: 10.1002/jbm.a.37792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Biomimicking the chemical, mechanical, and topographical properties of bone on an implant model is crucial to obtain rapid and effective osteointegration, especially for the large-area fractures of the skeletal system. Titanium-based biomaterials are more frequently preferred in clinical use in such cases and coating these materials with oxide layers having chemical/nanotopographic properties to enhance osteointegration and implantation success rates has been studied for a long time. The objective of this study is to examine the high and rapid mineralization potential of anodized aluminum oxide (AAO) coated and atomic layer deposition (ALD)-alumina coated titanium substrates on large deformation areas with difficult spontaneous healing. AAO-coated titanium (AAO@Ti) substrates were fabricated via anodization technique in different electrolytes and their osteogenic potential was analyzed by comparing them to the bare titanium surface as a control. In order to investigate the effect of the ionic characters gained by the surfaces through anodization, the oxidized nanotopographic substrates were additionally coated with an ultrathin alumina layer via ALD (ALD@AAO@Ti), which is a sensitive and conformal coating vapor deposition technique. Besides, a bare titanium sample was also coated with pure alumina by ALD (ALD@Ti) to investigate the effect of nanoscale surface morphology. XPS analysis after ALD coating showed that the ionic character of each surface fabricated by anodization was successfully suppressed. In vitro studies demonstrated that, among the substrates investigated, the mineralization capacity of MG-63 osteosarcoma cells were highest when incubated on ALD-treated and bare AAO@Ti samples that were anodized in phosphoric acid (H3PO4_AAO@Ti and ALD@H3PO4_AAO@Ti). Mineralization on these substrates also increased consistently beginning from day 2 to day 21. Moreover, immunocytochemistry for osteopontin (OPN) demonstrated the highest expression for ALD@H3PO4_AAO@Ti, followed by the H3PO4_AAO@Ti sample. Consequently, it was observed that, although ALD treatment improves cellular characteristics on all samples, effective mineralization requires more than a simple ALD coating or the presence of a nanostructured topography. Overall, ALD@H3PO4_AAO@Ti substrates can be considered as an implant alternative with its enhanced osteogenic differentiation potential and rapid mineralization capacity.
Collapse
Affiliation(s)
| | - Sevde Altuntas
- Tissue Engineering Department, Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul, Turkey
| | - Gulseren Irmak
- Department of Bioengineering, Malatya Turgut Ozal University, Malatya, Turkey
| | - Fatih Buyukserin
- Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| |
Collapse
|
8
|
Qin Q, Yang H, Guo R, Zheng Y, Huang Y, Jin L, Fan Z, Li W. FAM96B negatively regulates FOSL1 to modulate the osteogenic differentiation and regeneration of periodontal ligament stem cells via ferroptosis. Stem Cell Res Ther 2024; 15:471. [PMID: 39696611 DOI: 10.1186/s13287-024-04083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Periodontal ligament stem cell (PDLSC)-based therapy is one of the methods to assist bone regeneration. Understanding the functional regulation of PDLSCs and the mechanisms involved is a crucial issue in bone regeneration. This study aimed to explore the roles of the family with sequence similarity 96 member B (FAM96B) in the functional regulation of PDLSCs. METHODS To assess the osteogenic differentiation of PDLSCs, the alkaline phosphatase (ALP) activity assay, Alizarin red staining, quantitative calcium analysis, and osteogenic marker detection were conducted. Transplantation PDLSCs under the dorsum of nude mice and into the rat calvarial defects were also performed. Then, FAM96B-overexpressed PDLSCs were used for RNA-sequencing and bioinformatic analysis. To evaluate the ferroptosis of PDLSCs, cytosolic reactive oxygen species (ROS), expression of glutathione peroxidase 4 (GPX4), mitochondrial morphology and functions including the mitochondrial ROS, mitochondria membrane potential, and mitochondrial respiration were detected. RESULTS The osteogenic indicators ALP activity, level of mineralization, and osteocalcin expression were decreased in PDLSCs by FAM96B, which demonstrated that FAM96B inhibited the osteogenic differentiation of PDLSCs. FAM96B knockdown promoted the new bone formation of PDLSCs subcutaneously transplanted to the dorsum of nude mice. Then, related biological functions were detected by the RNA-sequencing and the ferroptosis was focused. FAM96B enhanced the cytosolic ROS level and inhibited the expression of GPX4 and mitochondrial functions in PDLSCs. Hence, FAM96B promoted the ferroptosis of PDLSCs. Meanwhile, we found that FAM96B inhibition upregulated the target gene FOS like 1, AP-1 transcription factor subunit (FOSL1) expression and FOSL1 promoted the osteogenic differentiation of PDLSCs in vitro. FOSL1 also promoted the new bone formation of PDLSCs transplanted subcutaneously to the dorsum of nude mice and transplanted into rat calvarial defects. Then, the inhibitory effect of FOSL1 on the ferroptosis was confirmed. CONCLUSIONS FAM96B depletion promoted the osteogenic differentiation and suppressed the ferroptosis of PDLSCs. FAM96B negatively regulated the downstream gene FOSL1 and FOSL1 promoted the osteogenic differentiation of PDLSCs via the ferroptosis. Hence, our findings provided a foundation for understanding the FAM96B-FOSL1 axis acting as a target for MSC mediated bone regeneration.
Collapse
Affiliation(s)
- Qianyi Qin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Haoqing Yang
- Laboratory of Molecular Signalling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Runzhi Guo
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Luyuan Jin
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhipeng Fan
- Laboratory of Molecular Signalling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, 100050, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
9
|
Li Y, Guo X, Yao H, Zhang Z, Zhao H. Epigenetic control of dental stem cells: progress and prospects in multidirectional differentiation. Epigenetics Chromatin 2024; 17:37. [PMID: 39623487 PMCID: PMC11613947 DOI: 10.1186/s13072-024-00563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Dental stem cells, with their exceptional proliferative capacity and multidirectional differentiation potential, hold significant promise for dental and oral tissue regeneration. Epigenetic inheritance, which involves stable and heritable changes in gene expression and function without alterations to the DNA sequence, plays a critical role in numerous biological processes. Environmental factors are particularly influential in epigenetic inheritance, as variations in exposure can lead to changes in epigenetic modifications that subsequently impact gene expression. Epigenetic mechanisms are widely involved in processes such as bone homeostasis, embryogenesis, stem cell fate determination, and disease development. Recently, the epigenetic regulation of dental stem cells has attracted considerable research attention. This paper reviews studies focused on the epigenetic mechanisms governing the multidirectional differentiation of dental stem cells.
Collapse
Affiliation(s)
- Yan Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xinwei Guo
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hua Yao
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhimin Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Hongyan Zhao
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
10
|
Du Y, Guan X, Zhu Y, Jin S, Liu J. LncRNA in periodontal tissue-derived cells on osteogenic differentiation in the periodontitis field. Oral Dis 2024; 30:4087-4097. [PMID: 38655682 DOI: 10.1111/odi.14970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/06/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Periodontitis can lead to the destruction of periodontal tissues and potentially tooth loss. Numerous periodontal tissue-derived cells display osteogenic differentiation potential. The presence of differentially expressed long non-coding RNAs (lncRNAs) in these cells indicate their ability to regulate the process of osteogenic differentiation. We aim to elucidate the various lncRNA-mediated regulatory mechanisms in the osteogenic differentiation of periodontal tissue-derived cells in the field of periodontitis at epigenetic modification, transcriptional, and post-transcriptional levels. SUBJECTS AND METHODS We systematically searched the PubMed, Web of Science, and ScienceDirect databases to identify relevant literature in the field of periodontitis discussing the role of lncRNAs in regulating osteogenic differentiation of periodontal tissue-derived cells. The identified literature was subsequently summarized for comprehensive review. RESULTS In this review, we have comprehensively summarized the regulatory mechanisms of lncRNAs in the osteogenic differentiation of periodontal tissue-derived cells in the field of periodontitis and discussed how these lncRNAs provide novel perspectives for understanding the pathogenesis and progression of periodontitis. CONCLUSION These results indicate the pivotal role of lncRNAs as regulators in the osteogenic differentiation of periodontal tissue-derived cells, providing a solid basis for future investigations on the role of lncRNAs in the periodontitis field.
Collapse
Affiliation(s)
- Yuanhang Du
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Xiaoyan Guan
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Yinci Zhu
- School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Suhan Jin
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Jianguo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Oral Diseases Research, Higher Education Institution, Zunyi, China
| |
Collapse
|
11
|
Xiang M, Liu Y, Guo Q, Liao C, Xiao L, Xiang M, Guan X, Liu J. Metformin enhances the therapeutic effects of extracellular vesicles derived from human periodontal ligament stem cells on periodontitis. Sci Rep 2024; 14:19940. [PMID: 39198490 PMCID: PMC11358454 DOI: 10.1038/s41598-024-70688-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Metformin has shown outstanding anti-inflammatory and osteogenic abilities. Mesenchymal stem cell-derived extracellular vesicles (EVs) reveal promising therapeutic potency by carrying various biomolecules. This study explored the effects of metformin on the therapeutic potential of EVs derived from human periodontal ligament stem cells (PDLSCs) for periodontitis. PDLSCs were cultured in osteogenic medium with or without metformin, and the supernatant was then collected separately to extract EVs and metformin-treated EVs (M-EVs). After identifying the characteristics, we evaluated the anti-inflammatory and osteogenic effects of EVs and M-EVs in vivo and in vitro. Osteogenic differentiation of PDLSCs was markedly enhanced after metformin treatment, and the effect was dramatically inhibited by GW4896, an inhibitor of EVs' secretion. Metformin significantly increased EVs' yields and improved their effects on cell proliferation, migration, and osteogenic differentiation. Moreover, metformin significantly enhanced the osteogenic ability of EVs on inflammatory PDLSCs. Animal experiments revealed that alveolar bone resorption was dramatically reduced in the EVs and M-EVs groups when compared to the periodontitis group, while the M-EVs group showed the lowest levels of alveolar bone loss. Metformin promoted the osteogenic differentiation of PDLSCs partly through EVs pathway and significantly enhanced the secretion of PDLSCs-EVs with superior pro-osteogenic and anti-inflammatory potential, thus improving EVs' therapeutic potential on periodontitis.
Collapse
Affiliation(s)
- Mingli Xiang
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Yulin Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Qiushuang Guo
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Meiling Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Jianguo Liu
- GuiZhou University Medical College, Guiyang, 550025, Guizhou Province, China.
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China.
| |
Collapse
|
12
|
La Sala L, Carlini V, Mandò C, Anelli GM, Pontiroli AE, Trabucchi E, Cetin I, Abati S. Maternal Salivary miR-423-5p Is Linked to Neonatal Outcomes and Periodontal Status in Cardiovascular-High-Risk Pregnancies. Int J Mol Sci 2024; 25:9087. [PMID: 39201773 PMCID: PMC11354562 DOI: 10.3390/ijms25169087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Periodontal disease (PD) during pregnancy may trigger systemic inflammation, increasing the risk of developing cardiometabolic disease (CMD). As a consequence, PD may result in the activation of cellular and molecular pathways, affecting the disease course and pregnancy outcome. Although microRNAs (miRNAs) are considered ideal biomarkers for many diseases, few studies have investigated salivary miRNAs and their role in pregnancy or neonatal outcomes. In this study, we sought to investigate the associations between salivary miRNAs of pregnant women with oral diseases and their effects on neonatal outcomes. Eleven (n = 11) salivary miRNAs from a cohort of pregnant women with oral diseases (n = 32; oral health, H; gingivitis, G; and periodontitis, P) were detected using a previous profiling analysis with an FDR < 0.20 and a fold change (FC) < 0.5 or FC > 2 for the most highly expressed miRNAs. Spearman correlations were performed for 11 salivary microRNAs associated with oral-derived inflammation, which could affect neonatal outcomes during pregnancies at risk for cardiometabolic disease (CMD), defined by the presence of a high pregestational BMI. In addition, ROC curves demonstrated the diagnostic accuracy of the markers used. Upregulation of miR-423-5p expression and a decrease in miR-27b-3p expression were detected in the P-group (p < 0.05), and ROC analysis revealed the diagnostic accuracy of miR-423-5p for discriminating oral diseases, such as gingivitis versus periodontitis (P vs. G, AUC = 0.78, p < 0.05), and for discriminating it from the healthy oral cavity (P vs. H, AUC = 0.9, p < 0.01). In addition, miR-27b-3p and miR-622 were also able to discriminate the healthy group from the P-group (AUC = 0.8, p < 0.05; AUC = 0.8, p < 0.05). miR-483-5p was able to discriminate between the G-group (AUC = 0.9, p < 0.01) and the P-group (AUC = 0.8, p < 0.05). These data support the role of salivary miRNAs as early biomarkers for neonatal outcomes in pregnant women with periodontal disease at high risk for CMD and suggest that there is cross-talk between salivary miRNAs and subclinical systemic inflammation.
Collapse
Affiliation(s)
- Lucia La Sala
- Department Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- IRCCS MultiMedica, 20138 Milan, Italy;
| | | | - Chiara Mandò
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (C.M.); (G.M.A.)
| | - Gaia Maria Anelli
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (C.M.); (G.M.A.)
| | | | | | - Irene Cetin
- Department of Mother, Child and Neonate, IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Silvio Abati
- Department of Dentistry, Vita-Salute San Raffaele University, Milan 20132, Italy;
| |
Collapse
|
13
|
Li N, Wang J, Feng G, Liu Y, Shi Y, Wang Y, Chen L. Advances in biomaterials for oral-maxillofacial bone regeneration: spotlight on periodontal and alveolar bone strategies. Regen Biomater 2024; 11:rbae078. [PMID: 39055303 PMCID: PMC11272181 DOI: 10.1093/rb/rbae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
The intricate nature of oral-maxillofacial structure and function, coupled with the dynamic oral bacterial environment, presents formidable obstacles in addressing the repair and regeneration of oral-maxillofacial bone defects. Numerous characteristics should be noticed in oral-maxillofacial bone repair, such as irregular morphology of bone defects, homeostasis between hosts and microorganisms in the oral cavity and complex periodontal structures that facilitate epithelial ingrowth. Therefore, oral-maxillofacial bone repair necessitates restoration materials that adhere to stringent and specific demands. This review starts with exploring these particular requirements by introducing the particular characteristics of oral-maxillofacial bones and then summarizes the classifications of current bone repair materials in respect of composition and structure. Additionally, we discuss the modifications in current bone repair materials including improving mechanical properties, optimizing surface topography and pore structure and adding bioactive components such as elements, compounds, cells and their derivatives. Ultimately, we organize a range of potential optimization strategies and future perspectives for enhancing oral-maxillofacial bone repair materials, including physical environment manipulation, oral microbial homeostasis modulation, osteo-immune regulation, smart stimuli-responsive strategies and multifaceted approach for poly-pathic treatment, in the hope of providing some insights for researchers in this field. In summary, this review analyzes the complex demands of oral-maxillofacial bone repair, especially for periodontal and alveolar bone, concludes multifaceted strategies for corresponding biomaterials and aims to inspire future research in the pursuit of more effective treatment outcomes.
Collapse
Affiliation(s)
- Nayun Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuqing Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifan Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
14
|
Shi L, Ye X, Zhou J, Fang Y, Yang J, Meng M, Zou J. Roles of DNA methylation in influencing the functions of dental-derived mesenchymal stem cells. Oral Dis 2024; 30:2797-2806. [PMID: 37856651 DOI: 10.1111/odi.14770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE DNA methylation as intensively studied epigenetic regulatory mechanism exerts pleiotropic effects on dental-derived mesenchymal stem cells (DMSCs). DMSCs have self-renewal and multidifferentiation potential. Here, this review aims at summarizing the research status about application of DMSCs in tissue engineering and clarifying the roles of DNA methylation in influencing the functions of DMSCs, with expectation of paving the way for its in-depth exploration in tissue engineering. METHOD The current research status about influence of DNA methylation in DMSCs was acquired by MEDLINE (through PubMed) and Web of Science using the keywords 'DNA methylation', 'dental-derived mesenchymal stem cells', 'dental pulp stem cells', 'periodontal ligament stem cells', 'dental follicle stem cells', 'stem cells from the apical papilla', 'stem cells from human exfoliated deciduous teeth', and 'gingival-derived mesenchymal stem cells'. RESULTS This review indicates DNA methylation affects DMSCs' differentiation and function through inhibiting or enhancing the expression of specific gene resulted by DNA methylation-related genes or relevant inhibitors. CONCLUSION DNA methylation can influence DMSCs in aspects of osteogenesis, adipogenesis, immunomodulatory function, and so on. Yet, the present studies about DNA methylation in DMSCs commonly focus on dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs). Little has been reported for other DMSCs.
Collapse
Affiliation(s)
- Liyan Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwen Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiazhen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingmei Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|