1
|
Pearse IS, LoPresti E, Baldwin BG, Krimmel B. The evolution of glandularity as a defense against herbivores in the tarweed clade. AMERICAN JOURNAL OF BOTANY 2024; 111:e16281. [PMID: 38334065 DOI: 10.1002/ajb2.16281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 02/10/2024]
Abstract
PREMISE Glandular trichomes are implicated in direct and indirect defense of plants. However, the degree to which glandular and non-glandular trichomes have evolved as a consequence of herbivory remains unclear, because their heritability, their association with herbivore resistance, their trade-offs with one another, and their association with other functions are rarely quantified. METHODS We conducted a phylogenetic comparison of trichomes and herbivore resistance against the generalist caterpillar, Heliothis virescens, among tarweed species (Asteraceae: Madiinae) and a genetic correlation study comparing those same traits among maternal half-sibs of three tarweed species. RESULTS Within a tarweed species, we found no evidence that herbivore growth rate decreased on tarweed individuals or maternal sib groups with more glandularity or denser trichomes. However, tarweed species with more glandularity and fewer non-glandular trichomes resulted in slower-growing herbivores. Likewise, a trade-off between glandular and non-glandular trichomes was apparent among tarweed species, but not among individuals or sib groups within a species. CONCLUSIONS Our results suggest that this key herbivore does not select for trichomes as a direct defense in tarweed species. However, trichomes differed substantially among species and likely affect herbivore pressure on those species. Our results demonstrate that trade-offs among plant traits, as well as inference on the function of those traits, can depend on scale.
Collapse
Affiliation(s)
- Ian S Pearse
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | - Eric LoPresti
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Bruce G Baldwin
- University of California-Berkeley, Jepson Herbarium and Department of Integrative Biology, Berkeley, CA, USA
| | | |
Collapse
|
2
|
Pearse IS, LoPresti E, Schaeffer RN, Wetzel WC, Mooney KA, Ali JG, Ode PJ, Eubanks MD, Bronstein JL, Weber MG. Generalising indirect defence and resistance of plants. Ecol Lett 2020; 23:1137-1152. [DOI: 10.1111/ele.13512] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/16/2019] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Ian S. Pearse
- U.S. Geological Survey Fort Collins Science Center 2150 Centre Ave #C Ft Collins CO 80526 USA
| | - Eric LoPresti
- Department of Plant Biology Evolutionary Biology & Behavior Program Michigan State University East Lansing MI USA
| | | | - William C. Wetzel
- Department of Entomology and Ecology Evolutionary Biology & Behavior Program Michigan State University East Lansing MI USA
| | - Kailen A. Mooney
- Ecology & Evolutionary Biology University of California Irvine, CA USA
| | - Jared G. Ali
- Department of Entomology Penn State University State College PA USA
| | - Paul J. Ode
- Graduate Degree Program in Ecology Department of Bioagricultural Science and Pest Management Colorado State University Fort Collins CO 80523 USA
| | - Micky D. Eubanks
- Department of Entomology Texas A&M University College Station TX USA
| | - Judith L. Bronstein
- Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ 85721 USA
| | - Marjorie G. Weber
- Department of Plant Biology Evolutionary Biology & Behavior Program Michigan State University East Lansing MI USA
| |
Collapse
|
3
|
Hafeez M, Qasim M, Ali S, Yousaf HK, Waqas M, Ali E, Ahmad MA, Jan S, Bashir MA, Noman A, Wang M, Gharmh HA, Khan KA. Expression and functional analysis of P450 gene induced tolerance/resistance to lambda-cyhalothrin in quercetin fed larvae of beet armyworm Spodoptera exigua (Hübner). Saudi J Biol Sci 2020; 27:77-87. [PMID: 31889821 PMCID: PMC6933212 DOI: 10.1016/j.sjbs.2019.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/04/2022] Open
Abstract
Beet armyworm, Spodoptera exigua (Hübner) is an agronomical important and most devastating polyphagous pest that damages a variety of crops around the globe including China. Quercetin is one of the abundant dietary flavonoids and the important defense allelochemicals in plants. Therefore, the changes in insect detoxification enzymes activities in response to plants allelochemicals may result increased the sensitivity to insecticides. In this study, we examined the induced effect of quercetin on larval tolerance to lambda-cyhalothrin in S. exigua. Application of cytochrome P450 inhibitor piperonyl butoxide (PBO) significantly synergized the lambda-cyhalothrin toxicity in quercetin-fed S. exigua larvae. Moreover, larval weight significantly reduced in quercetin, lambda-cyhalothrin, and quercetin + lambda-cyhalothrin treatment. Furthermore, our results showed that the P450 detoxification enzyme effectively increased in all treatments as compared to the control. Quantitative Real-time PCR analysis revealed that expression level of CYP6AE10 significantly upregulated in larvae treated with quercetin, lambda-cyhalothrin and quercetin + lambda-cyhalothrin in the midgut and fat body respectively. In addition, RNAi mediated knockdown of CYP6AE10 in S. exigua larvae significantly decreased the transcription level of target cytochrome P450 gene followed by the exposure with quercetin, lambda-cyhalothrin, and quercetin + lambda-cyhalothrin. Similarly, the knockdown of CYP6AE10 by the injection of dsRNA led to increased mortality after the treatment with respective chemicals. Overall, these data showed that P450s might possibly play an important role in the metabolic adaptation of S. exigua larvae to its host plant defense allelochemicals as well as insecticides. In conclusion, S. exigua can take benefit from its host plant's secondary metabolites to elaborate its defense against synthetic insecticides.
Collapse
Affiliation(s)
- Muhammad Hafeez
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Muhammad Qasim
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Sajjad Ali
- Department of Botany, Bacha Khan University, Charsadda 24630, Pakistan
| | - Hafiz Kamran Yousaf
- College of Plant Protection Department of Entomology, China Agriculture University, Beijing 100193, China
| | - Muhammad Waqas
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Ehsan Ali
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Muhammad Afaq Ahmad
- College of Plant Health and Medicine, Qingdao Agricultural University, China
| | - Saad Jan
- Department of Agriculture Entomology Section, Bacha Khan University, Charsadda 24630, Pakistan
| | - Muhammad Amjad Bashir
- Department of Plant Protection, Faculty of Agriculture Sciences, Ghazi University, Dera Ghazi Khan 32200, Punjab, Pakistan
| | - Ali Noman
- Department of Botany Government College University, Faisalabad 38040, Pakistan
| | - Mo Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, Hubei 430070, PR China
| | - Hamed A. Gharmh
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
4
|
Karban R, LoPresti E, Pepi A, Grof-Tisza P. Induction of the sticky plant defense syndrome in wild tobacco. Ecology 2019; 100:e02746. [PMID: 31032891 DOI: 10.1002/ecy.2746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 11/08/2022]
Abstract
Many plants engage in protective mutualisms, offering resources such as extrafloral nectar and shelters to predatory arthropods in exchange for protection against herbivores. Recent work indicates that sticky plants catch small insects and provide this carrion to predators who defend the plants against herbivores. In this study, we investigated whether wild tobacco, Nicotiana attenuata, fits this sticky plant defense syndrome that has been described for other sticky plants. We developed a bioassay for stickiness involving the number of flies that adhered to flowers, the stickiest tissues. In surveys conducted over three field seasons at four sites, we found that the number of carrion that adhered to a plant was positively correlated with the number of predators that we observed foraging over its surfaces. The number of predators was positively correlated with the number of seed capsules that the plant produced, a measure of lifetime female reproductive success. Structural equation modeling indicated strong support for the causal path linking carrion numbers to predator numbers to capsule production. We investigated whether stickiness was an inducible trait and examined two potential cues. We found that experimental clipping of rosette leaves induced greater stickiness, although clipping of neighboring sagebrush leaves did not. Damage to leaf tissue is likely to be a more reliable predictor of risk than is damage to a neighboring plant. The sticky plant defense syndrome is a widespread protective mutualism; its strength and ecological relevance can adjust as risk of herbivory changes.
Collapse
Affiliation(s)
- Richard Karban
- Department of Entomology and Nematology, University of California, Davis, California, 95616, USA
| | - Eric LoPresti
- Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 262, East Lansing, Michigan, 48824, USA
| | - Adam Pepi
- Graduate Group in Ecology, University of California, Davis, California, 95616, USA
| | - Patrick Grof-Tisza
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
5
|
de Sousa‐Lopes B, Alves‐da‐Silva N, Alves‐Martins F, Del‐Claro K. Antiherbivore protection and plant selection by the lynx spider
Peucetia flava
(Araneae: Oxyopidae) in the Brazilian Cerrado. J Zool (1987) 2019. [DOI: 10.1111/jzo.12662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- B. de Sousa‐Lopes
- Laboratório de Ecologia Comportamental e de Interações Programa de Pós‐Graduação em Entomologia Universidade de São Paulo São Paulo Brazil
| | - N. Alves‐da‐Silva
- Laboratório de Ecologia Comportamental e de Interações Universidade Federal de Uberlândia Minas Gerais Brazil
| | | | - K. Del‐Claro
- Laboratório de Ecologia Comportamental e de Interações Universidade Federal de Uberlândia Minas Gerais Brazil
| |
Collapse
|
6
|
LoPresti EF, Robinson ML, Krimmel BA, Charles GK. The sticky fruit of manzanita: potential functions beyond epizoochory. Ecology 2018; 99:2128-2130. [DOI: 10.1002/ecy.2399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Eric F. LoPresti
- Graduate Group in Ecology; Center for Population Biology; UC-Davis; Davis 95616 California USA
- Department of Plant Biology; Michigan State University; East Lansing 48808 Michigan USA
| | - Moria L. Robinson
- Graduate Group in Ecology; Center for Population Biology; UC-Davis; Davis 95616 California USA
- Department of Entomology; Michigan State University; East Lansing 48808 Michigan USA
| | - Billy A. Krimmel
- Graduate Group in Ecology; Center for Population Biology; UC-Davis; Davis 95616 California USA
- Restoration Landscaping Company; Sacramento 94203 California USA
| | - Grace K. Charles
- Graduate Group in Ecology; Center for Population Biology; UC-Davis; Davis 95616 California USA
| |
Collapse
|