1
|
Mairal M, Chown SL, Shaw J, Chala D, Chau JH, Hui C, Kalwij JM, Münzbergová Z, Jansen van Vuuren B, Le Roux JJ. Human activity strongly influences genetic dynamics of the most widespread invasive plant in the sub-Antarctic. Mol Ecol 2021; 31:1649-1665. [PMID: 34181792 DOI: 10.1111/mec.16045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
The link between the successful establishment of alien species and propagule pressure is well-documented. Less known is how humans influence the post-introduction dynamics of invasive alien populations. The latter requires studying parallel invasions by the same species in habitats that are differently impacted by humans. We analysed microsatellite and genome size variation, and then compared the genetic diversity and structure of invasive Poa annua L. on two sub-Antarctic islands: human-occupied Marion Island and unoccupied Prince Edward Island. We also carried out niche modelling to map the potential distribution of the species on both islands. We found high levels of genetic diversity and evidence for extensive admixture between genetically distinct lineages of P. annua on Marion Island. By contrast, the Prince Edward Island populations showed low genetic diversity, no apparent admixture, and had smaller genomes. On both islands, high genetic diversity was apparent at human landing sites, and on Marion Island, also around human settlements, suggesting that these areas received multiple introductions and/or acted as initial introduction sites and secondary sources (bridgeheads) for invasive populations. More than 70 years of continuous human activity associated with a meteorological station on Marion Island led to a distribution of this species around human settlements and along footpaths, which facilitates ongoing gene flow among geographically separated populations. By contrast, this was not the case for Prince Edward Island, where P. annua populations showed high genetic structure. The high levels of genetic variation and admixture in P. annua facilitated by human activity, coupled with high habitat suitability on both islands, suggest that P. annua is likely to increase its distribution and abundance in the future.
Collapse
Affiliation(s)
- Mario Mairal
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.,Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - Steven L Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Victoria, Australia
| | - Justine Shaw
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Desalegn Chala
- Natural History Museum, University of Oslo, Oslo, Norway
| | - John H Chau
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa.,Biodiversity Informatics Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Jesse M Kalwij
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, South Africa.,Institute of Geography and Geoecology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Zuzana Münzbergová
- Department of Botany, Charles University, Prague, Czech Republic.,Department of Population Ecology, Czech Academy of Science, Průhonice, Czech Republic
| | - Bettine Jansen van Vuuren
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Johannes J Le Roux
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.,Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Mortier F, Masier S, Bonte D. Genetically diverse populations spread faster in benign but not in challenging environments. Ecology 2021; 102:e03345. [PMID: 33742440 DOI: 10.1002/ecy.3345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 11/06/2022]
Abstract
Population spread from a limited pool of founding propagules is at the basis of biological invasions. The size and genetic variation of these propagules eventually affect whether the invasion is successful or not. The inevitable bottleneck at introduction decreases genetic diversity, and therefore should affect population growth and spread. However, many heavily bottlenecked invasive populations have been successful in nature. Negative effects of a genetic bottleneck are typically considered to be relaxed in benign environments because of a release from stress. Despite its relevance to understand and predict invasions, empirical evidence on the role of genetic diversity in relation to habitat quality is largely lacking. We use the mite Tetranychus urticae Koch as a model to experimentally assess spread rate and size of genetically depleted inbred populations vs. enriched mixed populations. This was assessed in replicated linear patch systems consisting of benign (bean), challenging (tomato), or a gradient (bean to tomato) habitat. As expected, we found no effect of genetic diversity on population size in benign habitat but found that it increased population size in challenging habitat. However, we found that population spread rates were increased due to genetic diversity in the benign but not in the challenging habitat. Additionally, variance in spread was consistently higher in genetically poor populations and highest in the challenging habitat. Our experiment challenges the general view that a bottleneck in genetic variation decreases invasion success in challenging but not benign environments.
Collapse
Affiliation(s)
- Frederik Mortier
- Terrestrial Ecology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent, 9000, Belgium
| | - Stefano Masier
- Terrestrial Ecology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent, 9000, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent, 9000, Belgium
| |
Collapse
|
3
|
Levin DA. Propagule pressure and the establishment of emergent polyploid populations. ANNALS OF BOTANY 2021; 127:1-5. [PMID: 33106838 PMCID: PMC7750715 DOI: 10.1093/aob/mcaa187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Whereas the incidence or rate of polyploid speciation in flowering plants is modest, the production of polyploid individuals within local populations is widespread. Explanations for this disparity primarily have focused on properties or interactions of polyploids that limit their persistence. HYPOTHESIS The emergence of local polyploid populations within diploid populations is similar to the arrival of invasive species at new, suitable sites, with the exception that polyploids suffer interference from their progenitor(s). The most consistent predictor of successful colonization by invasive plants is propagule pressure, i.e. the number of seeds introduced. Therefore, insufficient propagule pressure, i.e. the formation of polyploid seeds within diploid populations, ostensibly is a prime factor limiting the establishment of newly emergent polyploids within local populations. Increasing propagule number reduces the effects of genetic, environmental and demographic stochasticity, which thwart population survival. As with invasive species, insufficient seed production within polyploid populations limits seed export, and thus reduces the chance of polyploid expansion. CONCLUSION The extent to which propagule pressure limits the establishment of local polyploid populations remains to be determined, because we know so little. The numbers of auto- or allopolyploid seed in diploid populations rarely have been ascertained, as have the numbers of newly emergent polyploid plants within diploid populations. Moreover, seed production by these polyploids has yet to be assessed.
Collapse
Affiliation(s)
- Donald A Levin
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| |
Collapse
|