1
|
Hu J, Chen J, Yu M, Ku Y. Binocular imbalance measured by SSVEP predicts impaired stereoacuity in amblyopia. Heliyon 2024; 10:e39358. [PMID: 39497992 PMCID: PMC11532837 DOI: 10.1016/j.heliyon.2024.e39358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose The current study aims to implement steady-state visual evoked potentials (SSVEPs) in quantifying the binocular imbalance of amblyopia and to assess the predictive value of SSVEP-derived indices for amblyopic stereoacuity. Methods We measure frequency-tagged SSVEP responses elicited by each eye (F1 = 6 Hz through the fellow eye; F2 = 7.5 Hz through the amblyopic eye) within a binocular rivalry paradigm among a cohort of anisometropic amblyopic observers (n = 29, mean age: 12 years). Binocular suppression was quantified by assessing the disparity in SSVEP amplitudes between the eyes, while the strength of interocular interaction was evaluated through the intermodulation response at F1+F2 = 13.5 Hz. Subsequent analyses explored the associations between these neural indices and relevant behavioral metrics in amblyopia. Results Results reveal a significant difference in SSVEP amplitudes elicited from the fellow eye and the amblyopic eye, with the former exhibiting notably higher responses. Moreover, the fellow eye demonstrated prolonged dominance duration compared to its amblyopic counterpart. Furthermore, a negative correlation between binocular suppression and interocular interaction was observed, with stereoacuity showing a significant correlation with binocular suppression. Utilizing stepwise mulptiple linear regression analysis, we established that a predictive model combining binocular suppression and visual acuity of the amblyopic eye provided the best prediction of stereoacuity. Conclusions These results highlight the potential of binocular suppression, as assessed by SSVEPs within a binocular rivalry paradigm, as a promising neural predictor of stereopsis in amblyopia.
Collapse
Affiliation(s)
- Jingyi Hu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Chen
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Wellbeing, Department of Psychology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Mikhalkin AA, Nikitina NI, Merkulyeva NS. Early postnatal development of the primary visual areas 17 and 18 of the cat cerebral cortex: An SMI-32 study. J Neurosci Res 2024; 102:e25375. [PMID: 39105520 DOI: 10.1002/jnr.25375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/04/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024]
Abstract
Using anti-neurofilament H non-phosphorylated antibodies (SMI-32) as markers for the neuronal maturation level and Y channel responsible for motion processing, we investigated early postnatal development of the primary visual areas 17 and 18 in cats aged 0, 10, 14, and 34 days and in adults. Two analyzed parameters of SMI-32-immunolabeling were used: the total proportion of SMI-32-labeling and the density of labeled neurons. (i) The developmental time course of the total proportion of SMI-32-labeling shows the general increase in the accumulation of heavy-chain neurofilaments. This parameter showed a different time course for cortical layer development; the maximal increment in the total labeling in layer V occurred between the second and fifth postnatal weeks and in layers II-III and VI after the fifth postnatal week. In addition, the delay in accumulation of SMI-32-labeling was shown in layer V of the area 17 periphery representation during the first two postnatal weeks. (ii) The density of SMI-32-labeled neurons decreased in all layers of area 18, but was increased, decreased, or had a transient peak in layers II-III, V, and VI of area 17, respectively. The transient peak is in good correspondence with some transient neurochemical features previously revealed for different classes of cortical and thalamic neurons and reflects the time course of the early development of the thalamocortical circuitry. Some similarities between the time courses for the development of SMI-32-labeling in areas 17/18 and in A- and C-laminae of the LGNd allow us to propose heterochronous postnatal development of two Y sub-channels.
Collapse
Affiliation(s)
- A A Mikhalkin
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - N I Nikitina
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - N S Merkulyeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
3
|
Merkulyeva N, Mikhalkin A. SMI-32 labeling in Cajal-Retzius cells of feline primary visual cortex. Neurosci Lett 2021; 762:136165. [PMID: 34371123 DOI: 10.1016/j.neulet.2021.136165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022]
Abstract
Cajal-Retzius cells are one of the transient elements of the developing cerebral cortex. These cells express some characteristic molecules. One of them, heavy-chain neurofilaments, participating in the construction of the mature cerebral networks, are believed to be a specific feature of the human's Cajal-Retzius cells. Using histochemical stain for SMI-32 antibody to the non-phosphorylated heavy-chain neurofilaments, large neurons having horizontally oriented soma and bipolar processes were labeled in the molecular layer of the primary visual cortex of cats aged 0-2 postnatal days. Using DiI technique, similar neurons having a well-developed system of parallel vertical branches coming from the two horizontal processes were visualized in these areas. The location and general morphology of these neurons were similar to the Cajal-Retzius cells allowing to suppose for the carnivores to share similar with primates developmental mechanisms of the corticogenesis.
Collapse
Affiliation(s)
- Natalia Merkulyeva
- Lab Neuromorphology, Pavlov Institute of Physiology RAS Russia, Saint-Petersburg, Makarov emb., 6, 199034, Russia.
| | - Aleksandr Mikhalkin
- Lab Neuromorphology, Pavlov Institute of Physiology RAS Russia, Saint-Petersburg, Makarov emb., 6, 199034, Russia
| |
Collapse
|
4
|
Chen S, Min SH, Cheng Z, Xiong Y, Yu X, Wei L, Mao Y, Hess RF, Zhou J. Binocular visual deficits at mid to high spatial frequency in treated amblyopes. iScience 2021; 24:102727. [PMID: 34258558 PMCID: PMC8254032 DOI: 10.1016/j.isci.2021.102727] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/25/2021] [Accepted: 06/11/2021] [Indexed: 11/01/2022] Open
Abstract
Amblyopia (lazy eye) is a neurodevelopmental disorder of vision with no ocular pathology. The loss of vision in the amblyopic eye is assumed to be the main deficit in amblyopia, which has resulted in visual acuity (VA) being the primary outcome measure for treatment. Here we used a binocular orientation combination task to quantitatively assess the binocular status by measuring the binocular balance. We set out to determine whether amblyopes who reach the acuity-based end point have a residual binocular imbalance. Our results suggest that even amblyopes who have regained normal acuity have residual binocular deficits over a wide range of spatial frequencies. A further control study suggests that these binocular deficits could not be explained by any residual contrast sensitivity deficits of the amblyopic eye. Consequently, amblyopia is not the primary problem and VA is not the appropriate end point measure.
Collapse
Affiliation(s)
- Shijia Chen
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Seung Hyun Min
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Ziyun Cheng
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Xiong
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xi Yu
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lili Wei
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Mao
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Robert F Hess
- McGill Vision Research, Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Jiawei Zhou
- School of Ophthalmology and Optometry, Affiliated Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Brin TA, Chow A, Carter C, Oremus M, Bobier W, Thompson B. Efficacy of vision-based treatments for children and teens with amblyopia: a systematic review and meta-analysis of randomised controlled trials. BMJ Open Ophthalmol 2021; 6:e000657. [PMID: 33912684 PMCID: PMC8043000 DOI: 10.1136/bmjophth-2020-000657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/18/2021] [Accepted: 03/13/2021] [Indexed: 11/03/2022] Open
Abstract
Objective To identify differences in efficacy between vision-based treatments for improving visual acuity (VA) of the amblyopic eye in persons aged 4-17 years old. Data sources Ovid Embase, PubMed (Medline), the Cochrane Library, Vision Cite and Scopus were systematically searched from 1975 to 17 June 2020. Methods Two independent reviewers screened search results for randomised controlled trials of vision-based amblyopia treatments that specified change in amblyopic eye VA (logMAR) as the primary outcome measure. Quality was assessed via risk of bias and GRADE (Grading of Recommendations, Assessment, Development, and Evaluations). Results Of the 3346 studies identified, 36 were included in a narrative synthesis. A random effects meta-analysis (five studies) compared the efficacy of binocular treatments versus patching: mean difference -0.03 logMAR; 95% CI 0.01 to 0.04 (p<0.001), favouring patching. An exploratory study-level regression (18 studies) showed no statistically significant differences between vision-based treatments and a reference group of 2-5 hours of patching. Age, sample size and pre-randomisation optical treatment were not statistically significantly associated with changes in amblyopic eye acuity. A network meta-analysis (26 studies) comparing vision-based treatments to patching 2-5 hours found one statistically significant comparison, namely, the favouring of a combination of two treatment arms comparing combination and binocular treatments, against patching 2-5 hours: standard mean difference: 2.63; 95% CI 1.18 to 4.09. However, this result was an indirect comparison calculated from a single study. A linear regression analysis (17 studies) found a significant relationship between adherence and effect size, but the model did not completely fit the data: regression coefficient 0.022; 95% CI 0.004 to 0.040 (p=0.02). Conclusion We found no clinically relevant differences in treatment efficacy between the treatments included in this review. Adherence to the prescribed hours of treatment varied considerably and may have had an effect on treatment success.
Collapse
Affiliation(s)
- Taylor Adrian Brin
- Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Amy Chow
- Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Caitlin Carter
- Library, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark Oremus
- Public Health and Health Systems, University of Waterloo, Waterloo, Ontario, Canada
| | - William Bobier
- Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Benjamin Thompson
- Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada.,Center for Eye and Vision Research, 17W Science Park, Hong Kong, Hong Kong.,Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Understanding the development of amblyopia using macaque monkey models. Proc Natl Acad Sci U S A 2019; 116:26217-26223. [PMID: 31871163 DOI: 10.1073/pnas.1902285116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amblyopia is a sensory developmental disorder affecting as many as 4% of children around the world. While clinically identified as a reduction in visual acuity and disrupted binocular function, amblyopia affects many low- and high-level perceptual abilities. Research with nonhuman primate models has provided much needed insight into the natural history of amblyopia, its origins and sensitive periods, and the brain mechanisms that underly this disorder. Amblyopia results from abnormal binocular visual experience and impacts the structure and function of the visual pathways beginning at the level of the primary visual cortex (V1). However, there are multiple instances of abnormalities in areas beyond V1 that are not simply inherited from earlier stages of processing. The full constellation of deficits must be taken into consideration in order to understand the broad impact of amblyopia on visual and visual-motor function. The data generated from studies of animal models of the most common forms of amblyopia have provided indispensable insight into the disorder, which has significantly impacted clinical practice. It is expected that this translational impact will continue as ongoing research into the neural correlates of amblyopia provides guidance for novel therapeutic approaches.
Collapse
|
7
|
Abstract
The shift in ocular dominance (OD) of binocular neurons induced by monocular deprivation is the canonical model of synaptic plasticity confined to a postnatal critical period. Developmental constraints on this plasticity not only lend stability to the mature visual cortical circuitry but also impede the ability to recover from amblyopia beyond an early window. Advances with mouse models utilizing the power of molecular, genetic, and imaging tools are beginning to unravel the circuit, cellular, and molecular mechanisms controlling the onset and closure of the critical periods of plasticity in the primary visual cortex (V1). Emerging evidence suggests that mechanisms enabling plasticity in juveniles are not simply lost with age but rather that plasticity is actively constrained by the developmental up-regulation of molecular 'brakes'. Lifting these brakes enhances plasticity in the adult visual cortex, and can be harnessed to promote recovery from amblyopia. The reactivation of plasticity by experimental manipulations has revised the idea that robust OD plasticity is limited to early postnatal development. Here, we discuss recent insights into the neurobiology of the initiation and termination of critical periods and how our increasingly mechanistic understanding of these processes can be leveraged toward improved clinical treatment of adult amblyopia.
Collapse
|
8
|
Gambrill AC, Faulkner RL, Cline HT. Direct intertectal inputs are an integral component of the bilateral sensorimotor circuit for behavior in Xenopus tadpoles. J Neurophysiol 2018; 119:1947-1961. [PMID: 29442555 DOI: 10.1152/jn.00051.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The circuit controlling visually guided behavior in nonmammalian vertebrates, such as Xenopus tadpoles, includes retinal projections to the contralateral optic tectum, where visual information is processed, and tectal motor outputs projecting ipsilaterally to hindbrain and spinal cord. Tadpoles have an intertectal commissure whose function is unknown, but it might transfer information between the tectal lobes. Differences in visual experience between the two eyes have profound effects on the development and function of visual circuits in animals with binocular vision, but the effects on animals with fully crossed retinal projections are not clear. We tested the effect of monocular visual experience on the visuomotor circuit in Xenopus tadpoles. We show that cutting the intertectal commissure or providing visual experience to one eye (monocular visual experience) is sufficient to disrupt tectally mediated visual avoidance behavior. Monocular visual experience induces asymmetry in tectal circuit activity across the midline. Repeated exposure to monocular visual experience drives maturation of the stimulated retinotectal synapses, seen as increased AMPA-to-NMDA ratios, induces synaptic plasticity in intertectal synaptic connections, and induces bilaterally asymmetric changes in the tectal excitation-to-inhibition ratio (E/I). We show that unilateral expression of peptides that interfere with AMPA or GABAA receptor trafficking alters E/I in the transfected tectum and is sufficient to degrade visuomotor behavior. Our study demonstrates that monocular visual experience in animals with fully crossed visual systems produces asymmetric circuit function across the midline and degrades visuomotor behavior. The data further suggest that intertectal inputs are an integral component of a bilateral visuomotor circuit critical for behavior. NEW & NOTEWORTHY The developing optic tectum of Xenopus tadpoles represents a unique circuit in which laterally positioned eyes provide sensory input to a circuit that is transiently monocular, but which will be binocular in the animal's adulthood. We challenge the idea that the two lobes of tadpole optic tectum function independently by testing the requirement of interhemispheric communication and demonstrate that unbalanced sensory input can induce structural and functional plasticity in the tectum sufficient to disrupt function.
Collapse
Affiliation(s)
- Abigail C Gambrill
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Regina L Faulkner
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| | - Hollis T Cline
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute , La Jolla, California
| |
Collapse
|
9
|
|
10
|
Combes RD, Shah AB. The use of in vivo, ex vivo, in vitro, computational models and volunteer studies in vision research and therapy, and their contribution to the Three Rs. Altern Lab Anim 2017; 44:187-238. [PMID: 27494623 DOI: 10.1177/026119291604400302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Much is known about mammalian vision, and considerable progress has been achieved in treating many vision disorders, especially those due to changes in the eye, by using various therapeutic methods, including stem cell and gene therapy. While cells and tissues from the main parts of the eye and the visual cortex (VC) can be maintained in culture, and many computer models exist, the current non-animal approaches are severely limiting in the study of visual perception and retinotopic imaging. Some of the early studies with cats and non-human primates (NHPs) are controversial for animal welfare reasons and are of questionable clinical relevance, particularly with respect to the treatment of amblyopia. More recently, the UK Home Office records have shown that attention is now more focused on rodents, especially the mouse. This is likely to be due to the perceived need for genetically-altered animals, rather than to knowledge of the similarities and differences of vision in cats, NHPs and rodents, and the fact that the same techniques can be used for all of the species. We discuss the advantages and limitations of animal and non-animal methods for vision research, and assess their relative contributions to basic knowledge and clinical practice, as well as outlining the opportunities they offer for implementing the principles of the Three Rs (Replacement, Reduction and Refinement).
Collapse
Affiliation(s)
| | - Atul B Shah
- Ophthalmic Surgeon, National Eye Registry Ltd, Leicester, UK
| |
Collapse
|
11
|
Affiliation(s)
- Andrew T Astle
- Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham, UK.
| | - Paul V McGraw
- Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham, UK
| |
Collapse
|
12
|
Cooper EA, Mackey AP. Sensory and cognitive plasticity: implications for academic interventions. Curr Opin Behav Sci 2016; 10:21-27. [PMID: 27231716 DOI: 10.1016/j.cobeha.2016.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research in neuroscience has great potential for transforming education. However, the brain systems that support academic and cognitive skills are poorly understood in comparison to the systems that support sensory processing. Decades of basic research have examined the role that brain plasticity plays in the genesis and treatment of developmental visual disorders, which may help to inform how cognitive training approaches can be tailored for students who experience environmental disadvantage. In this review, we draw parallels between visual and cognitive intervention approaches, and suggest research avenues that could inform educational practice in the future.
Collapse
Affiliation(s)
- Emily A Cooper
- Department of Psychological & Brain Sciences, Dartmouth College, 6307 Moore Hall Hanover, NH 03755, United States
| | - Allyson P Mackey
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St. 46-4037D, Cambridge, MA 02139, United States
| |
Collapse
|
13
|
Eaton NC, Sheehan HM, Quinlan EM. Optimization of visual training for full recovery from severe amblyopia in adults. ACTA ACUST UNITED AC 2016; 23:99-103. [PMID: 26787781 PMCID: PMC4749829 DOI: 10.1101/lm.040295.115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022]
Abstract
The severe amblyopia induced by chronic monocular deprivation is highly resistant to reversal in adulthood. Here we use a rodent model to show that recovery from deprivation amblyopia can be achieved in adults by a two-step sequence, involving enhancement of synaptic plasticity in the visual cortex by dark exposure followed immediately by visual training. The perceptual learning induced by visual training contributes to the recovery of vision and can be optimized to drive full recovery of visual acuity in severely amblyopic adults.
Collapse
Affiliation(s)
- Nicolette C Eaton
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Hanna Marie Sheehan
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Elizabeth M Quinlan
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA Neuroscience and Cognitive Sciences Program, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
14
|
Mitchell DE, MacNeill K, Crowder NA, Holman K, Duffy KR. Recovery of visual functions in amblyopic animals following brief exposure to total darkness. J Physiol 2015; 594:149-67. [PMID: 26449521 DOI: 10.1113/jp270981] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/20/2015] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Occlusion of one eye of kittens (monocular deprivation) results in a severe and permanent loss of visual acuity in that eye, which parallels closely the vision loss characteristic of human amblyopia. We extended earlier work to demonstrate that amblyopic vision loss can be either blocked or erased very fast by a 10 day period of total darkness following a period of monocular deprivation that begins near birth and extends to at least 8 weeks of age. The parameters of darkness were strict because no visual recovery was observed after 5 days of darkness. In addition, short periods of light introduced each day during an otherwise 10 day period of darkness obliterated the benefits. Despite recovery of normal visual acuity, only one-quarter of the animals showed evidence of having attained normal stereoscopic vision. A period of total darkness may catalyse and improve treatment outcomes in amblyopic children. A 10 day period of total darkness has been shown to either block or erase the severe effects on vision of a prior short period of monocular deprivation (MD) in kittens depending on whether darkness is contiguous or is delayed with respect to the period of MD. We have extended these earlier findings from kittens for which the period of MD began at 1 month and lasted for 1 week to more clinically relevant situations where MD began near birth and lasted for ≥ 6 weeks. Despite the far longer MD and the absence of prior binocular vision, all animals recovered normal visual acuity in the previously deprived eye. As before, when the period of darkness followed immediately after MD, the vision of both eyes was initially very poor but, subsequently, the acuity of each eye increased gradually and equally to attain normal levels in ∼ 7 weeks. By contrast, when darkness was introduced 8 weeks after MD, the visual acuity of the deprived eye recovered quickly to normal levels in just 1 week without any change in the vision of the fellow (non-deprived) eye. Short (15 or 30 min) periods of illumination each day during an otherwise 10 day period of darkness obliterated all the benefits for vision, and a 5 day period of darkness was also completely ineffective. Measurements of depth perception indicated that, despite possessing normal visual acuity in both eyes, only about one-quarter of the animals showed evidence of having attained normal stereoscopic vision.
Collapse
Affiliation(s)
- Donald E Mitchell
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Katelyn MacNeill
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Orthoptics, IWK Hospital, Halifax, Nova Scotia, Canada.,Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nathan A Crowder
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kaitlyn Holman
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
15
|
Bochner DN, Sapp RW, Adelson JD, Zhang S, Lee H, Djurisic M, Syken J, Dan Y, Shatz CJ. Blocking PirB up-regulates spines and functional synapses to unlock visual cortical plasticity and facilitate recovery from amblyopia. Sci Transl Med 2015; 6:258ra140. [PMID: 25320232 DOI: 10.1126/scitranslmed.3010157] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During critical periods of development, the brain easily changes in response to environmental stimuli, but this neural plasticity declines by adulthood. By acutely disrupting paired immunoglobulin-like receptor B (PirB) function at specific ages, we show that PirB actively represses neural plasticity throughout life. We disrupted PirB function either by genetically introducing a conditional PirB allele into mice or by minipump infusion of a soluble PirB ectodomain (sPirB) into mouse visual cortex. We found that neural plasticity, as measured by depriving mice of vision in one eye and testing ocular dominance, was enhanced by this treatment both during the critical period and when PirB function was disrupted in adulthood. Acute blockade of PirB triggered the formation of new functional synapses, as indicated by increases in miniature excitatory postsynaptic current (mEPSC) frequency and spine density on dendrites of layer 5 pyramidal neurons. In addition, recovery from amblyopia--the decline in visual acuity and spine density resulting from long-term monocular deprivation--was possible after a 1-week infusion of sPirB after the deprivation period. Thus, neural plasticity in adult visual cortex is actively repressed and can be enhanced by blocking PirB function.
Collapse
Affiliation(s)
- David N Bochner
- Department of Biology and Bio-X, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Richard W Sapp
- Department of Biology and Bio-X, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Jaimie D Adelson
- Department of Biology and Bio-X, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Siyu Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hanmi Lee
- Department of Biology and Bio-X, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Maja Djurisic
- Department of Biology and Bio-X, James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Josh Syken
- Vertex Pharmaceuticals Inc., Cambridge, MA 02139, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carla J Shatz
- Department of Biology and Bio-X, James H. Clark Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Duffy KR, Bukhamseen DH, Smithen MJ, Mitchell DE. Binocular eyelid closure promotes anatomical but not behavioral recovery from monocular deprivation. Vision Res 2014; 114:151-60. [PMID: 25536470 DOI: 10.1016/j.visres.2014.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
Abstract
Deprivation of patterned vision of frontal eyed mammals early in postnatal life alters structural and functional attributes of neurones in the central visual pathways, and can produce severe impairments of the vision of the deprived eye that resemble the visual loss observed in human amblyopia. A traditional approach to treatment of amblyopia has been the occlusion of the stronger fellow eye in order to force use of the weaker eye and thereby strengthen its connections in the visual cortex. Although this monocular treatment strategy can be effective at promoting recovery of visual acuity of the amblyopic eye, such binocular visual functions as stereoscopic vision often remain impaired due in part to the lack of concordant vision during the period of unilateral occlusion. The recent development of binocular approaches for treatment of amblyopia that improve the possibility for binocular interaction have achieved success in promoting visual recovery. The full and rapid recovery of visual acuity observed in amblyopic kittens placed in complete darkness is an example of a binocular treatment whose success may in part derive from a restored balance of visually-driven neural activity. In the current study we examined as an alternative to dark rearing the efficacy of binocular lid suture (BLS) to stimulate anatomical and visual recovery from a preceding amblyogenic period of monocular deprivation. In the dorsal lateral geniculate nucleus (dLGN) of monocularly deprived kittens, darkness or BLS for 10days produced a complete recovery of neurone soma size within initially deprived layers. The growth of neurone somata within initially deprived dLGN layers after darkness or BLS was accompanied by an increase in neurotrophin-4/5 labeling within these layers. Although anatomical recovery was observed in both recovery conditions, BLS failed to promote any improvement of the visual acuity of the deprived eye no matter whether it followed immediately or was delayed with respect to the prior period of monocular deprivation. Notwithstanding the lack of visual recovery with BLS, all animals in the BLS condition that were subsequently placed in darkness exhibited a substantial recovery of visual acuity in the amblyopic eye. We conclude that the balanced binocular visual input provided by BLS does not stimulate the collection of neural events necessary to support recovery from amblyopia. The complete absence of visually-driven activity that occurs with dark rearing evidently plays an important role in the recovery process.
Collapse
Affiliation(s)
- Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie University, Life Sciences Centre, Halifax, NS B3H 4R2, Canada.
| | - Dalia H Bukhamseen
- Department of Psychology and Neuroscience, Dalhousie University, Life Sciences Centre, Halifax, NS B3H 4R2, Canada
| | - Matthew J Smithen
- Department of Psychology and Neuroscience, Dalhousie University, Life Sciences Centre, Halifax, NS B3H 4R2, Canada
| | - Donald E Mitchell
- Department of Psychology and Neuroscience, Dalhousie University, Life Sciences Centre, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
17
|
Hess RF, Babu RJ, Clavagnier S, Black J, Bobier W, Thompson B. The iPod binocular home-based treatment for amblyopia in adults: efficacy and compliance. Clin Exp Optom 2014; 97:389-98. [PMID: 25131694 DOI: 10.1111/cxo.12192] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/17/2014] [Accepted: 06/03/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Occlusion therapy for amblyopia is predicated on the idea that amblyopia is primarily a disorder of monocular vision; however, there is growing evidence that patients with amblyopia have a structurally intact binocular visual system that is rendered functionally monocular due to suppression. Furthermore, we have found that a dichoptic treatment intervention designed to directly target suppression can result in clinically significant improvement in both binocular and monocular visual function in adult patients with amblyopia. The fact that monocular improvement occurs in the absence of any fellow eye occlusion suggests that amblyopia is, in part, due to chronic suppression. Previously the treatment has been administered as a psychophysical task and more recently as a video game that can be played on video goggles or an iPod device equipped with a lenticular screen. The aim of this case-series study of 14 amblyopes (six strabismics, six anisometropes and two mixed) ages 13 to 50 years was to investigate: 1. whether the portable video game treatment is suitable for at-home use and 2. whether an anaglyphic version of the iPod-based video game, which is more convenient for at-home use, has comparable effects to the lenticular version. METHODS The dichoptic video game treatment was conducted at home and visual functions assessed before and after treatment. RESULTS We found that at-home use for 10 to 30 hours restored simultaneous binocular perception in 13 of 14 cases along with significant improvements in acuity (0.11 ± 0.08 logMAR) and stereopsis (0.6 ± 0.5 log units). Furthermore, the anaglyph and lenticular platforms were equally effective. In addition, the iPod devices were able to record a complete and accurate picture of treatment compliance. CONCLUSION The home-based dichoptic iPod approach represents a viable treatment for adults with amblyopia.
Collapse
Affiliation(s)
- Robert F Hess
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Bonaccorsi J, Berardi N, Sale A. Treatment of amblyopia in the adult: insights from a new rodent model of visual perceptual learning. Front Neural Circuits 2014; 8:82. [PMID: 25076874 PMCID: PMC4100600 DOI: 10.3389/fncir.2014.00082] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
Amblyopia is the most common form of impairment of visual function affecting one eye, with a prevalence of about 1–5% of the total world population. Amblyopia usually derives from conditions of early functional imbalance between the two eyes, owing to anisometropia, strabismus, or congenital cataract, and results in a pronounced reduction of visual acuity and severe deficits in contrast sensitivity and stereopsis. It is widely accepted that, due to a lack of sufficient plasticity in the adult brain, amblyopia becomes untreatable after the closure of the critical period in the primary visual cortex. However, recent results obtained both in animal models and in clinical trials have challenged this view, unmasking a previously unsuspected potential for promoting recovery even in adulthood. In this context, non invasive procedures based on visual perceptual learning, i.e., the improvement in visual performance on a variety of simple visual tasks following practice, emerge as particularly promising to rescue discrimination abilities in adult amblyopic subjects. This review will survey recent work regarding the impact of visual perceptual learning on amblyopia, with a special focus on a new experimental model of perceptual learning in the amblyopic rat.
Collapse
Affiliation(s)
- Joyce Bonaccorsi
- Department of Medicine, Institute of Neuroscience CNR, National Research Council (CNR) Pisa, Italy
| | - Nicoletta Berardi
- Department of Medicine, Institute of Neuroscience CNR, National Research Council (CNR) Pisa, Italy ; Department of Psychology, Florence University Florence, Italy
| | - Alessandro Sale
- Department of Medicine, Institute of Neuroscience CNR, National Research Council (CNR) Pisa, Italy
| |
Collapse
|
19
|
Bradley A, Barrett BT, Saunders KJ. Linking binocular vision neuroscience with clinical practice. Ophthalmic Physiol Opt 2014; 34:125-8. [DOI: 10.1111/opo.12125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arthur Bradley
- School of Optometry; Indiana University; Bloomington USA
| | - Brendan T. Barrett
- Bradford School of Optometry & Vision Science; University of Bradford; Bradford UK
| | | |
Collapse
|