1
|
Yu D, Kang J, Ju C, Wang Q, Qiao Y, Qiao L, Yang D. Dual disease co-expression analysis reveals potential roles of estrogen-related genes in postmenopausal osteoporosis and Parkinson's disease. Front Genet 2025; 15:1518471. [PMID: 39840278 PMCID: PMC11747517 DOI: 10.3389/fgene.2024.1518471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction The deficiency of estrogen correlates with a range of diseases, notably Postmenopausal osteoporosis (PMO) and Parkinson's disease (PD). There is a possibility that PMO and PD may share underlying molecular mechanisms that are pivotal in their development and progression. The objective of this study was to identify critical genes and potential mechanisms associated with PMO by examining co-expressed genes linked to PD. Methods Initially, pertinent data concerning PMO and PD were obtained from the GWAS database, followed by conducting a Bayesian colocalization analysis. Subsequently, co-expressed genes from the PMO dataset (GSE35956) and the PD dataset (GSE20164) were identified and cross-referenced with estrogen-related genes (ERGs). Differentially expressed genes (DEGs) among PMO, PD, and ERGs were subjected to an array of bioinformatics analyses, including Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses, in addition to protein-protein interaction (PPI) network analysis. The study also involved constructing TF-gene interactions, TF-microRNA coregulatory networks, interactions of hub genes with diseases, and validation through quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results The colocalization analysis uncovered shared genetic variants between PD and osteoporosis, with a posterior probability of colocalization (PPH4) measured at 0.967. Notably, rs3796661 was recognized as a shared genetic variant. A total of 11 genes were classified as DEGs across PMO, PD, and ERGs. Five principal KEGG pathways were identified, which include the p53 signaling pathway, TGF-beta signaling pathway, cell cycle, FoxO signaling pathway, and cellular senescence. Additionally, three hub genes-WT1, CCNB1, and SMAD7-were selected from the PPI network utilizing Cytoscape software. These three hub genes, which possess significant diagnostic value for PMO and PD, were further validated using GEO datasets. Interactions between transcription factors and genes, as well as between microRNAs and hub genes, were established. Ultimately, the expression trends of the identified hub genes were confirmed through qRT-PCR validation. Conclusions This study is anticipated to offer innovative approaches for identifying potential biomarkers and important therapeutic targets for both PMO and PD.
Collapse
Affiliation(s)
- Dongdong Yu
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Orthopedics and Traumatology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jian Kang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Chengguo Ju
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Qingyan Wang
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ye Qiao
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Orthopedics and Traumatology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Long Qiao
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Orthopedics and Traumatology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Dongxiang Yang
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
2
|
Taqi M, ul Rasool H, Zaka Haider M, Al Muderis M. Significance of Biogenetic Markers in Giant Cell Tumor Differentiation and Prognosis: A Narrative Review. Diagnostics (Basel) 2024; 15:39. [PMID: 39795567 PMCID: PMC11719472 DOI: 10.3390/diagnostics15010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Giant cell tumor of bone (GCTB) is a locally aggressive tumor. It accounts for only 5% of all bony tumors. Early diagnosis, and follow-up for recurrence is often difficult due to a lack of biogenetic markers. Giant cells are multinucleated epithelioid cells derived from macrophages. Histologically, giant cells are also present in other pathologies of bone, e.g., aneurysmal bone cyst, chondroblastoma, giant cell granuloma, and malignant giant cell tumor, etc. Similarly, radiographic findings overlap with other osteolytic lesions, making the diagnosis and prognosis of giant cell tumor very challenging. Aims and Objectives: The purpose of this study was to explore biological and genetic markers which can be used for detection, differentiation, recurrence, and prognosis of GCTB. This will help to better understand the clinical outcome of GCTB and minimize the need for interventions. Methods: We conducted a literature search using Google, Google Scholar, PubMed, Wiley Library, Medline, Clinical trials.org, and Web of Science. Our search strategy included MeSH terms and key words for giant cell tumor and biogenetic markers from date of inception to September 2020. After excluding review articles, 246 duplicates, and non-relevant articles, we included 24 articles out of 1568 articles, summarizing the role of biogenetic markers in the prognosis of GCT. Results: P63 is 98.6% sensitive and relatively specific for GCT as compared to other multinucleated giant cells containing neoplasms. MDM2 (mouse double minute 2 homolog), IGF1 (insulin-like growth factor 1), STAT1 (signal transducer and activator of transcription 1), and RAC1 (Ras-related C3 botulinum toxin substrate 1) are associated with GCTB recurrence, and might serve as biomarkers for it. Increased expression of the proteins STAT5B, GRB2, and OXSR1 was related to a higher probability of metastasis. H3F3A and H3F3B mutation analysis appears to be a highly specific, although less sensitive, diagnostic tool for the distinction of giant cell tumor of bone (GCTB) and chondroblastoma from other giant cell-containing tumors. A neutrophil to lymphocyte ratio (NLR) > 2.70, platelet to lymphocyte ratio (PLR) > 215.80, lymphocyte to monocyte ratio (LMR) ≤ 2.80, and albumin to globulin ratio (AGR) < 1.50 were significantly associated with decreased disease-free survival (DFS) (p < 0.05). Large amounts of osteoclast-related mRNA (cathepsin K, tartrate-resistant acid phosphatase, and matrix metalloproteinase9) in GCTs (p < 0.05) are associated with the grade of bone resorption. We propose that subarticular primary malignant bone sarcomas with H3.3 mutations represent true malignant GCTB, even in the absence of a benign GCTB component. IMP3 and IGF2 might be potential biomarkers for GCT of the spine in regulating the angiogenesis of giant cell tumor of bone and predicting patients' prognosis. Conclusions: This review study shows serological markers, genetic factors, cell membrane receptor markers, predictive markers for malignancy, and prognostic protein markers which are highly sensitive for GCT and relatively specific for giant cell tumor. MDM2, IGF1, STAT1, RAC1 are important makers in determining recurrence, while P63 and H3F3A differentiate GCT from other giant cell-containing tumors. STAT5B, GRB2, and OXSR1 are significant in determining the prognosis of GCT. Apart from using radiological and histological parameters, we can add them to tumor work-up for definitive diagnosis and prognosis.
Collapse
Affiliation(s)
- Muhammad Taqi
- Orthopedic Surgery, Macquarie University Hospital, Sydney, NSW 2113, Australia
| | - Haseeb ul Rasool
- Internal Medicine Department, Icahn School of Medicine Mount Sinai, New York, NY 10029, USA
| | - Mobeen Zaka Haider
- Internal Medicine Department, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Munjed Al Muderis
- Orthopedic Surgery, Macquarie University Hospital, Sydney, NSW 2113, Australia
| |
Collapse
|
3
|
Chen GR, Zhang YB, Zheng SF, Xu YW, Lin P, Shang-Guan HC, Lin YX, Kang DZ, Yao PS. Decreased SPTBN2 expression regulated by the ceRNA network is associated with poor prognosis and immune infiltration in low‑grade glioma. Exp Ther Med 2023; 25:253. [PMID: 37153896 PMCID: PMC10161196 DOI: 10.3892/etm.2023.11952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/24/2023] [Indexed: 05/10/2023] Open
Abstract
The majority of low-grade gliomas (LGGs) in adults invariably progress to glioblastoma over time. Spectrin β non-erythrocytic 2 (SPTBN2) is detected in numerous tumors and is involved in tumor occurrence and metastasis. However, the specific roles and detailed mechanisms of SPTBN2 in LGG are largely unknown. The present study performed pan-cancer analysis for the expression and prognosis of SPTBN2 in LGG using The Cancer Genome Atlas and The Genotype-Tissue Expression. Western blotting was used to detect the amount of SPTBN2 between glioma tissues and normal brain tissues. Subsequently, based on expression, prognosis, correlation and immune infiltration, non-coding RNAs (ncRNAs) were identified that regulated SPTBN2 expression. Finally, tumor immune infiltrates associated with SPTBN2 and prognosis were performed. Lower expression of SPTBN2 was correlated with an unfavorable outcome in LGG. A significant correlation between the low SPTBN2 mRNA expression and poor clinicopathological features was observed, including wild-type isocitrate dehydrogenase status (P<0.001), 1p/19q non-codeletion (P<0.001) and elders (P=0.019). The western blotting results revealed that, compared with normal brain tissues, the amount of SPTBN2 was significantly lower in LGG tissues (P=0.0266). Higher expression of five microRNAs (miRs/miRNAs), including hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-16-5p, hsa-miR-34c-5p and hsa-miR-424-5p, correlated with poor prognosis by targeting SPTBN2 in LGG. Subsequently, four long ncRNAs (lncRNAs) [ARMCX5-GPRASP2, BASP1-antisense RNA 1 (AS1), EPB41L4A-AS1 and LINC00641] were observed in the regulation of SPTBN2 via five miRNAs. Moreover, the expression of SPTBN2 was significantly correlated with tumor immune infiltration, immune checkpoint expression and biomarkers of immune cells. In conclusion, SPTBN2 was lowly expressed and correlated with an unfavorable prognosis in LGG. A total of six miRNAs and four lncRNAs were identified as being able to modulate SPTBN2 in a lncRNA-miRNA-mRNA network of LGG. Furthermore, the current findings also indicated that SPTBN2 possessed anti-tumor roles by regulating tumor immune infiltration and immune checkpoint expression.
Collapse
Affiliation(s)
- Guo-Rong Chen
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Yi-Bin Zhang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Shu-Fa Zheng
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Ya-Wen Xu
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Peng Lin
- Department of Pain, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Huang-Cheng Shang-Guan
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Yuan-Xiang Lin
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - De-Zhi Kang
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Correspondence to: Professor De-Zhi Kang or Dr Pei-Sen Yao, Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang, Fuzhou, Fujian 350005, P.R. China
| | - Pei-Sen Yao
- Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
- Correspondence to: Professor De-Zhi Kang or Dr Pei-Sen Yao, Department of Neurosurgery, Neurosurgical Research Institute, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Taijiang, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
4
|
Yang L, Yang S, Ren C, Liu S, Zhang X, Sui A. Deciphering the roles of miR-16-5p in Malignant Solid Tumorsmalignant solid tumors. Pharmacotherapy 2022; 148:112703. [PMID: 35149384 DOI: 10.1016/j.biopha.2022.112703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/02/2022]
Abstract
MiR-16-5p, a member of the miR-16 family, has been reported to be abnormal expression in tumor tissues and blood of tumor patients, and also downregulated in most cancer cell lines. Aberrant expression of miR-16-5p promotes tumor cell proliferation, invasion, metastasis, angiogenesis, and can also affect the treatment sensitivity, such as radiotherapy and chemotherapy. Generally, miR-16-5p plays an anti-tumor role and these diverse functions of miR-16-5p in tumors collectively indicate that miR-16-5p may become an attractive target for novel anticancer therapies and a powerful diagnostic and prognostic biomarker for early tumor detection and population risk screening. Herein we review the role and utilization of miR-16-5p in malignant tumor in detail.
Collapse
Affiliation(s)
- Liuyi Yang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of North China University of Science and Technology, Tangshan, Hebei, China
| | - Sen Yang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of North China University of Science and Technology, Tangshan, Hebei, China
| | - Congcong Ren
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Shihua Liu
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaopei Zhang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Aixia Sui
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
5
|
War AR, Dang K, Jiang S, Xiao Z, Miao Z, Yang T, Li Y, Qian A. Role of cancer stem cells in the development of giant cell tumor of bone. Cancer Cell Int 2020; 20:135. [PMID: 32351329 PMCID: PMC7183664 DOI: 10.1186/s12935-020-01218-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
The primary bone tumor is usually observed in adolescence age group which has been shown to be part of nearly 20% of the sarcomas known today. Giant cell tumor of bone (GCTB) can be benign as well as malignant tumor which exhibits localized dynamism and is usually associated with the end point of a long bone. Giant cell tumor (GCT) involves mononuclear stromal cells which proliferate at a high rate, multinucleated giant cells and stromal cells are equally present in this type of tumor. Cancer stem cells (CSCs) have been confirmed to play a potential role in the development of GCT. Cancer stem cell-based microRNAs have been shown to contribute to a greater extent in giant cell tumor of bone. CSCs and microRNAs present in the tumors specifically are a great concern today which need in-depth knowledge as well as advanced techniques to treat the bone cancer effectively. In this review, we attempted to summarize the role played by cancer stem cells involving certain important molecules/factors such as; Mesenchymal Stem Cells (MSCs), miRNAs and signaling mechanism such as; mTOR/PI3K-AKT, towards the formation of giant cell tumor of bone, in order to get an insight regarding various effective strategies and research advancements to obtain adequate knowledge related to CSCs which may help to focus on highly effective treatment procedures for bone tumors.
Collapse
Affiliation(s)
- Abdul Rouf War
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Kai Dang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Shanfen Jiang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Zhongwei Xiao
- Department of Neurology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399 People’s Republic of China
| | - Zhiping Miao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Tuanmin Yang
- Honghui Hospital, Xi’an, Jiaotong University College of Medicine, Xi’an, Shaanxi China
| | - Yu Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
| |
Collapse
|
6
|
MicroRNA-16-5p Inhibits Osteoclastogenesis in Giant Cell Tumor of Bone. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3173547. [PMID: 28589137 PMCID: PMC5447262 DOI: 10.1155/2017/3173547] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/18/2017] [Accepted: 04/20/2017] [Indexed: 01/03/2023]
Abstract
Giant cell tumor (GCT) of bone is an aggressive skeletal tumor characterized by localized bone resorption. MicroRNA-16-5p (miR-16-5p) has been reported to be downregulated in lesions of patients with GCT, but little is known about its role in GCT. To explore the underlying function of miR-16-5p in GCT, we first detected its expression in patients with GCT. The results showed that osteoclast formation increased, whereas miR-16-5p expression considerably decreased with the severity of bone destruction. Furthermore, we found that miR-16-5p expression considerably decreased with the progression of receptor activator of nuclear factor-κB ligand- (RANKL-) induced osteoclastogenesis. Functionally, miR-16-5p mimics significantly reduced RANKL-induced osteoclast formation. However, treatment with an inhibitor of miR-16-5p significantly promoted osteoclastogenesis. These findings reveal that miR-16-5p inhibits osteoclastogenesis and that it may represent a therapeutic target for giant cell tumor of bone.
Collapse
|