1
|
Xu T, Xu S, Ma G, Chang J, Zhang C, Zhou P, Wang C, Xu P, Yang J, Hu Y, Wu Y. Human Chorionic Gonadotropin Regulates the Smad Signaling Pathway by Antagonizing TGF-β in Giant Cell Tumor of Bone. Recent Pat Anticancer Drug Discov 2024; 19:188-198. [PMID: 38214358 PMCID: PMC10804236 DOI: 10.2174/1574892818666230413082909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Giant cell tumor of bone (GCTB) is a locally aggressive bone tumour aggravated by stromal cell proliferation and metastasis. OBJECTIVE We investigated the mechanism of action of human chorionic gonadotropin (HCG) in mediating GCTB proliferation and invasion. METHODS The expression of HCG was quantified using quantitative real-time PCR. After the primary stromal cells were isolated and identified, the function of HCG in GCTB was estimated using the cell counting kit-8, flow cytometry, scratch experiment, transwell assay, Western blot, and immunofluorescence. Moreover, the mechanism of HCG was assessed through western blotting. RESULTS HCG expression was decreased in clinical tissue samples from patients with GCTB. We validated that HCG repressed stromal cell proliferation, migration, invasion, autophagy, and epithelial- mesenchymal transition (EMT) and promoted cell apoptosis in GCTB. We also verified that HCG repressed the autophagy and EMT of stromal cells through the Smad signaling axis in GCTB. HCG inhibited the transduction of the Smad signaling pathway by restraining the binding of the TGF-β II receptor to ligand Activin A. CONCLUSION HCG restrained the Smad signaling pathway by antagonizing TGF-β signaling in GCTB. HCG may serve as a useful patent to treat GCTB.
Collapse
Affiliation(s)
- Tangbing Xu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Shenglin Xu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
| | - Guangwen Ma
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Jun Chang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Chi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Ping Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Chao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Pengfei Xu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Junjun Yang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Yong Hu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
| | - Yunfeng Wu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| |
Collapse
|
2
|
Vaezi MA, Eghtedari AR, Safizadeh B, Ghasempour G, Salimi V, Nourbakhsh M, Nazem S, Tavakoli-Yaraki M. Up-regulation of matrix metalloproteinase-9 in primary bone tumors and its association with tumor aggressiveness. Mol Biol Rep 2022; 49:9409-9427. [PMID: 36002655 DOI: 10.1007/s11033-022-07798-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Understanding the molecular mechanism underlying the pathophysiology of primary skeletal tumors is crucial due to the tumor-related complications, incidence at a young age, and tumor recurrence. METHODS AND RESULTS The local expression pattern of MMP-9 as an active matrix-degrading protease was detected in 180 bone tissues, including 90 tumors and 90 noncancerous tissues, utilizing real-time qRT-PCR at the mRNA level and immunohistochemistry at the protein level. The correlation of the MMP-9 expression level with the patient's clinical pathological characteristics and the aggressiveness of the tumor was evaluated. The diagnostic significance of MMP-9 and the model of association of variables and MMP-9 expression and their predictive values were determined. Mean mRNA expression was higher in all types of primary bone tumors than their paired non-cancerous tissues. Osteosarcoma and Ewing's sarcoma expressed higher levels of MMP-9 compared to benign giant cell tumors, and the MMP-9 expression level was significantly correlated with the size, metastasis, and recurrence of the malignant tumor. A consistent expression pattern was demonstrated for MMP-9 protein levels in tissues. In addition, the MMP-9 gene and protein levels significantly discriminate between bone tumors and normal tissue, as well as benign and malignant tumors, and could predict potentially malignant traits such as tumor grade and metastasis. CONCLUSIONS The data propose that MMP-9 may be involved in the proliferation and invasion of primary bone tumors and has the potential to monitor and treat the progression of malignant tumors.
Collapse
Affiliation(s)
- Mohammad Amin Vaezi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Amir Reza Eghtedari
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Banafsheh Safizadeh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Ghasem Ghasempour
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Shima Nazem
- Department of Laboratory Medicine, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
| |
Collapse
|
3
|
Zheng XT, Wu ZH, Wei Y, Dai JJ, Yu GF, Yuan F, Ye LC. Induction of autophagy by salidroside through the AMPK-mTOR pathway protects vascular endothelial cells from oxidative stress-induced apoptosis. Mol Cell Biochem 2016; 425:125-138. [PMID: 27848074 DOI: 10.1007/s11010-016-2868-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells are highly sensitive to oxidative stress, and this is one of the mechanisms by which widespread endothelial dysfunction is induced in most cardiovascular diseases and disorders. However, how these cells can survive in oxidative stress environments remains unclear. Salidroside, a traditional Chinese medicine, has been shown to confer vascular protective effects. We aimed to understand the role of autophagy and its regulatory mechanisms by treating human umbilical vein endothelial cells (HUVECs) with salidroside under oxidative stress. HUVECs were treated with salidroside and exposed to hydrogen peroxide (H2O2). The results indicated that salidroside exerted cytoprotective effects in an H2O2-induced HUVEC injury model and suppressed H2O2-induced apoptosis of HUVECs. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, increased oxidative stress-induced HUVEC apoptosis, while the autophagy activator rapamycin induced anti-apoptosis effects in HUVECs. Salidroside increased autophagy and decreased apoptosis of HUVECs in a dose-dependent manner under oxidative stress. Moreover, 3-MA attenuated salidroside-induced HUVEC autophagy and promoted apoptosis, whereas rapamycin had no additional effects compared with salidroside alone. Salidroside upregulated AMPK phosphorylation but downregulated mTOR phosphorylation under oxidative stress; however, administration of compound C, an AMPK inhibitor, abrogated AMPK phosphorylation and increased mTOR phosphorylation and apoptosis compared with salidroside alone. These results suggest that autophagy is a protective mechanism in HUVECs under oxidative stress and that salidroside might promote autophagy through activation of the AMPK pathway and downregulation of mTOR pathway.
Collapse
Affiliation(s)
- Xiang-Tao Zheng
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zi-Heng Wu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ye Wei
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ju-Ji Dai
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Guan-Feng Yu
- Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - FengLai Yuan
- Department of Central Laboratory, The third Hospital Affiliated to Nantong University, Wuxi, 214041, Jiangsu, People's Republic of China.
| | - Le-Chi Ye
- Department of Oncological Surgery, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Ouhai District, Wenzhou, 325015, Zhejiang, People's Republic of China.
| |
Collapse
|