1
|
Zhang Z, Xia K, Gong W, Mai R, Liu P, Lu Z. Efficacy of Recombinant Human Parathyroid Hormone 1-34 and Vitamin K2 Combination Therapy in Postmenopausal Osteoporosis. Horm Metab Res 2025; 57:33-38. [PMID: 39197463 DOI: 10.1055/a-2371-1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
This study aimed to assess the efficacy and safety of a combined recombinant human parathyroid hormone 1-34 [rhPTH (1-34)] and vitamin K2 therapy versus vitamin K2 alone in the treatment of postmenopausal osteoporosis. A total of 77 postmenopausal osteoporosis patients were randomly divided into two groups. Patients in one group received vitamin K2 alone, while patients in the other group received a combination of rhPTH (1-34) and vitamin K2. Bone mineral density (BMD), electrolyte levels, pain scores, bone metabolism levels, and adverse drug reactions were compared pre- and post-treatment. Both two treatments improved BMD, blood calcium concentrations, pain scores, and increased osteocalcin and osteoprotegerin levels. Notably, the combined rhPTH (1-34) and vitamin K2 treatment demonstrated superior efficacy in improving BMD and bone metabolism markers. Furthermore, there was no significant difference in the incidence of adverse reactions between the two groups, indicating the safety of the combined treatment. In summary, the combined therapy of rhPTH (1-34) and vitamin K2 exhibited more potent efficacy in the treatment of postmenopausal osteoporosis, more effectively enhancing BMD and bone metabolism markers than vitamin K2 alone, without a significant increase in adverse reactions.
Collapse
Affiliation(s)
- Zhuo Zhang
- Surgery of Spine and Bone Tumors, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Kun Xia
- Surgery of Spine and Bone Tumors, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Wentao Gong
- Surgery of Spine and Bone Tumors, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Ruopeng Mai
- Surgery of Spine and Bone Tumors, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Peng Liu
- Surgery of Spine and Bone Tumors, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Zhaogang Lu
- Department of Clinical Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
2
|
Cong T, Viola DCM, Witayakom W, Nieves JW, Lane JM. What's New in Osteoporosis: Emphasis on the Aging Athlete. J Bone Joint Surg Am 2024; 106:1538-1545. [PMID: 39052756 DOI: 10.2106/jbjs.24.00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Affiliation(s)
- Ting Cong
- Metabolic Bone Disease Service, Department of Orthopedics, Hospital for Special Surgery, New York, NY
- Department of Orthopedics, Weill Cornell Medicine, New York, NY
| | - Dan C M Viola
- Metabolic Bone Disease Service, Department of Orthopedics, Hospital for Special Surgery, New York, NY
- Department of Orthopedics, Weill Cornell Medicine, New York, NY
| | - Witchaporn Witayakom
- Metabolic Bone Disease Service, Department of Orthopedics, Hospital for Special Surgery, New York, NY
- Department of Orthopedics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jeri W Nieves
- Metabolic Bone Disease Service, Department of Orthopedics, Hospital for Special Surgery, New York, NY
- Mailman School of Public Health, Columbia University, New York, NY
| | - Joseph M Lane
- Metabolic Bone Disease Service, Department of Orthopedics, Hospital for Special Surgery, New York, NY
- Department of Orthopedics, Weill Cornell Medicine, New York, NY
| |
Collapse
|
3
|
Zhou C, Meng X, Huang S, Chen H, Zhou H, Liao Y, Tang Z, Zhang X, Li H, Sun W, Wang Y. Biomechanical study of different bone cement distribution on osteoporotic vertebral compression Fracture-A finite element analysis. Heliyon 2024; 10:e26726. [PMID: 38434291 PMCID: PMC10907677 DOI: 10.1016/j.heliyon.2024.e26726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose This study aimed to compare the biomechanical effects of different bone cement distribution methods on osteoporotic vertebral compression fractures (OVCF). Patients and methods Raw CT data from a healthy male volunteer was used to create a finite element model of the T12-L2 vertebra using finite element software. A compression fracture was simulated in the L1 vertebra, and two forms of bone cement dispersion (integration group, IG, and separation group, SG) were also simulated. Six types of loading (flexion, extension, left/right bending, and left/right rotation) were applied to the models, and the stress distribution in the vertebra and intervertebral discs was observed. Additionally, the maximum displacement of the L1 vertebra was evaluated. Results Bone cement injection significantly reduced stress following L1 vertebral fractures. In the L1 vertebral body, the maximum stress of SG was lower than that of IG during flexion, left/right bending, and left/right rotation. In the T12 vertebral body, compared with IG, the maximum stress of SG decreased during flexion and right rotation. In the L2 vertebral body, the maximum stress of SG was the lowest under all loading conditions. In the T12-L1 intervertebral disc, compared with IG, the maximum stress of SG decreased during flexion, extension, and left/right bending and was basically the same during left/right rotation. However, in the L1-L2 intervertebral discs, the maximum stress of SG increased during left/right rotation compared with that of IG. Furthermore, the maximum displacement of SG was smaller than that of IG in the L1 vertebral bodies under all loading conditions. Conclusions SG can reduce the maximum stress in the vertebra and intervertebral discs, offering better biomechanical performance and improved stability than IG.
Collapse
Affiliation(s)
- Chengqiang Zhou
- Department of Spine Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Spine Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Meng
- Department of Spine Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shaolong Huang
- Department of Spine Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Spine Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Han Chen
- Department of Spine Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haibin Zhou
- Department of Spine Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yifeng Liao
- Department of Spine Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhongjian Tang
- Department of Spine Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Graduate School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hua Li
- Department of Spine Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Sun
- Department of Spine Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yunqing Wang
- Department of Spine Surgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|