1
|
Kim D, Collins JD, White JA, Hanneman K, Lee DC, Patel AR, Hu P, Litt H, Weinsaft JW, Davids R, Mukai K, Ng MY, Luetkens JA, Roguin A, Rochitte CE, Woodard PK, Manisty C, Zareba KM, Mont L, Bogun F, Ennis DB, Nazarian S, Webster G, Stojanovska J. SCMR expert consensus statement for cardiovascular magnetic resonance of patients with a cardiac implantable electronic device. J Cardiovasc Magn Reson 2024; 26:100995. [PMID: 38219955 PMCID: PMC11211236 DOI: 10.1016/j.jocmr.2024.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) is a proven imaging modality for informing diagnosis and prognosis, guiding therapeutic decisions, and risk stratifying surgical intervention. Patients with a cardiac implantable electronic device (CIED) would be expected to derive particular benefit from CMR given high prevalence of cardiomyopathy and arrhythmia. While several guidelines have been published over the last 16 years, it is important to recognize that both the CIED and CMR technologies, as well as our knowledge in MR safety, have evolved rapidly during that period. Given increasing utilization of CIED over the past decades, there is an unmet need to establish a consensus statement that integrates latest evidence concerning MR safety and CIED and CMR technologies. While experienced centers currently perform CMR in CIED patients, broad availability of CMR in this population is lacking, partially due to limited availability of resources for programming devices and appropriate monitoring, but also related to knowledge gaps regarding the risk-benefit ratio of CMR in this growing population. To address the knowledge gaps, this SCMR Expert Consensus Statement integrates consensus guidelines, primary data, and opinions from experts across disparate fields towards the shared goal of informing evidenced-based decision-making regarding the risk-benefit ratio of CMR for patients with CIEDs.
Collapse
Affiliation(s)
- Daniel Kim
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | - James A White
- Departments of Cardiac Sciences and Diagnostic Imaging, Cummings School of Medicine, University of Calgary, Calgary, Canada
| | - Kate Hanneman
- Department of Medical Imaging, University Medical Imaging Toronto, Toronto General Hospital and Peter Munk Cardiac Centre, University of Toronto, Toronto, Canada
| | - Daniel C Lee
- Department of Medicine (Division of Cardiology), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amit R Patel
- Cardiovascular Division, University of Virginia, Charlottesville, VA, USA
| | - Peng Hu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Harold Litt
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan W Weinsaft
- Department of Medicine (Division of Cardiology), Weill Cornell Medicine, New York, NY, USA
| | - Rachel Davids
- SHS AM NAM USA DI MR COLLAB ADV-APPS, Siemens Medical Solutions USA, Inc., Chicago, Il, USA
| | - Kanae Mukai
- Salinas Valley Memorial Healthcare System, Ryan Ranch Center for Advanced Diagnostic Imaging, Monterey, CA, USA
| | - Ming-Yen Ng
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, the Hong Kong Special Administrative Region of China
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Ariel Roguin
- Department of Cardiology, Hillel Yaffe Medical Center, Hadera and Faculty of Medicine. Technion - Israel Institute of Technology, Israel
| | - Carlos E Rochitte
- Heart Institute, InCor, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Charlotte Manisty
- Institute of Cardiovascular Science, University College London, London, UK
| | - Karolina M Zareba
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Lluis Mont
- Cardiovascular Institute, Hospital Clínic, University of Barcelona, Catalonia, Spain
| | - Frank Bogun
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Saman Nazarian
- Section of Cardiac Electrophysiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Webster
- Department of Pediatrics (Cardiology), Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Jadranka Stojanovska
- Department of Radiology, Grossman School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
2
|
Cahill EM, Chee M, Kwong K. Assessing Radiology Practice Patterns for Obtaining MRI in Pediatric Patients with MR-Conditional Tracheostomy Tubes. EAR, NOSE & THROAT JOURNAL 2022:1455613221132388. [PMID: 36259239 DOI: 10.1177/01455613221132388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Silicone tracheostomy tubes are a popular choice for pediatric patients with chronic tracheostomies due to their pliability and increased comfort. However, the presence of wire reinforcement causes them to be labeled "MR-conditional." The objective of this study was to understand practice patterns across radiology departments for obtaining MRI in children with MR-conditional tracheostomy tubes. METHODS A survey consisting of 7 questions aimed at determining a facility's protocol for obtaining MRI in children with tracheostomy tubes was developed and administered via telephone to MRI technologists at US children's hospitals. RESULTS 182 children's hospitals were identified and 59 responses were obtained across 30 states (32.4%). 19 sites (32%) were excluded as they were unable to perform MRI. All 40 facilities reported that they have a standard questionnaire for medical implants, however only 20 reported that tracheostomy tubes are included on that questionnaire (50%). 6 (15%) reported all MR-conditional tubes are changed to MR-safe ones. Of the remaining 34, protocols were as follows: 1 (2.9%) scans patients with conditional tubes for a maximum of 15 minutes, 5 (14.7%) only use a 1.5T magnet, and 28 (82.3%) reported following the manufacturer conditions. In terms of artifact, 3 sites change MR-conditional tubes to MR-safe if scanning the head, neck, chest, or abdomen (8.8%), 6 (17.6%) change the tube if scanning the head or neck, 15 (44.1%) change the tube only if scanning the neck, and 10 (29.4%) were not aware of issues with artifact. CONCLUSION Based on this survey of MRI technologists at US children's hospitals, there is no unified protocol for obtaining MRI in pediatric patients with MR-conditional tracheostomy tubes. A lack of standardized protocols may be contributing to unnecessary tracheostomy changes. Future research includes clearly defining the anatomical regions affected by wire-related artifact and developing a standardized MRI protocol for these patients.
Collapse
Affiliation(s)
- Ellen M Cahill
- Rutgers Robert Wood Johnson Medical School(RWJMS), Piscataway, NJ, USA
| | - Michael Chee
- Division of Pediatric Otolaryngology, Joseph M. Sanzari Children's Hospital, Hackensack Meridian Children's Health, Hackensack, NJ, USA
| | - Kelvin Kwong
- Division of Pediatric Otolaryngology, Department of Otolaryngology - Head and Neck Surgery, Rutgers RWJMS, New Brunswick, NJ, USA
| |
Collapse
|
5
|
Indik JH, Gimbel JR, Abe H, Alkmim-Teixeira R, Birgersdotter-Green U, Clarke GD, Dickfeld TML, Froelich JW, Grant J, Hayes DL, Heidbuchel H, Idriss SF, Kanal E, Lampert R, Machado CE, Mandrola JM, Nazarian S, Patton KK, Rozner MA, Russo RJ, Shen WK, Shinbane JS, Teo WS, Uribe W, Verma A, Wilkoff BL, Woodard PK. 2017 HRS expert consensus statement on magnetic resonance imaging and radiation exposure in patients with cardiovascular implantable electronic devices. Heart Rhythm 2017; 14:e97-e153. [DOI: 10.1016/j.hrthm.2017.04.025] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 11/16/2022]
|