1
|
Pérez-Cabral ID, Bernal-Mercado AT, Islas-Rubio AR, Suárez-Jiménez GM, Robles-García MÁ, Puebla-Duarte AL, Del-Toro-Sánchez CL. Exploring Dietary Interventions in Autism Spectrum Disorder. Foods 2024; 13:3010. [PMID: 39335937 PMCID: PMC11431671 DOI: 10.3390/foods13183010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Autism spectrum disorder (ASD) involves social communication difficulties and repetitive behaviors, and it has a growing prevalence worldwide. Symptoms include cognitive impairments, gastrointestinal (GI) issues, feeding difficulties, and psychological problems. A significant concern in ASD is food selectivity, leading to nutrient deficiencies. Common GI issues in ASD, such as constipation and irritable bowel syndrome, stem from abnormal gut flora and immune system dysregulation. Sensory sensitivities and behavioral challenges exacerbate these problems, correlating with neurological symptom severity. Children with ASD also exhibit higher oxidative stress due to low antioxidant levels like glutathione. Therapeutic diets, including ketogenic, high-antioxidant, gluten-free and casein-free, and probiotic-rich diets, show potential in managing ASD symptoms like behavior, communication, GI issues, and oxidative stress, though the evidence is limited. Various studies have focused on different populations, but there is increasing concern about the impact among children. This review aims to highlight the food preferences of the ASD population, analyze the effect of the physicochemical and nutritional properties of foods on the selectivity in its consumption, GI problems, and antioxidant deficiencies in individuals with ASD, and evaluate the effectiveness of therapeutic diets, including diets rich in antioxidants, gluten-free and casein-free, ketogenic and essential fatty acids, and probiotic-rich diets in managing these challenges.
Collapse
Affiliation(s)
| | | | - Alma Rosa Islas-Rubio
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Hermosillo 83304, SO, Mexico
| | | | - Miguel Ángel Robles-García
- Department of Medical and Life Sciences, Cienega University Center (CUCIÉNEGA), University of Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán 47820, JA, Mexico
| | | | | |
Collapse
|
2
|
Wu Y, Su Q. Harnessing the Gut Microbiome: To What Extent Can Pre-/Probiotics Alleviate Immune Activation in Autism Spectrum Disorder? Nutrients 2024; 16:2382. [PMID: 39125263 PMCID: PMC11314583 DOI: 10.3390/nu16152382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Children diagnosed with autism spectrum disorder (ASD) are at an increased risk of experiencing gastrointestinal (GI) discomfort, which has been linked to dysfunctions in the microbiome-gut-brain axis. The bidirectional communication between gut and brain plays a crucial role in the overall health of individuals, and alterations in the gut microbiome can contribute to immune activation and gut-brain dysfunction in ASD. Despite the limited and controversial results of pre-/probiotic applications in ASD, this review comprehensively maps the association between ASD clinical symptoms and specific bacterial taxa and evaluates the efficacy of pre-/probiotics in modulating microbiota composition, reducing inflammatory biomarkers, alleviating difficulties in GI distress, sleep problems, core and other ASD-associated symptoms, as well as relieving parental concerns, separately, in individuals with ASD. Beyond simply targeting core ASD symptoms, this review highlights the potential of pre-/probiotic supplementations as a strategy to modulate gut homeostasis and immune response, and to delineate the potential mechanisms by which its direct or mediating effects can alleviate gut-brain dysfunction and poor nutritional status in ASD management. Further well-designed randomized controlled trials are needed to strengthen the existing evidence and establish optimal protocols for the use of pre-/probiotics in the context of ASD.
Collapse
Affiliation(s)
- Yuqi Wu
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qi Su
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Varley AN, Browning KN. Gastrointestinal dysfunction in the valproic acid induced model of social deficit in rats. Auton Neurosci 2024; 253:103161. [PMID: 38461695 PMCID: PMC11128350 DOI: 10.1016/j.autneu.2024.103161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Autism spectrum disorder (ASD) has increased in incidence over the past several decades, and is associated with a range of co-morbidities including gastrointestinal (GI) dysfunctions including gastroesophageal reflux, abdominal pain, bloating, constipation and/or diarrhea. Several animal models have been used that replicate several aspects of ASD but no single model has been able to replicate the entire disease pathophysiology. In humans, prenatal exposure to valproic acid (VPA) has been identified as a significant risk factor and rodent models have shown that in utero VPA exposure leads to behavioral deficits in offspring. The present study aimed to investigate whether in utero exposure to VPA induces GI dysfunction in rats. Timed pregnant Sprague-Dawley rats were injected with a single dose of VPA at embryonic day 12.5. Both male and female offspring subsequently underwent behavioral studies and assessment of GI function in adulthood. In utero VPA treatment induced social deficits in both male and female offspring, decreasing sociability and social novelty. Histological examination showed that VPA treated offspring had decreased thickness of GI muscle and mucosa, while immunohistochemical studies showed a decrease in myenteric neuron number in the fundus. Functional studies showed that both male and female VPA offspring had a delay in gastric emptying compared to vehicle treated offspring. Results of the current study suggest that the rat VPA model of behavioral deficits may be a convenient model by which both mechanistic and functional insights into GI dysfunction may be studied.
Collapse
Affiliation(s)
- Ashley N Varley
- Department of Comparative Medicine, Penn State College of Medicine, Hershey, PA, United States of America
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States of America.
| |
Collapse
|
4
|
Nagata A, Onishi K, Masumoto T, Nakagawa T, Ishitsuka K, Kurozawa Y. Early childhood neurodevelopmental milestones in children with allergic diseases: the Japan Environment and Children's Study (JECS). Sci Rep 2024; 14:6460. [PMID: 38499597 PMCID: PMC10948893 DOI: 10.1038/s41598-024-57210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
This study investigated the potential link between early childhood allergic diseases and neurodevelopmental milestone attainment during the first 3 years of life. Utilizing data from a large-scale prospective birth cohort study in Japan, encompassing 87,986 children, we examined physician-diagnosed and caregiver-reported allergic conditions, including atopic dermatitis (AD), asthma, and food allergy (FA). Neurodevelopmental milestones were assessed using the Ages and Stages Questionnaires at 1, 1.5, 2, 2.5, and 3 years of age. Stabilized inverse probability-weighted generalized estimating equation models were employed to estimate odds ratios (ORs). Our analysis revealed no significant association of AD and asthma with delay in communication, gross motor, fine motor, problem-solving, and personal-social skills during the initial 3 years of life. However, children with FA showed an increased likelihood of experiencing gross motor delay compared with that shown by those without FA (weighted adjusted OR: 1.14). Despite this, no significant association of FA with other developmental domains was observed. Early childhood allergies may not influence neurodevelopmental delays. However, there is a potential association between FA and delays, specifically in gross motor skills, that warrants routine developmental monitoring and additional investigations.
Collapse
Affiliation(s)
- Abir Nagata
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
- Graduate School of Public Health, St. Luke's International University, Tokyo, Japan.
| | - Kazunari Onishi
- Division of Environmental Health, Graduate School of Public Health, St. Luke's International University, 3-6-2 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Toshio Masumoto
- Division of Health Administration and Promotion, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Takatoshi Nakagawa
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Kazue Ishitsuka
- Department of Social Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Youichi Kurozawa
- Division of Health Administration and Promotion, Faculty of Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
5
|
Gao B, Zhou Z, Chen J, Zhang S, Jin S, Yang W, Lei Y, Wang K, Li J, Zhuang Y. Aminopeptidase O Protein mediates the association between Lachnospiraceae and appendicular lean mass. Front Microbiol 2024; 15:1325466. [PMID: 38384268 PMCID: PMC10879621 DOI: 10.3389/fmicb.2024.1325466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
Objective Investigating the causal relationship between Lachnospiraceae and Appendicular lean mass (ALM) and identifying and quantifying the role of Aminopeptidase O Protein (AOPEP) as a potential mediator. Methods The summary statistics data of gut microbiota composition from the largest available genome-wide association study (GWAS) meta-analysis conducted by the MiBioGen Consortium (n = 13,266). Appendicular lean mass data were obtained from the UK-Biobank (n = 450,243). We conducted bidirectional two-sample Mendelian randomization (MR) analysis using summary-level data from GWAS to investigate the causal relationship between Lachnospiraceae and ALM. Additionally, we employed a drug-targeted MR approach to assess the causal relationship between AOPEP and ALM. Finally, a two-step MR was employed to quantitatively estimate the proportion of the effect of Lachnospiraceae on ALM that is mediated by AOPEP. Cochran's Q statistic was used to quantify heterogeneity among instrumental variable estimates. Results In the MR analysis, it was found that an increase in genetically predicted Lachnospiraceae [OR = 1.031, 95% CI (1.011-1.051), P = 0.002] is associated with an increase in ALM. There is no strong evidence to suggest that genetically predicted ALM has an impact on Lachnospiraceae genus [OR = 1.437, 95% CI (0.785-2.269), P = 0.239]. The proportion of genetically predicted Lachnospiraceae mediated by AOPEP was 34.2% [95% CI (1.3%-67.1%)]. Conclusion Our research reveals that increasing Lachnospiraceae abundance in the gut can directly enhance limb muscle mass and concurrently suppress AOPEP, consequently mitigating limb muscle loss. This supports the potential therapeutic modulation of gut microbiota for sarcopenia. Interventions such as drug treatments or microbiota transplantation, aimed at elevating Lachnospiraceae abundance and AOPEP inhibition, synergistically improve sarcopenia in the elderly, thereby enhancing the overall quality of life for older individuals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Zhuang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
6
|
Saroukhani S, Samms-Vaughan M, Bressler J, Lee M, Byrd-Williams C, Hessabi M, Grove ML, Shakespeare-Pellington S, Loveland KA, Rahbar MH. Additive or Interactive Associations of Food Allergies with Glutathione S-Transferase Genes in Relation to ASD and ASD Severity in Jamaican Children. J Autism Dev Disord 2024; 54:704-724. [PMID: 36436147 DOI: 10.1007/s10803-022-05813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 11/29/2022]
Abstract
To investigate additive and interactive associations of food allergies with three glutathione S-transferase (GST) genes in relation to ASD and ASD severity in Jamaican children. Using data from 344 1:1 age- and sex-matched ASD cases and typically developing controls, we assessed additive and interactive associations of food allergies with polymorphisms in GST genes (GSTM1, GSTP1 and GSTT1) in relation to ASD by applying conditional logistic regression models, and in relation to ASD severity in ASD cases as measured by the Autism Diagnostic Observation Schedule-2nd Edition (ADOS-2) total and domains specific comparison scores (CSs) by fitting general linear models. Although food allergies and GST genes were not associated with ASD, ASD cases allergic to non-dairy food had higher mean ADOS-2 Restricted and Repetitive Behaviors (RRB) CS (8.8 vs. 8.0, P = 0.04). In addition, allergy to dairy was associated with higher mean RRB CS only among ASD cases with GSTT1 DD genotype (9.9 vs. 7.8, P < 0.01, interaction P = 0.01), and GSTP1 Val/Val genotype under a recessive genetic model (9.8 vs. 7.8, P = 0.02, interaction P = 0.06). Our findings are consistent with the role for GST genes in ASD and food allergies, though require replication in other populations.
Collapse
Affiliation(s)
- Sepideh Saroukhani
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Maureen Samms-Vaughan
- Department of Child & Adolescent Health, The University of the West Indies (UWI), Mona Campus, Kingston 7, Kingston, Jamaica
| | - Jan Bressler
- Department of Epidemiology, Human Genetics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - MinJae Lee
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Courtney Byrd-Williams
- Department of Health Promotion and Behavioral Sciences, Michael & Susan Dell Center for Healthy Living, School of Public Health Regional Campus at Austin, The University of Texas Health Science Center at Houston, Austin, TX, 78701, USA
| | - Manouchehr Hessabi
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Megan L Grove
- Department of Epidemiology, Human Genetics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Sydonnie Shakespeare-Pellington
- Department of Child & Adolescent Health, The University of the West Indies (UWI), Mona Campus, Kingston 7, Kingston, Jamaica
| | - Katherine A Loveland
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, 77030, Houston, USA
| | - Mohammad H Rahbar
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Department of Epidemiology, Human Genetics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Germundson DL, Nookala S, Smith NA, Warda Y, Nagamoto-Combs K. HLA-II Alleles Influence Physical and Behavioral Responses to a Whey Allergen in a Transgenic Mouse Model of Cow's Milk Allergy. FRONTIERS IN ALLERGY 2022; 3:870513. [PMID: 35769584 PMCID: PMC9234862 DOI: 10.3389/falgy.2022.870513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
The symptoms of food allergies vary significantly between individuals, likely due to genetic determinants. In humans, allergy development is initiated by antigen-presenting cells via class II human leukocyte antigen (HLA-II). The HLA-II gene is highly polymorphic, and its allelic variance is thought to influence the susceptibility of individuals to a particular allergen. However, whether antigen presentation by different HLA-II variants contributes to symptom variation is not clear. We hypothesized that HLA-II allelic variance affects symptom phenotypes, including immediate physical reactions and delayed behavioral changes, in individuals with food hypersensitivity. To test our hypothesis, male and female mice of three transgenic strains expressing an HLA-II variant, DR3, DR15, or DQ8, were used to establish a cow's milk allergy model. Mice were sensitized to a bovine whey allergen, β-lactoglobulin (BLG; Bos d 5), weekly for 5 weeks, followed by an acute oral allergen challenge. At 30 min post-challenge, BLG-sensitized DR3 mice showed moderate to severe anaphylaxis resulting in perioral redness, swelling, and death. In contrast, DQ8 and DR15 mice were generally asymptomatic. The production of allergen-specific immunoglobulins was also HLA- and sex-dependent. Both male and female DR3 and female DR15 mice significantly increased BLG-specific IgE production, while robust elevation in BLG-specific IgG1 was observed in sensitized DQ8 mice of both sexes and, to a lesser extent, in DR15 males. Furthermore, BLG-sensitized DR15 mice showed sex-specific behavior changes, with males exhibiting mobility changes and anxiety-like behavior and females showing spatial memory impairment. When splenocytes from transgenic mice were stimulated in vitro with BLG, phenotypes of immune cells were HLA- and sex-specific, further underscoring the influence of HLA-II on immune responses. Our results support that HLA-II alleles influence behavioral responses in addition to immune and physical reactions of food allergy, suggesting that certain HLA-II variants may predispose individuals to food-allergy-associated behavioral changes.
Collapse
Affiliation(s)
- Danielle L. Germundson
- Department of Pathology, Clinical and Translational Sciences Graduate Program, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Suba Nookala
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Nicholas A. Smith
- Department of Pathology, Clinical and Translational Sciences Graduate Program, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Yassmine Warda
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Kumi Nagamoto-Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
- *Correspondence: Kumi Nagamoto-Combs
| |
Collapse
|
8
|
Germundson DL, Nagamoto-Combs K. Potential Role of Intracranial Mast Cells in Neuroinflammation and Neuropathology Associated with Food Allergy. Cells 2022; 11:738. [PMID: 35203387 PMCID: PMC8870724 DOI: 10.3390/cells11040738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/29/2022] Open
Abstract
Mast cells (MCs) are the major effector cells of allergic responses and reside throughout the body, including in the brain and meninges. Previously, we showed in a mouse model of subclinical cow's milk allergy that brain MC numbers were elevated in sensitized mice. However, the neurophysiological consequences of intracranial MC accumulation and activation are unclear. We hypothesized that centrally recruited MCs in sensitized mice could be activated by the allergen via the IgE/FcεRI mechanism and increase the blood-brain barrier (BBB) permeability to promote neuroinflammation. Furthermore, we suspected that repeated allergen exposure could sustain MC activation. To investigate our hypothesis, we sensitized C57BL6/J mice to a bovine whey allergen, β-lactoglobulin (BLG), and subsequently placed them on a whey-containing diet for two weeks. MC activity and associated changes in the brain were examined. BLG-sensitized mice showed mobility changes and depression-like behavior with significantly increased MC numbers and histamine levels in select brain regions. IgG extravasation and perivascular astrogliosis were also evident. Importantly, myelin staining revealed cortical demyelination in the BLG-sensitized mice, suggesting a potential neural substrate for their behavioral changes. Our findings support the ability of brain MCs to release histamine and other mediators to increase BBB permeability and facilitate neuroinflammatory responses in the brain.
Collapse
Affiliation(s)
- Danielle L. Germundson
- Clinical and Translational Sciences Graduate Program, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202-9037, USA;
| | - Kumi Nagamoto-Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND 58202-9037, USA
| |
Collapse
|
9
|
Xu G, Liu B, Yang W, Snetselaar LG, Chen M, Bao W, Strathearn L. Association of Food Allergy, Respiratory Allergy, and Skin Allergy with Attention Deficit/Hyperactivity Disorder among Children. Nutrients 2022; 14:474. [PMID: 35276830 PMCID: PMC8838767 DOI: 10.3390/nu14030474] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Previous studies have predominately examined associations of respiratory allergy and skin allergy with ADHD, but little is known about the association between food allergy and ADHD. METHODS We included 192,573 children aged 4-17 years from the National Health Interview Survey (NHIS), a leading health survey in a nationally representative sample of the US population. Allergy conditions and ADHD were defined based on an affirmative response in the NHIS questionnaire. We used weighted logistic regression to estimate the odds ratio (OR) of ADHD. RESULTS Among the 192,573 children, 15,376 reported ADHD diagnosis. The prevalence of ADHD was higher among children with allergic conditions: 12.66% vs. 7.99% among children with and without food allergy; 12.16% vs. 7.63% among children with and without respiratory allergy; and 11.46% vs. 7.83% among children with and without skin allergy. After adjusting for covariates, the OR of ADHD was 1.72 (95% CI, 1.55-1.91) comparing children with and without food allergy, 1.50 (95% CI, 1.41-1.59) comparing children with and without respiratory allergy, and 1.65 (95% CI, 1.55-1.75) comparing children with and without skin allergy. The observed associations remained significant after mutual adjustment for other allergic conditions. CONCLUSIONS In a nationally representative sample of US children, we found a significant association of common allergic conditions (food allergy, respiratory allergy, and skin allergy) with ADHD.
Collapse
Affiliation(s)
- Guifeng Xu
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China;
- Center for Disabilities and Development, University of Iowa Stead Family Children’s Hospital, Iowa City, IA 52242, USA;
| | - Buyun Liu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (B.L.); (W.B.)
| | - Wenhan Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | | | - Mingwu Chen
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China;
| | - Wei Bao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (B.L.); (W.B.)
| | - Lane Strathearn
- Center for Disabilities and Development, University of Iowa Stead Family Children’s Hospital, Iowa City, IA 52242, USA;
- Division of Developmental Behavioral Pediatrics, Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Ahmed S, Travis SD, Díaz-Bahamonde FV, Porter DDL, Henry SN, Mykins J, Ravipati A, Booker A, Ju J, Ding H, Ramesh AK, Pickrell AM, Wang M, LaConte S, Howell BR, Yuan L, Morton PD. Early Influences of Microbiota on White Matter Development in Germ-Free Piglets. Front Cell Neurosci 2022; 15:807170. [PMID: 35027884 PMCID: PMC8751630 DOI: 10.3389/fncel.2021.807170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Abnormalities in the prefrontal cortex (PFC), as well as the underlying white matter (WM) tracts, lie at the intersection of many neurodevelopmental disorders. The influence of microorganisms on brain development has recently been brought into the clinical and research spotlight as alterations in commensal microbiota are implicated in such disorders, including autism spectrum disorders, schizophrenia, depression, and anxiety via the gut-brain axis. In addition, gut dysbiosis is common in preterm birth patients who often display diffuse WM injury and delayed WM maturation in critical tracts including those within the PFC and corpus callosum. Microbial colonization of the gut aligns with ongoing postnatal processes of oligodendrogenesis and the peak of brain myelination in humans; however, the influence of microbiota on gyral WM development remains elusive. Here, we develop and validate a neonatal germ-free swine model to address these issues, as piglets share key similarities in WM volume, developmental trajectories, and distribution to humans. We find significant region-specific reductions, and sexually dimorphic trends, in WM volume, oligodendrogenesis, and mature oligodendrocyte numbers in germ-free piglets during a key postnatal epoch of myelination. Our findings indicate that microbiota plays a critical role in promoting WM development during early life when the brain is vulnerable to environmental insults that can result in an array of disabilities manifesting later in life.
Collapse
Affiliation(s)
- Sadia Ahmed
- Graduate Studies in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sierrah D Travis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Francisca V Díaz-Bahamonde
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Demisha D L Porter
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Sara N Henry
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Julia Mykins
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Aditya Ravipati
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Aryn Booker
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jing Ju
- Graduate Studies in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Hanzhang Ding
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Ashwin K Ramesh
- Graduate Studies in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Alicia M Pickrell
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Maosen Wang
- Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Virginia Tech, Roanoke, VA, United States
| | - Stephen LaConte
- Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Virginia Tech, Roanoke, VA, United States.,Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Brittany R Howell
- Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Virginia Tech, Roanoke, VA, United States.,Department of Human Development and Family Science, Virginia Tech, Roanoke, VA, United States
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
11
|
Wong RS, Tung KTS, Leung HE, Chow R, Chua GT, Ho MHK, Tso WWY, Fung GPG, Tao VQC, Kwan MYW, Lum TYS, Wong ICK, Ip P. Comorbidity of ADHD and allergic diseases in early adolescence: The role of parental smoking at home. CURRENT PSYCHOLOGY 2022; 42:1-9. [PMID: 35018079 PMCID: PMC8734129 DOI: 10.1007/s12144-021-02693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 11/30/2022]
Abstract
A growing body of research suggests an association between attention deficit hyperactivity disorder (ADHD) and allergic disorders, but little work has been done to explore the role of external factors such as parental smoking at home in the development of comorbid ADHD and allergic disorders. This study aimed to examine the association between allergic diseases and ADHD adjusted for exposure to parental smoking at home in early adolescents. We recruited 250 male (41.7%) and 350 female (58.3%) adolescents (mean [SD] age, 13.29 [0.52] years) via chain-referral sampling. Their ADHD symptoms were assessed by the parent proxy-report version of the Chinese Strengths and Weaknesses of Attention-Deficit/Hyperactivity-symptoms and Normal-behaviours (SWAN) rating scale. Data on the participants' history of clinician-diagnosed allergic diseases, family socio-demographics, and parental smoking habit were collected using a parent-completed questionnaire. Regression analyses were performed to examine the associations of interest. The levels of ADHD symptoms were comparable between allergic and non-allergic participants after controlling for child and family demographics and parental smoking at home. Notably, the risk of probable ADHD was particularly high in participants with food allergies (odd ratio = 4.51, p = 0.011) but not in those with allergic rhinitis after adjusting for parental smoking at home. Our findings suggest that second-hand smoke exposure at home is a potential risk factor underlying the link between ADHD and allergic diseases. Current management guidelines should emphasize the importance of early identification and cessation of tobacco smoke exposure for prevention of comorbidity of ADHD and allergic disorders. Clinical Trial Registration (if any): NA.
Collapse
Affiliation(s)
- Rosa S. Wong
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, 102 Pokfulam Road, Hong Kong, SAR China
- Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong, SAR China
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Keith T. S. Tung
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, 102 Pokfulam Road, Hong Kong, SAR China
| | - Hugo E. Leung
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, 102 Pokfulam Road, Hong Kong, SAR China
| | - Reena Chow
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, 102 Pokfulam Road, Hong Kong, SAR China
| | - Gilbert T. Chua
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, 102 Pokfulam Road, Hong Kong, SAR China
| | - Macro H. K. Ho
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, 102 Pokfulam Road, Hong Kong, SAR China
| | - Winnie W. Y. Tso
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, 102 Pokfulam Road, Hong Kong, SAR China
| | - Genevieve P. G. Fung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong, SAR China
| | | | - Mike Y. W. Kwan
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, SAR China
| | - Terry Y. S. Lum
- Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong, SAR China
| | - Ian C. K. Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
- Research Department of Practice and Policy, UCL School of Pharmacy, London, UK
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, 102 Pokfulam Road, Hong Kong, SAR China
| |
Collapse
|
12
|
Xiang S, Ye K, Li M, Ying J, Wang H, Han J, Shi L, Xiao J, Shen Y, Feng X, Bao X, Zheng Y, Ge Y, Zhang Y, Liu C, Chen J, Chen Y, Tian S, Zhu X. Xylitol enhances synthesis of propionate in the colon via cross-feeding of gut microbiota. MICROBIOME 2021; 9:62. [PMID: 33736704 PMCID: PMC7977168 DOI: 10.1186/s40168-021-01029-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/05/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Xylitol, a white or transparent polyol or sugar alcohol, is digestible by colonic microorganisms and promotes the proliferation of beneficial bacteria and the production of short-chain fatty acids (SCFAs), but the mechanism underlying these effects remains unknown. We studied mice fed with 0%, 2% (2.17 g/kg/day), or 5% (5.42 g/kg/day) (weight/weight) xylitol in their chow for 3 months. In addition to the in vivo digestion experiments in mice, 3% (weight/volume) (0.27 g/kg/day for a human being) xylitol was added to a colon simulation system (CDMN) for 7 days. We performed 16S rRNA sequencing, beneficial metabolism biomarker quantification, metabolome, and metatranscriptome analyses to investigate the prebiotic mechanism of xylitol. The representative bacteria related to xylitol digestion were selected for single cultivation and co-culture of two and three bacteria to explore the microbial digestion and utilization of xylitol in media with glucose, xylitol, mixed carbon sources, or no-carbon sources. Besides, the mechanisms underlying the shift in the microbial composition and SCFAs were explored in molecular contexts. RESULTS In both in vivo and in vitro experiments, we found that xylitol did not significantly influence the structure of the gut microbiome. However, it increased all SCFAs, especially propionate in the lumen and butyrate in the mucosa, with a shift in its corresponding bacteria in vitro. Cross-feeding, a relationship in which one organism consumes metabolites excreted by the other, was observed among Lactobacillus reuteri, Bacteroides fragilis, and Escherichia coli in the utilization of xylitol. At the molecular level, we revealed that xylitol dehydrogenase (EC 1.1.1.14), xylulokinase (EC 2.7.1.17), and xylulose phosphate isomerase (EC 5.1.3.1) were key enzymes in xylitol metabolism and were present in Bacteroides and Lachnospiraceae. Therefore, they are considered keystone bacteria in xylitol digestion. Also, xylitol affected the metabolic pathway of propionate, significantly promoting the transcription of phosphate acetyltransferase (EC 2.3.1.8) in Bifidobacterium and increasing the production of propionate. CONCLUSIONS Our results revealed that those key enzymes for xylitol digestion from different bacteria can together support the growth of micro-ecology, but they also enhanced the concentration of propionate, which lowered pH to restrict relative amounts of Escherichia and Staphylococcus. Based on the cross-feeding and competition among those bacteria, xylitol can dynamically balance proportions of the gut microbiome to promote enzymes related to xylitol metabolism and SCFAs. Video Abstract.
Collapse
Affiliation(s)
- Shasha Xiang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Kun Ye
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua, 324302 China
| | - Jian Ying
- Nutrition and Health Research Institute, COFCO Ltd., Beijing, 102209 China
| | - Huanhuan Wang
- School of Medicine, Hangzhou Normal University, Hangzhou, 310018 China
- Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121 China
| | - Jianzhong Han
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Lihua Shi
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua, 324302 China
| | - Jie Xiao
- Nutrition and Health Research Institute, COFCO Ltd., Beijing, 102209 China
| | - Yubiao Shen
- Yangtze Delta Institute of Tsinghua University, Jiaxing, 314000 China
| | - Xiao Feng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Xuan Bao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Yiqing Zheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Yin Ge
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Yalin Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Chang Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Yuewen Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Shiyi Tian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| | - Xuan Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018 China
| |
Collapse
|
13
|
Zachariassen LF, Sørensen DB, Krych L, Hansen AK, Hansen CHF. Effects of delivery mode on behavior in mouse offspring. Physiol Behav 2020; 230:113285. [PMID: 33309952 DOI: 10.1016/j.physbeh.2020.113285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022]
Abstract
Cesarean section (CS) has been associated with an increased risk of mental disorders in the offspring. This could possibly be explained by an inadequate microbial colonization early in life with a consequential disturbed gut-brain interaction. To investigate the link between delivery mode and behavior and develop a suitable animal model for further research of the gut-brain axis, the aim of this study was to characterize the gut microbiota (GM) together with the behavioral response in various behavioral tests in CS-delivered mice. We hypothesized that mice delivered by CS would present with disturbances in normal physiological behavior possibly due to an inadequate microbial colonization. C57BL/6 mice delivered by CS or vaginal delivery (VD) were cross fostered and, as adults, observed for anxiety-related behavior in the open field test, social deficits in a sociability test and compulsive behavior in the marble burying test. GM was analyzed by 16S rRNA gene amplicon sequencing. The open field test showed that CS-delivered mice had a decreased activity and accelerated defecation compared to VD-delivered mice. In addition, CS-delivered female mice spend less time interacting with cage mates in the sociability test, whereas there was no effect of CS delivery on the average number of marbles buried. In conclusion, CS-delivered mice had a more pronounced anxiety-like behavior and showed less preference for sociability in female offspring.
Collapse
Affiliation(s)
- Line Fisker Zachariassen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Dorte Bratbo Sørensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Camilla Hartmann Friis Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
14
|
Dölp A, Schneider-Momm K, Heiser P, Clement C, Rauh R, Clement HW, Schulz E, Fleischhaker C. Oligoantigenic Diet Improves Children's ADHD Rating Scale Scores Reliably in Added Video-Rating. Front Psychiatry 2020; 11:730. [PMID: 32973571 PMCID: PMC7468497 DOI: 10.3389/fpsyt.2020.00730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/10/2020] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES The influence of food intake on behavioural disorders was already described in the early 20th century. Elimination of individually allergenic food items from individual diets ["oligoantigenic diet" (OD)] showed promise to improve attention-deficit/hyperactivity disorder (ADHD) symptoms. However, only few of the positive results were evaluated by blinded symptom rating. Therefore the present study's purpose was to evaluate the reliability of a non-blinded rating of the ADHD Rating Scale IV (ARS) for the assessment of OD effects in comparison to a blinded rating of the ARS based on pseudonymized video recordings. METHODS Ten children (8m/2f) aged 8 to 14 with ADHD according to ICD-10 participated in an uncontrolled, open-label dietary intervention study. Food items, commonly related to intolerances, were eliminated for four weeks. Participants with > 40% improvement in the ARS between T1 (before the diet) and T2 (after the diet) were defined as responders. Nutrients with individual relevance to ADHD symptoms were identified in a following reintroduction phase (T3-T4) lasting 8-16 weeks. The ARS was completed by a non-blinded child and adolescent psychiatrist (T0-T4). Sessions were recorded on video, pseudonymized, and evaluated by three blinded raters. Complete data were captured for eight children. The inter-rater reliability between the non-blinded therapist and every blinded rater was determined by the intra-class correlation coefficient (ICC). Correlations according to Pearson and Spearman between the non-blinded and blinded rating were calculated for each rater. RESULTS Two blinded raters and the non-blinded rater considered 5 of 8 (62.5%) children as responders, whereas one blinded rater disagreed as to the success of one case thus considering only 4 of 8 children as responders to the diet. Inter-rater reliability was assessed after each rater having scored 33 videos: The intra-class coefficients were >.9 for all raters (rater 1: ICC=.997, rater 2: ICC=.996, rater 3: ICC=.996) and the Spearman rho between the raters were high (n=33; rater 1: rho =.989, p<.0001, rater 2: rho=.987, p<.0001, rater 3: rho=.984, p<.0001), respectively. DISCUSSION As both, blinded and non-blinded ratings of the ARS, revealed relevant significant improvement of ADHD scores in children following an OD in this uncontrolled trial, Randomized controlled trials appear as highly desirable in order to replicate these improvements and to establish reliable and unbiased effect sizes thereby fostering further more objective confirmatory measurements.
Collapse
Affiliation(s)
- Anna Dölp
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katja Schneider-Momm
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philip Heiser
- Clinic of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, SuedharzHospital Nordhausen, Nordhausen, Germany
| | - Christina Clement
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhold Rauh
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Willi Clement
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eberhard Schulz
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Fleischhaker
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
History Information's are Indispensable in Developmental Assessment of Children. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2020; 41:33-45. [PMID: 32573475 DOI: 10.2478/prilozi-2020-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
For achieving the good health and wellbeing for all children, the main role of pediatrician and other health care professionals is to follow their development. We implemented developmental monitoring for 465 children at the age of 12 - 60 months, in the period of 4 years (2016 - 2019), using standard algorithm in which start is always with child history. It should be comprehensive, and must include a detailed prenatal, perinatal, and postnatal history. Obtained results showed that 16.13% of participants have some serious illness in family history, and the same percentage (16.13%) manifested serious perinatal problems which imposed the support in intensive care unit. Breastfeed are 49,46 % of children. Only 7,53 % are not completely vaccinated. About the parameters for the development, we obtained that 11,83 % were not walking at the time of the assessment, and 65,81 % were not speaking. Toilet control was negative, and in 75,27 % they still were wearing diapers. Allergic manifestations at the time when the assessment was done is present in 8,60%. Finally, serious illness in child past history was positive in 19.35 % of evaluated sample. We concluded that a good history is needed and indispensable in the assessment process, particularly when exogenous causes are identified as the risk for the developmental delay. Obtained positive answers are directory for further investigation as well to correlate risk-consequences relationship.
Collapse
|
16
|
Song Y, Lu M, Yuan H, Chen T, Han X. Mast cell-mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review). Exp Ther Med 2020; 20:714-726. [PMID: 32742317 PMCID: PMC7388140 DOI: 10.3892/etm.2020.8789] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental and behavioral disorder with a serious negative impact on the quality of life from childhood until adulthood, which may cause academic failure, family disharmony and even social unrest. The pathogenesis of ADHD has remained to be fully elucidated, leading to difficulties in the treatment of this disease. Genetic and environmental factors contribute to the risk of ADHD development. Certain studies indicated that ADHD has high comorbidity with allergic and autoimmune diseases, with various patients with ADHD having a high inflammatory status. Increasing evidence indicated that mast cells (MCs) are involved in the pathogenesis of brain inflammation and neuropsychiatric disorders. MCs may cause or aggravate neuroinflammation via the selective release of inflammatory factors, interaction with glial cells and neurons, activation of the hypothalamic-pituitary adrenal axis or disruption of the blood-brain barrier integrity. In the present review, the notion that MC activation may be involved in the occurrence and development of ADHD through a number of ways is discussed based on previously published studies. The association between MCs and ADHD appears to lack sufficient evidence at present and this hypothesis is considered to be worthy of further study, providing a novel perspective for the treatment of ADHD.
Collapse
Affiliation(s)
- Yuchen Song
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Manqi Lu
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Haixia Yuan
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Tianyi Chen
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xinmin Han
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
17
|
Pan HH, Hung TW, Tsai JD, Chen HJ, Liao PF, Sheu JN. Children with allergic rhinitis and a risk of epilepsy: A nationwide cohort study. Seizure 2020; 76:64-71. [PMID: 32028113 DOI: 10.1016/j.seizure.2020.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/01/2022] Open
Abstract
PURPOSE Little is known about whether allergic disease is associated with a subsequent increased risk of childhood-onset epilepsy. We used a large, population-based cohort study to examine whether children with antecedent allergic rhinitis (AR) were associated with a subsequent increased risk of epilepsy. METHODS This retrospective population-based cohort study was conducted by using data from the 2000-2012 Taiwan's National Health Insurance Research Database. We enrolled 67,537 children aged 0-18 years diagnosed with AR and 67,537 age- and gender-matched children without the diagnosis of AR. The incidence rate (per 10,000 person-years) of epilepsy was calculated. We used Cox proportional hazards regression analysis to estimate hazard ratios (HRs) and 95 % confident interval (CI). RESULTS Of the 135,074 children included in the analyses, those with AR had a higher incidence rate of epilepsy (6.84 versus 3.95 per 10,000 person-years, p < 0.001) and an earlier age at diagnosis of epilepsy than those without AR [8.54 (4.90) versus 9.33 (5.40) years, p = 0.03)]. The Kaplan-Meier survival analysis demonstrated that the children with AR had a higher likelihood of developing epilepsy than those without AR (p < 0.001). After adjusting for confounding factors in multivariate model, children with AR had a 76 % increased risk of epilepsy (HR 1.76, 95 % CI 1.51-2.04) than those without AR. Boys had a 21 % increased risk of epilepsy (HR 1.21, 95 % CI 1.05-1.40) than girls. CONCLUSIONS These results suggest that children with AR were associated with an increased subsequent risk of epilepsy.
Collapse
Affiliation(s)
- Hui-Hsien Pan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Tung-Wei Hung
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Jeng-Dau Tsai
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Hsuan-Ju Chen
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan.
| | - Pei-Fen Liao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Ji-Nan Sheu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
18
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [PMID: 31460832 DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 2606] [Impact Index Per Article: 434.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
19
|
Dam SA, Mostert JC, Szopinska-Tokov JW, Bloemendaal M, Amato M, Arias-Vasquez A. The Role of the Gut-Brain Axis in Attention-Deficit/Hyperactivity Disorder. Gastroenterol Clin North Am 2019; 48:407-431. [PMID: 31383279 DOI: 10.1016/j.gtc.2019.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Genetic and environmental factors play a role in the cause and development of attention-deficit/hyperactivity disorder (ADHD). Recent studies have suggested an important role of the gut-brain axis (GBA) and intestinal microbiota in modulating the risk of ADHD. Here, the authors provide a brief overview of the clinical and biological picture of ADHD and how the GBA could be involved in its cause. They discuss key biological mechanisms involved in the GBA and how these may increase the risk of developing ADHD. Understanding these mechanisms may help to characterize novel treatment options via identification of disease biomarkers.
Collapse
Affiliation(s)
- Sarita A Dam
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.
| | - Jeanette C Mostert
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Joanna W Szopinska-Tokov
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Mirjam Bloemendaal
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Maria Amato
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Alejandro Arias-Vasquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Alhowikan AM, AL-Ayadhi LY, Halepoto DM. Impact of environmental pollution, dietary factors and diabetes mellitus on Autism Spectrum Disorder (ASD). Pak J Med Sci 2019; 35:1179-1184. [PMID: 31372164 PMCID: PMC6659068 DOI: 10.12669/pjms.35.4.269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/05/2019] [Accepted: 05/26/2019] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is complex neurodevelopmental condition described by impairments in three main behavioral areas: social deficits, impaired communication, and repetitive behaviors. Despite many years of vast study, the causes of ASD are still unknown. Various risk factors including genetic, infectious, metabolic and immunological have been investigated however, environmental, nutritional and diabetes related risk factors have not received sufficient attention. This study has provided an insight into the comprehensive interaction between environmental pollution, dietary factors and diabetes mellitus that could lead to the advancement of this debilitating neurodevelopment disorder. The literature search was done using PubMed and Google Scholar databases up to October 2018. Key words "Environmental Pollution", "Nutritional Factors", "Diabetes Mellitus", "Autism Spectrum Disorder" were selected.
Collapse
Affiliation(s)
- Abdulrahman Mohammed Alhowikan
- Abdulrahman Mohammed Alhowikan, PhD. Department of Physiology, Faculty of Medicine, King Saud University, P O Box 2925, Riyadh 11461 and Saudi Arabia
| | - Laila Yousef AL-Ayadhi
- Laila Yousef AL-Ayadhi, MBBS, PhD. Autism Research and Treatment Center, Department of physiology, Faculty of Medicine, King Saud University, P O Box 2925, Riyadh 11461 and Saudi Arabia
| | - Dost Muhammad Halepoto
- Dost Muhammad Halepoto, PhD. Autism Research and Treatment Center, Department of Physiology, Faculty of Medicine, King Saud University, P O Box 2925, Riyadh 11461 and Saudi Arabia
| |
Collapse
|
21
|
The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectrum Disorder. Int J Mol Sci 2019; 20:ijms20092115. [PMID: 31035684 PMCID: PMC6539237 DOI: 10.3390/ijms20092115] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/17/2019] [Accepted: 04/28/2019] [Indexed: 02/08/2023] Open
Abstract
New research points to a possible link between autism spectrum disorder (ASD) and the gut microbiota as many autistic children have co-occurring gastrointestinal problems. This review focuses on specific alterations of gut microbiota mostly observed in autistic patients. Particularly, the mechanisms through which such alterations may trigger the production of the bacterial metabolites, or leaky gut in autistic people are described. Various altered metabolite levels were observed in the blood and urine of autistic children, many of which were of bacterial origin such as short chain fatty acids (SCFAs), indoles and lipopolysaccharides (LPS). A less integrative gut-blood-barrier is abundant in autistic individuals. This explains the leakage of bacterial metabolites into the patients, triggering new body responses or an altered metabolism. Some other co-occurring symptoms such as mitochondrial dysfunction, oxidative stress in cells, altered tight junctions in the blood-brain barrier and structural changes in the cortex, hippocampus, amygdala and cerebellum were also detected. Moreover, this paper suggests that ASD is associated with an unbalanced gut microbiota (dysbiosis). Although the cause-effect relationship between ASD and gut microbiota is not yet well established, the consumption of specific probiotics may represent a side-effect free tool to re-establish gut homeostasis and promote gut health. The diagnostic and therapeutic value of bacterial-derived compounds as new possible biomarkers, associated with perturbation in the phenylalanine metabolism, as well as potential therapeutic strategies will be discussed.
Collapse
|
22
|
Dietary and Micronutrient Treatments for Children with Neurodevelopment Disorders. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2018. [DOI: 10.1007/s40474-018-0150-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Xu G, Snetselaar LG, Jing J, Liu B, Strathearn L, Bao W. Association of Food Allergy and Other Allergic Conditions With Autism Spectrum Disorder in Children. JAMA Netw Open 2018; 1:e180279. [PMID: 30646068 PMCID: PMC6324407 DOI: 10.1001/jamanetworkopen.2018.0279] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPORTANCE The prevalence of autism spectrum disorder (ASD) in US children has increased during the past decades. Immunologic dysfunction has recently emerged as a factor associated with ASD. Although children with ASD are more likely to have gastrointestinal disorders, little is known about the association between food allergy and ASD. OBJECTIVE To examine the association of food allergy and other allergic conditions with ASD in US children. DESIGN, SETTING, AND PARTICIPANTS This population-based, cross-sectional study used data from the National Health Interview Survey collected between 1997 and 2016. The data analysis was performed in 2018. All eligible children aged 3 to 17 years were included. Food allergy, respiratory allergy, and skin allergy were defined based on an affirmative response in the questionnaire by a parent or guardian. MAIN OUTCOMES AND MEASURES Reported ASD diagnosed by a physician or other health professional. RESULTS This analysis included 199 520 children (unweighted mean [SD] age, 10.21 [4.41] years; 102 690 boys [51.47%]; 55 476 Hispanic [27.80%], 97 200 non-Hispanic white [48.72%], 30 760 non-Hispanic black [15.42%], and 16 084 non-Hispanic other race [8.06%]). Among them, 8734 (weighted prevalence, 4.31%) had food allergy, 24 555 (12.15%) had respiratory allergy, and 19 399 (9.91%) had skin allergy. A diagnosis of ASD was reported in 1868 children (0.95%). The weighted prevalence of reported food, respiratory, and skin allergies was higher in children with ASD (11.25%, 18.73%, and 16.81%, respectively) compared with children without ASD (4.25%, 12.08%, and 9.84%, respectively). In analyses adjusting for age, sex, race/ethnicity, family highest education level, family income level, geographical region, and mutual adjustment for other allergic conditions, the associations between allergic conditions and ASD remained significant. The odds ratio (OR) of ASD increased in association with food allergy (OR, 2.29; 95% CI, 1.87-2.81), respiratory allergy (OR, 1.28; 95% CI, 1.10-1.50), and skin allergy (OR, 1.50; 95% CI, 1.28-1.77) when comparing children with these conditions and those without. CONCLUSIONS AND RELEVANCE In a nationally representative sample of US children, a significant and positive association of common allergic conditions, in particular food allergy, with ASD was found. Further investigation is warranted to elucidate the causality and underlying mechanisms.
Collapse
Affiliation(s)
- Guifeng Xu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City
- Center for Disabilities and Development, University of Iowa Stead Family Children’s Hospital, Iowa City
| | - Linda G. Snetselaar
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City
| | - Jin Jing
- Department of Maternal and Child Health, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Buyun Liu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City
| | - Lane Strathearn
- Center for Disabilities and Development, University of Iowa Stead Family Children’s Hospital, Iowa City
- Division of Developmental and Behavioral Pediatrics, Stead Family Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City
| |
Collapse
|
24
|
Germundson DL, Smith NA, Vendsel LP, Kelsch AV, Combs CK, Nagamoto-Combs K. Oral sensitization to whey proteins induces age- and sex-dependent behavioral abnormality and neuroinflammatory responses in a mouse model of food allergy: a potential role of mast cells. J Neuroinflammation 2018; 15:120. [PMID: 29685134 PMCID: PMC5913881 DOI: 10.1186/s12974-018-1146-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Growing evidence has strengthened the association of food allergy with neuropsychiatric symptoms such as depression, anxiety, and autism. However, underlying mechanisms by which peripheral allergic responses lead to behavioral dysfunction are yet to be determined. Allergen-activated mast cells may serve as mediators by releasing histamine and other inflammatory factors that could adversely affect brain function. We hypothesized that eliciting food allergy in experimental animals would result in behavioral changes accompanied by mast cell accumulation in the brain. Our hypothesis was tested in a mouse model of milk allergy using bovine milk whey proteins (WP) as the allergen. METHODS Male and female C57BL/6 mice at 4 weeks (young) and 10 months (old) of age underwent 5-week WP sensitization with weekly intragastric administration of 20 mg WP and 10 μg cholera toxin as an adjuvant. Age-matched sham animals were given the vehicle containing only the adjuvant. All animals were orally challenged with 50 mg WP in week 6 and their intrinsic digging behavior was assessed the next day. Animals were sacrificed 3 days after the challenge, and WP-specific serum IgE, intestinal and brain mast cells, glial activation, and epigenetic DNA modification in the brain were examined. RESULTS WP-sensitized males showed significantly less digging activity than the sham males in both age groups while no apparent difference was observed in females. Mast cells and their activities were evident in the intestines in an age- and sex-dependent manner. Brain mast cells were predominantly located in the region between the lateral midbrain and medial hippocampus, and their number increased in the WP-sensitized young, but not old, male brains. Noticeable differences in for 5-hydroxymethylcytosine immunoreactivity were observed in WP mice of both age groups in the amygdala, suggesting epigenetic regulation. Increased microglial Iba1 immunoreactivity and perivascular astrocytes hypertrophy were also observed in the WP-sensitized old male mice. CONCLUSIONS Our results demonstrated that food allergy induced behavioral abnormality, increases in the number of mast cells, epigenetic DNA modification in the brain, microgliosis, and astrocyte hypertrophy in a sex- and age-dependent manner, providing a potential mechanism by which peripheral allergic responses evoke behavioral dysfunction.
Collapse
Affiliation(s)
- Danielle L Germundson
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA
| | - Nicholas A Smith
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA
| | - Lane P Vendsel
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA
| | - Andrea V Kelsch
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA
| | - Colin K Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA
| | - Kumi Nagamoto-Combs
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA.
| |
Collapse
|
25
|
Medical Conditions in the First Years of Life Associated with Future Diagnosis of ASD in Children. J Autism Dev Disord 2018; 47:2067-2079. [PMID: 28434058 PMCID: PMC5487747 DOI: 10.1007/s10803-017-3130-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study examines medical conditions diagnosed prior to the diagnosis of autism spectrum disorder (ASD). Using a matched case control design with 3911 ASD cases and 38,609 controls, we found that 38 out of 79 medical conditions were associated with increased ASD risk. Developmental delay, mental health, and neurology conditions had the strongest associations (ORs 2.0–23.3). Moderately strong associations were observed for nutrition, genetic, ear nose and throat, and sleep conditions (ORs 2.1–3.2). Using machine learning methods, we clustered children based on their medical conditions prior to ASD diagnosis and demonstrated ASD risk stratification. Our findings provide new evidence indicating that children with ASD have a disproportionate burden of certain medical conditions preceding ASD diagnosis.
Collapse
|
26
|
Cerdó T, Ruíz A, Suárez A, Campoy C. Probiotic, Prebiotic, and Brain Development. Nutrients 2017; 9:E1247. [PMID: 29135961 PMCID: PMC5707719 DOI: 10.3390/nu9111247] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/02/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023] Open
Abstract
Recently, a number of studies have demonstrated the existence of a link between the emotional and cognitive centres of the brain and peripheral functions through the bi-directional interaction between the central nervous system and the enteric nervous system. Therefore, the use of bacteria as therapeutics has attracted much interest. Recent research has found that there are a variety of mechanisms by which bacteria can signal to the brain and influence several processes in relation to neurotransmission, neurogenesis, and behaviour. Data derived from both in vitro experiments and in vivo clinical trials have supported some of these new health implications. While recent molecular advancement has provided strong indications to support and justify the role of the gut microbiota on the gut-brain axis, it is still not clear whether manipulations through probiotics and prebiotics administration could be beneficial in the treatment of neurological problems. The understanding of the gut microbiota and its activities is essential for the generation of future personalized healthcare strategies. Here, we explore and summarize the potential beneficial effects of probiotics and prebiotics in the neurodevelopmental process and in the prevention and treatment of certain neurological human diseases, highlighting current and future perspectives in this topic.
Collapse
Affiliation(s)
- Tomás Cerdó
- Department of Paediatrics, School of Medicine, University of Granada, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
| | - Alicia Ruíz
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Department of Biochemistry and Molecular Biology 2, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
| | - Antonio Suárez
- Department of Biochemistry and Molecular Biology 2, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, University of Granada, 18016 Granada, Spain.
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain.
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute, 18016 Granada, Spain.
- Department of Paediatrics, Faculty of Medicine, University of Granada, Av. de la Investigación, 11, 18016 Granada, Spain.
| |
Collapse
|
27
|
Ly V, Bottelier M, Hoekstra PJ, Arias Vasquez A, Buitelaar JK, Rommelse NN. Elimination diets' efficacy and mechanisms in attention deficit hyperactivity disorder and autism spectrum disorder. Eur Child Adolesc Psychiatry 2017; 26:1067-1079. [PMID: 28190137 PMCID: PMC5591346 DOI: 10.1007/s00787-017-0959-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Abstract
Nutrition plays an important role in neurodevelopment. This insight has led to increasing research into the efficacy of nutrition-related interventions for treating neurodevelopmental disorders. This review discusses an elimination diet as a treatment for attention deficit hyperactivity disorder and autism spectrum disorder, with a focus on the efficacy of the food additives exclusion diet, gluten-free/casein-free diet and oligoantigenic diet. Furthermore, we discuss the potential mechanisms of elimination diets' effects in these neurodevelopmental disorders. The main candidate mechanism is the microbiome-gut-brain axis possibly involving complex interactions between multiple systems, including the metabolic, immune, endocrine, and neural system. We conclude with practical implications and future directions into the investigation of an elimination diet's efficacy in the treatment of attention deficit hyperactivity disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Verena Ly
- Karakter, Child and Adolescents Psychiatry, Reinier Postlaan 12, 6525 GC, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands.
- Leiden University, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Marco Bottelier
- Triversum, Child and Adolescent Psychiatry, Alkmaar, The Netherlands
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alejandro Arias Vasquez
- Department of Cognitive Neuroscience and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Psychiatry and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Karakter, Child and Adolescents Psychiatry, Reinier Postlaan 12, 6525 GC, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Nanda N Rommelse
- Karakter, Child and Adolescents Psychiatry, Reinier Postlaan 12, 6525 GC, Nijmegen, The Netherlands
- Department of Psychiatry and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
28
|
The Central Nervous System and the Gut Microbiome. Cell 2017; 167:915-932. [PMID: 27814521 DOI: 10.1016/j.cell.2016.10.027] [Citation(s) in RCA: 965] [Impact Index Per Article: 120.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/14/2016] [Accepted: 10/16/2016] [Indexed: 12/11/2022]
Abstract
Neurodevelopment is a complex process governed by both intrinsic and extrinsic signals. While historically studied by researching the brain, inputs from the periphery impact many neurological conditions. Indeed, emerging data suggest communication between the gut and the brain in anxiety, depression, cognition, and autism spectrum disorder (ASD). The development of a healthy, functional brain depends on key pre- and post-natal events that integrate environmental cues, such as molecular signals from the gut. These cues largely originate from the microbiome, the consortium of symbiotic bacteria that reside within all animals. Research over the past few years reveals that the gut microbiome plays a role in basic neurogenerative processes such as the formation of the blood-brain barrier, myelination, neurogenesis, and microglia maturation and also modulates many aspects of animal behavior. Herein, we discuss the biological intersection of neurodevelopment and the microbiome and explore the hypothesis that gut bacteria are integral contributors to development and function of the nervous system and to the balance between mental health and disease.
Collapse
|
29
|
Fortunato JJ, da Rosa N, Martins Laurentino AO, Goulart M, Michalak C, Borges LP, da Cruz Cittadin Soares E, Reis PA, de Castro Faria Neto HC, Petronilho F. Effects of ω-3 fatty acids on stereotypical behavior and social interactions in Wistar rats prenatally exposed to lipopolysaccarides. Nutrition 2017; 35:119-127. [DOI: 10.1016/j.nut.2016.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/21/2016] [Accepted: 10/29/2016] [Indexed: 02/07/2023]
|
30
|
Navarro F, Liu Y, Rhoads JM. Can probiotics benefit children with autism spectrum disorders? World J Gastroenterol 2016; 22:10093-10102. [PMID: 28028357 PMCID: PMC5155168 DOI: 10.3748/wjg.v22.i46.10093] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/05/2016] [Accepted: 11/12/2016] [Indexed: 02/06/2023] Open
Abstract
Children with autism are commonly affected by gastrointestinal problems such as abdominal pain, constipation and diarrhea. In recent years, there has been a growing interest in the use of probiotics in this population, as it hypothetically may help to improve bowel habits and the behavioral and social functioning of these individuals. The gut microbiome plays an important role in the pathophysiology of organic as well as functional gastrointestinal disorders. Microbial modification with the use of antibiotics, probiotics, and fecal transplantation have been effective in the treatment of conditions such as recurrent Clostridium difficile infection, pouchitis, and irritable bowel syndrome. The present review presents a number of reported clinical, immunological and microbiome-related changes seen in children with autism compared to normally developed children. It also discusses gut inflammation, permeability concerns, and absorption abnormalities that may contribute to these problems. Most importantly, it discusses evidence, from human and animal studies, of a potential role of probiotics in the treatment of gastrointestinal symptoms in children with autism.
Collapse
|
31
|
Puurunen J, Sulkama S, Tiira K, Araujo C, Lehtonen M, Hanhineva K, Lohi H. A non-targeted metabolite profiling pilot study suggests that tryptophan and lipid metabolisms are linked with ADHD-like behaviours in dogs. Behav Brain Funct 2016; 12:27. [PMID: 27686065 PMCID: PMC5043524 DOI: 10.1186/s12993-016-0112-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 09/24/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a prevalent and multifactorial neuropsychiatric disorder in the human population worldwide. Complex etiology and clinical heterogeneity have challenged the research, diagnostics and treatment of the disease. Hyperactive and impulsive behaviour has also been observed in dogs, and they could offer a physiologically relevant model for human ADHD. As a part of our ongoing study to understand the molecular etiology of canine anxiety traits, this study was aimed to pilot an approach to identify metabolic biomarkers in canine ADHD-like behaviours for research, diagnostics and treatment purposes. METHODS We collected fresh plasma samples from 22 German Shepherds with varying ADHD-like behaviours. All dogs were on the same controlled diet for 2 weeks prior to sampling. A liquid chromatography combined with mass spectrometry (LC-MS)-based non-targeted metabolite profiling was performed to identify plasma metabolites correlating with the ADHD-like behaviour of the dogs. RESULTS 649 molecular features correlated with ADHD-like behavioural scores (praw < 0.05), and three of them [sn-1 LysoPC(18:3), PC(18:3/18:2) and sn-1 LysoPE(18:2)] had significant correlations also after FDR correction (pFDR < 0.05). Phospholipids were found to negatively correlate with ADHD-like behavioural scores, whereas tryptophan metabolites 3-indolepropionic acid (IPA) and kynurenic acid (KYNA) had negative and positive correlations with ADHD-like behavioural scores, respectively. CONCLUSIONS Our study identified associations between canine ADHD-like behaviours and metabolites that are involved in lipid and tryptophan metabolisms. The identified metabolites share similarity with earlier findings in human and rodent ADHD models. However, a larger replication study is warranted to validate the discoveries prior to further studies to understand the biological role of the identified metabolites in canine ADHD-like behaviours.
Collapse
Affiliation(s)
- Jenni Puurunen
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Research Center, Biomedicum Helsinki, P.O.Box 63, 00014, Helsinki, Finland.,The Folkhälsan Research Center, Helsinki, Finland
| | - Sini Sulkama
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Research Center, Biomedicum Helsinki, P.O.Box 63, 00014, Helsinki, Finland.,The Folkhälsan Research Center, Helsinki, Finland
| | - Katriina Tiira
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Research Center, Biomedicum Helsinki, P.O.Box 63, 00014, Helsinki, Finland.,The Folkhälsan Research Center, Helsinki, Finland
| | - Cesar Araujo
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Research Center, Biomedicum Helsinki, P.O.Box 63, 00014, Helsinki, Finland.,The Folkhälsan Research Center, Helsinki, Finland
| | - Marko Lehtonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Hannes Lohi
- Department of Veterinary Biosciences and Research Programs Unit, Molecular Neurology, University of Helsinki and Folkhälsan Research Center, Biomedicum Helsinki, P.O.Box 63, 00014, Helsinki, Finland. .,The Folkhälsan Research Center, Helsinki, Finland.
| |
Collapse
|
32
|
Mast cell activation disease and the modern epidemic of chronic inflammatory disease. Transl Res 2016; 174:33-59. [PMID: 26850903 DOI: 10.1016/j.trsl.2016.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/18/2022]
Abstract
A large and growing portion of the human population, especially in developed countries, suffers 1 or more chronic, often quite burdensome ailments which either are overtly inflammatory in nature or are suspected to be of inflammatory origin, but for which investigations to date have failed to identify specific causes, let alone unifying mechanisms underlying the multiple such ailments that often afflict such patients. Relatively recently described as a non-neoplastic cousin of the rare hematologic disease mastocytosis, mast cell (MC) activation syndrome-suspected to be of greatly heterogeneous, complex acquired clonality in many cases-is a potential underlying/unifying explanation for a diverse assortment of inflammatory ailments. A brief review of MC biology and how aberrant primary MC activation might lead to such a vast range of illness is presented.
Collapse
|
33
|
Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation. Clin Ther 2016; 37:984-95. [PMID: 26046241 DOI: 10.1016/j.clinthera.2015.04.002] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. METHODS Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. FINDINGS Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. IMPLICATIONS Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed.
Collapse
Affiliation(s)
- Anastasia I Petra
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Smaro Panagiotidou
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Erifili Hatziagelaki
- Second Department of Internal Medicine, Attikon General Hospital, Athens Medical School, Athens, Greece
| | - Julia M Stewart
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Pio Conti
- Department of Medical Sciences, Immunology Division, University of Chieti, Via dei Vestini, Chieti, Italy
| | - Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, Massachusetts; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|
34
|
Moos WH, Maneta E, Pinkert CA, Irwin MH, Hoffman ME, Faller DV, Steliou K. Epigenetic Treatment of Neuropsychiatric Disorders: Autism and Schizophrenia. Drug Dev Res 2016; 77:53-72. [PMID: 26899191 DOI: 10.1002/ddr.21295] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuropsychiatric disorders are a heterogeneous group of conditions that often share underlying mitochondrial dysfunction and biological pathways implicated in their pathogenesis, progression, and treatment. To date, these disorders have proven notoriously resistant to molecular-targeted therapies, and clinical options are relegated to interventional types, which do not address the core symptoms of the disease. In this review, we discuss emerging epigenetic-driven approaches using novel acylcarnitine esters (carnitinoids) that act on master regulators of antioxidant and cytoprotective genes and mitophagic pathways. These carnitinoids are actively transported, mitochondria-localizing, biomimetic coenzyme A surrogates of short-chain fatty acids, which inhibit histone deacetylase and may reinvigorate synaptic plasticity and protect against neuronal damage. We outline these neuroprotective effects in the context of treatment of neuropsychiatric disorders such as autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.,SRI Biosciences, A Division of SRI International, Menlo Park, CA, USA
| | - Eleni Maneta
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Carl A Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, USA.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michelle E Hoffman
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Douglas V Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA.,PhenoMatriX, Inc., Boston, MA, USA
| |
Collapse
|
35
|
Moos WH, Faller DV, Harpp DN, Kanara I, Pernokas J, Powers WR, Steliou K. Microbiota and Neurological Disorders: A Gut Feeling. Biores Open Access 2016; 5:137-45. [PMID: 27274912 PMCID: PMC4892191 DOI: 10.1089/biores.2016.0010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the past century, noncommunicable diseases have surpassed infectious diseases as the principal cause of sickness and death, worldwide. Trillions of commensal microbes live in and on our body, and constitute the human microbiome. The vast majority of these microorganisms are maternally derived and live in the gut, where they perform functions essential to our health and survival, including: digesting food, activating certain drugs, producing short-chain fatty acids (which help to modulate gene expression by inhibiting the deacetylation of histone proteins), generating anti-inflammatory substances, and playing a fundamental role in the induction, training, and function of our immune system. Among the many roles the microbiome ultimately plays, it mitigates against untoward effects from our exposure to the environment by forming a biotic shield between us and the outside world. The importance of physical activity coupled with a balanced and healthy diet in the maintenance of our well-being has been recognized since antiquity. However, it is only recently that characterization of the host-microbiome intermetabolic and crosstalk pathways has come to the forefront in studying therapeutic design. As reviewed in this report, synthetic biology shows potential in developing microorganisms for correcting pathogenic dysbiosis (gut microbiota-host maladaptation), although this has yet to be proven. However, the development and use of small molecule drugs have a long and successful history in the clinic, with small molecule histone deacetylase inhibitors representing one relevant example already approved to treat cancer and other disorders. Moreover, preclinical research suggests that epigenetic treatment of neurological conditions holds significant promise. With the mouth being an extension of the digestive tract, it presents a readily accessible diagnostic site for the early detection of potential unhealthy pathogens resident in the gut. Taken together, the data outlined herein provide an encouraging roadmap toward important new medicines and companion diagnostic platforms in a wide range of therapeutic indications.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
- Address correspondence to: Walter H. Moos, PhD, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street, Mail Code 2280, Genentech Hall S512D, Mission Bay Campus, San Francisco, CA 94158, E-mail: , ; or Kosta Steliou, PhD, PhenoMatriX, Inc., 9 Hawthorne Place Suite 4R, Boston, MA 02114, E-mail: ,
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | - Iphigenia Kanara
- Weatherhead Center for International Affairs, Harvard University, Cambridge, Massachusetts
- Consulate General of Greece in Boston, Boston, Massachusetts
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Boston, Massachusetts
- Address correspondence to: Walter H. Moos, PhD, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street, Mail Code 2280, Genentech Hall S512D, Mission Bay Campus, San Francisco, CA 94158, E-mail: , ; or Kosta Steliou, PhD, PhenoMatriX, Inc., 9 Hawthorne Place Suite 4R, Boston, MA 02114, E-mail: ,
| |
Collapse
|
36
|
O’ Mahony SM, Stilling RM, Dinan TG, Cryan JF. The microbiome and childhood diseases: Focus on brain-gut axis. ACTA ACUST UNITED AC 2015; 105:296-313. [DOI: 10.1002/bdrc.21118] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Siobhain M. O’ Mahony
- Department of Anatomy and Neuroscience, University College Cork; Cork Ireland
- Laboratory of Neurogastroenterology; APC Microbiome Institute; Cork Ireland
| | - Roman M. Stilling
- Laboratory of Neurogastroenterology; APC Microbiome Institute; Cork Ireland
| | - Timothy G. Dinan
- Laboratory of Neurogastroenterology; APC Microbiome Institute; Cork Ireland
- Department of Psychiatry and Neurobehavioural Science; University College Cork; Cork Ireland
| | - John F. Cryan
- Department of Anatomy and Neuroscience, University College Cork; Cork Ireland
- Laboratory of Neurogastroenterology; APC Microbiome Institute; Cork Ireland
| |
Collapse
|
37
|
Berry RC, Novak P, Withrow N, Schmidt B, Rarback S, Feucht S, Criado KK, Sharp WG. Nutrition Management of Gastrointestinal Symptoms in Children with Autism Spectrum Disorder: Guideline from an Expert Panel. J Acad Nutr Diet 2015; 115:1919-27. [DOI: 10.1016/j.jand.2015.05.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Indexed: 02/07/2023]
|
38
|
Increased production of IL-17 in children with autism spectrum disorders and co-morbid asthma. J Neuroimmunol 2015; 286:33-41. [PMID: 26298322 DOI: 10.1016/j.jneuroim.2015.07.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/18/2015] [Accepted: 07/01/2015] [Indexed: 01/08/2023]
Abstract
Inflammation and asthma have both been reported in some children with autism spectrum disorder (ASD). To further assess this connection, peripheral immune cells isolated from young children with ASD and typically developing (TD) controls and the production of cytokines IL-17, -13, and -4 assessed following ex vivo mitogen stimulation. Notably, IL-17 production was significantly higher following stimulation in ASD children compared to controls. Moreover, IL-17 was increased in ASD children with co-morbid asthma compared to controls with the same condition. In conclusion, children with ASD exhibited a differential response to T cell stimulation with elevated IL-17 production compared to controls.
Collapse
|
39
|
Wu J, de Theije CGM, da Silva SL, van der Horst H, Reinders MTM, Broersen LM, Willemsen LEM, Kas MJH, Garssen J, Kraneveld AD. mTOR plays an important role in cow's milk allergy-associated behavioral and immunological deficits. Neuropharmacology 2015; 97:220-32. [PMID: 26027949 DOI: 10.1016/j.neuropharm.2015.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/05/2015] [Accepted: 04/30/2015] [Indexed: 12/17/2022]
Abstract
Autism spectrum disorder (ASD) is multifactorial, with both genetic as well as environmental factors working in concert to develop the autistic phenotype. Immunological disturbances in autistic individuals have been reported and a role for food allergy has been suggested in ASD. Single gene mutations in mammalian target of rapamycin (mTOR) signaling pathway are associated with the development of ASD and enhanced mTOR signaling plays a central role in directing immune responses towards allergy as well. Therefore, the mTOR pathway may be a pivotal link between the immune disturbances and behavioral deficits observed in ASD. In this study it was investigated whether the mTOR pathway plays a role in food allergy-induced behavioral and immunological deficits. Mice were orally sensitized and challenged with whey protein. Meanwhile, cow's milk allergic (CMA) mice received daily treatment of rapamycin. The validity of the CMA model was confirmed by showing increased allergic immune responses. CMA mice showed reduced social interaction and increased repetitive self-grooming behavior. Enhanced mTORC1 activity was found in the brain and ileum of CMA mice. Inhibition of mTORC1 activity by rapamycin improved the behavioral and immunological deficits of CMA mice. This effect was associated with increase of Treg associated transcription factors in the ileum of CMA mice. These findings indicate that mTOR activation may be central to both the intestinal, immunological, and psychiatric ASD-like symptoms seen in CMA mice. It remains to be investigated whether mTOR can be seen as a therapeutic target in cow's milk allergic children suffering from ASD-like symptoms.
Collapse
Affiliation(s)
- Jiangbo Wu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | - Caroline G M de Theije
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | - Sofia Lopes da Silva
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands; Nutricia Research, Utrecht, The Netherlands
| | - Hilma van der Horst
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | - Margot T M Reinders
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | - Laus M Broersen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands; Nutricia Research, Utrecht, The Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | - Martien J H Kas
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands; Nutricia Research, Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands.
| |
Collapse
|
40
|
Goldschmidt J, Song HJ. At-risk and underserved: a proposed role for nutrition in the adult trajectory of autism. J Acad Nutr Diet 2015; 115:1041-7. [PMID: 25840938 DOI: 10.1016/j.jand.2015.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Indexed: 12/14/2022]
|
41
|
de Theije CGM, van den Elsen LWJ, Willemsen LEM, Milosevic V, Korte-Bouws GAH, Lopes da Silva S, Broersen LM, Korte SM, Olivier B, Garssen J, Kraneveld AD. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice. Neuropharmacology 2014; 90:15-22. [PMID: 25445491 DOI: 10.1016/j.neuropharm.2014.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/09/2014] [Accepted: 11/04/2014] [Indexed: 01/13/2023]
Abstract
Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation.
Collapse
Affiliation(s)
- Caroline G M de Theije
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Lieke W J van den Elsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Vanja Milosevic
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Gerdien A H Korte-Bouws
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Sofia Lopes da Silva
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands
| | - Laus M Broersen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands
| | - S Mechiel Korte
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Berend Olivier
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands; Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|