1
|
Deer TR, Pope JE, Petersen EA, Abdallah RT, Amirdelfan K, Azeem N, Bansal V, Barkoh K, Chapman KB, Denis DR, Dorsi MJ, Escobar A, Falowski SM, Garcia RA, Hagedorn JM, Heros RD, James WS, Kalia H, Lansford T, Malinowski MN, Manzi SM, Mehta P, Moghim RZ, Moore GA, Motivala SL, Navalgund YA, Patel RG, Pilitsis JG, Schatman ME, Shumsky PM, Strand NH, Tomycz ND, Yue JJ, Sayed D. An Evidence-Based Consensus for the Use of Neurostimulation for the Treatment of Non-Surgical Low Back Pain: The NEURON Group. J Pain Res 2025; 18:1247-1274. [PMID: 40104824 PMCID: PMC11917438 DOI: 10.2147/jpr.s500342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Introduction The use of electrical neuromodulation has often been limited to those with previous back surgery, peripheral neuropathy, and complex regional pain syndrome. Many patients with severe intractable low back pain were thought to be candidates for spinal cord stimulation (SCS), dorsal root ganglion stimulation, or peripheral nerve stimulation but did not meet the criteria. Recently, additional high-level data has supported the use of SCS in non-surgical low back pain (NSLBP), and United States Food and Drug Administration approval has been granted. The American Society of Pain and Neuroscience (ASPN) executive committee realized an unmet need to develop criteria for patient selection for this specific patient population. This is a NEURON project (neuroscience, education, utilization, risk mitigation, optimal outcomes, and neuromodulation), a living guideline for evolving therapies and indications, and is focused on the use of neuraxial stimulation for the treatment of refractory pain. Methods After board approval, the society accepted nominees for the project, with an emphasis on experience, publication, research, and diversity. The team created an outline for discussion, chose a grading system based on published guidelines, and created consensus points. Results The evidence led to several consensus points to best guide patient selection based on the level of evidence and expert opinion. The results will lead to improved safety and efficacy in implanted patients, and to a new standard for best practices. Conclusion The selection of patients for implantation in those who have NSLBP should be based on published literature, best practice, and expert opinion. This NEURON project will allow for regular updates to create a living guideline that will allow for better assimilation of information to improve safety and efficacy going forward.
Collapse
Affiliation(s)
- Timothy Ray Deer
- Pain Services, Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | | | - Erika A Petersen
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Kasra Amirdelfan
- Director of Clinical Research, Boomerang Healthcare, Walnut Creek, CA, USA
| | - Nomen Azeem
- Pain Medicine, Florida Spine & Pain Specialists, Riverview, FL, USA
| | - Vishal Bansal
- Department of Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Kenneth B Chapman
- Department of Anesthesiology, NYU Langone Medical Center, New York, NY, USA
- Department of Anesthesiology, the Zucker School of Medicine at Northwell, New York, NY, USA
| | | | - Michael J Dorsi
- Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexander Escobar
- Anesthesiology and Pain Medicine, University of Toledo, Toledo, OH, USA
| | | | | | - Jonathan M Hagedorn
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Hemant Kalia
- Center for Research & Innovation in Spine & Pain (CRISP), Rochester, NY, USA
| | | | | | | | - Pankaj Mehta
- Division of Pain and Minimally Invasive Surgery, Pain Specialists of America, Austin, TX, USA
| | - Robert Z Moghim
- Interventional Spine and Pain, Colorado Pain Care, Denver, CO, USA
| | | | | | - Yeshvant A Navalgund
- Office of the Chief Medical Officer, National Spine and Pain Centers, Frederick, MD, USA
| | - Raj G Patel
- Interventional Pain Management, Capitol Pain Institute, Austin, TX, USA
| | - Julie G Pilitsis
- Department of Clinical Neurosciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Michael E Schatman
- Department of Anesthesiology, Perioperative Care & Pain Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Department of Population Health - Division of Medical Ethics, NYU Grossman School of Medicine, New York, NY, USA
| | | | | | - Nestor D Tomycz
- Neurological Surgery, Allegheny Health Network, Pittsburgh, PA, USA
| | - James J Yue
- Frank h Netter School of Medicine, Quinnipiac University; CT Orthopaedics, Hamden, CT, USA
| | - Dawood Sayed
- Anesthesiology and Pain Medicine, the University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
2
|
Tieppo Francio V, Leavitt L, Alm J, Mok D, Yoon BJV, Nazir N, Lam CM, Latif U, Sowder T, Braun E, Sack A, Khan TW, Sayed D. Functional outcomes and healthcare utilization trends in postsurgical and nonsurgical patients following high-frequency (10 kHz) spinal cord stimulation therapy. FRONTIERS IN PAIN RESEARCH 2024; 5:1451284. [PMID: 39588196 PMCID: PMC11586347 DOI: 10.3389/fpain.2024.1451284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/10/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Chronic low back pain (CLBP) is the leading cause of disability in the United States and is associated with a steadily increasing burden of healthcare expenditures. Given this trend, it is essential to evaluate interventions aimed at reducing disability and optimizing healthcare utilization (HCU) in affected populations. This study investigates the impact of prior spinal surgery on functional outcomes and HCU patterns following high-frequency (10 kHz) spinal cord stimulation (SCS) therapy. Methods This retrospective observational study included 160 subjects who underwent implantation of a 10 kHz SCS device. Participants were divided into surgical and non-surgical cohorts for comparative analysis. Pain relief was assessed using the Numeric Rating Scale (NRS), while disability levels were evaluated using the Oswestry Disability Index (ODI). HCU was examined through the frequency of emergency department (ED) visits, outpatient visits for interventional pain procedures, and opioid consumption measured in morphine milliequivalents (MME). Results No statistically significant differences were observed between the surgical and non-surgical groups regarding pain relief and disability outcomes. Additionally, ED visits and outpatient visits for interventional pain procedures did not show significant differences between the two cohorts. Discussion This study represents the first comparative analysis of pain, disability, and HCU trends between surgical and non-surgical populations following 10 kHz SCS therapy. The results suggest that prior spinal surgery may not substantially affect the efficacy of 10 kHz SCS therapy in terms of pain relief, disability reduction, or HCU patterns.
Collapse
Affiliation(s)
- Vinicius Tieppo Francio
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
- Department of Physical Medicine and Rehabilitation, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Logan Leavitt
- Department of Physical Medicine and Rehabilitation, The University of Kansas Medical Center, Kansas City, KS, United States
| | - John Alm
- Department of Physical Medicine and Rehabilitation, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Daniel Mok
- Department of Physical Medicine and Rehabilitation, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Byung-Jo Victor Yoon
- Department of Physical Medicine and Rehabilitation, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Niaman Nazir
- Department of Population Health, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Christopher M. Lam
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Usman Latif
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Timothy Sowder
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Edward Braun
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Andrew Sack
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Talal W. Khan
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
3
|
Ehsanian R, Wu V, Grandhe R, Valeriano M, Petersen TR, Rivers WE, Koshkin E. A single-center real-world review of 10 kHz high-frequency spinal cord stimulation outcomes for treatment of chronic pain. INTERVENTIONAL PAIN MEDICINE 2024; 3:100402. [PMID: 39239496 PMCID: PMC11373048 DOI: 10.1016/j.inpm.2024.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 09/07/2024]
Abstract
Objective To compare pragmatic real-world 10-kHz high-frequency spinal cord stimulation (HF-SCS) outcomes at a single academic center to the industry-sponsored SENZA-RCT and Stauss et al. study. Methods This single-center retrospective study included patients with refractory back or limb pain trialed and/or permanently implanted with the Nevro HF-SCS system from 2016 to 2021. Demographic and outcome data were obtained from the electronic medical record (EMR) and real-world global database maintained by Nevro Corp. Data obtained from the global database were confirmed using the EMR. Main outcome measures included positive responder status (≥50% patient-reported percentage pain reduction (PRPPR)), improvement in function, improvement in sleep, and reduction in pain medication usage. Comparison groups included patient outcomes from the SENZA-RCT and Stauss et al. study. Results Patients (N = 147) trialed with HF-SCS were reviewed, with data available for 137. Positive trialed patient responder rate (≥50% PRPPR) was 77% (106/137, 95CI 70-84%) vs. 87% (1393/1607, 95CI 85-89%) Stauss et al. vs. 93% (90/97, 95CI 88-98%) SENZA-RCT HF-SCS. At the last available follow-up, positive implanted patient responder rate was 73% (58/80, 95CI 63-82%) vs. 78% (254/326, 95CI 73-82%) Stauss et al. vs. 79% (71/90, 95CI 70-87%) SENZA-RCT HF-SCS. Sixty-seven percent (59/88, 95CI 57-77%) reported improved function vs. 72% (787/1088, 95CI 70-75%) Stauss et al.; 45% (31/69, 95CI 33-57%) reported improved sleep vs. 68% (693/1020, 95CI 65-71%) Stauss et al. and 16% (9/56, 95CI 6-26%) reported decrease in medication use vs. 32% (342/1070, 95CI 29-35%) Stauss et al. Conclusion Patient responder rates in this retrospective pragmatic real-world study of HF-SCS are consistent with previous industry-sponsored studies. However, improvements in quality-of-life measures and reduction in medication usage were not as robust as reported in industry-sponsored studies. The findings of this non-industry-sponsored, independent study of HF-SCS complement those of previously published studies by reporting patient outcomes collected in the absence of industry sponsorship.
Collapse
Affiliation(s)
- Reza Ehsanian
- Division of Pain Medicine, Department of Anesthesiology & Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Victor Wu
- University of New Mexico, School of Medicine, Albuquerque, NM, USA
| | - Radhika Grandhe
- Division of Pain Medicine, Department of Anesthesiology & Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Matthew Valeriano
- Division of Pain Medicine, Department of Anesthesiology & Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Timothy R Petersen
- Division of Pain Medicine, Department of Anesthesiology & Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Department of Obstetrics & Gynecology, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Office of Graduate Medical Education, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - W Evan Rivers
- Tennessee Valley Healthcare System, Veterans Administration, Nashville, TN, USA
- Department of Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eugene Koshkin
- Division of Pain Medicine, Department of Anesthesiology & Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
4
|
Abstract
BACKGROUND Spinal cord stimulation (SCS) is a surgical intervention used to treat persistent low back pain. SCS is thought to modulate pain by sending electrical signals via implanted electrodes into the spinal cord. The long term benefits and harms of SCS for people with low back pain are uncertain. OBJECTIVES To assess the effects, including benefits and harms, of SCS for people with low back pain. SEARCH METHODS On 10 June 2022, we searched CENTRAL, MEDLINE, Embase, and one other database for published trials. We also searched three clinical trials registers for ongoing trials. SELECTION CRITERIA We included all randomised controlled trials and cross-over trials comparing SCS with placebo or no treatment for low back pain. The primary comparison was SCS versus placebo, at the longest time point measured in the trials. Major outcomes were mean low back pain intensity, function, health-related quality of life, global assessment of efficacy, withdrawals due to adverse events, adverse events, and serious adverse events. Our primary time point was long-term follow-up (≥ 12 months). DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included 13 studies with 699 participants: 55% of participants were female; mean age ranged from 47 to 59 years; and all participants had chronic low back pain with mean duration of symptoms ranging from five to 12 years. Ten cross-over trials compared SCS with placebo. Three parallel-group trials assessed the addition of SCS to medical management. Most studies were at risk of performance and detection bias from inadequate blinding and selective reporting bias. The placebo-controlled trials had other important biases, including lack of accounting for period and carryover effects. Two of the three parallel trials assessing SCS as an addition to medical management were at risk of attrition bias, and all three had substantial cross-over to the SCS group for time points beyond six months. In the parallel-group trials, we considered the lack of placebo control to be an important source of bias. None of our included studies evaluated the impact of SCS on mean low back pain intensity in the long term (≥ 12 months). The studies most often assessed outcomes in the immediate term (less than one month). At six months, the only available evidence was from a single cross-over trial (50 participants). There was moderate-certainty evidence that SCS probably does not improve back or leg pain, function, or quality of life compared with placebo. Pain was 61 points (on a 0- to 100-point scale, 0 = no pain) at six months with placebo, and 4 points better (8.2 points better to 0.2 points worse) with SCS. Function was 35.4 points (on a 0- to 100-point scale, 0 = no disability or best function) at six months with placebo, and 1.3 points better (3.9 points better to 1.3 points worse) with SCS. Health-related quality of life was 0.44 points out of 1 (0 to 1 index, 0 = worst quality of life) at six months with placebo, and 0.04 points better (0.16 points better to 0.08 points worse) with SCS. In that same study, nine participants (18%) experienced adverse events and four (8%) required revision surgery. Serious adverse events with SCS included infections, neurological damage, and lead migration requiring repeated surgery. We could not provide effect estimates of the relative risks as events were not reported for the placebo period. In parallel trials assessing SCS as an addition to medical management, it is uncertain whether, in the medium or long term, SCS can reduce low back pain, leg pain, or health-related quality of life, or if it increases the number of people reporting a 50% improvement or better, because the certainty of the evidence was very low. Low-certainty evidence suggests that adding SCS to medical management may slightly improve function and slightly reduce opioid use. In the medium term, mean function (0- to 100-point scale; lower is better) was 16.2 points better with the addition of SCS to medical management compared with medical management alone (95% confidence interval (CI) 19.4 points better to 13.0 points better; I2 = 95%; 3 studies, 430 participants; low-certainty evidence). The number of participants reporting opioid medicine use was 15% lower with the addition of SCS to medical management (95% CI 27% lower to 0% lower; I2 = 0%; 2 studies, 290 participants; low-certainty evidence). Adverse events with SCS were poorly reported but included infection and lead migration. One study found that, at 24 months, 13 of 42 people (31%) receiving SCS required revision surgery. It is uncertain to what extent the addition of SCS to medical management increases the risk of withdrawals due to adverse events, adverse events, or serious adverse events, because the certainty of the evidence was very low. AUTHORS' CONCLUSIONS Data in this review do not support the use of SCS to manage low back pain outside a clinical trial. Current evidence suggests SCS probably does not have sustained clinical benefits that would outweigh the costs and risks of this surgical intervention.
Collapse
Affiliation(s)
- Adrian C Traeger
- Institute for Musculoskeletal Health, The University of Sydney and Sydney Local Health District, Sydney, Australia
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Stephen E Gilbert
- Institute for Musculoskeletal Health, The University of Sydney and Sydney Local Health District, Sydney, Australia
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Ian A Harris
- Institute for Musculoskeletal Health, The University of Sydney and Sydney Local Health District, Sydney, Australia
- South West Sydney Clinical School, University of New South Wales, Liverpool, Australia
| | - Christopher G Maher
- Institute for Musculoskeletal Health, The University of Sydney and Sydney Local Health District, Sydney, Australia
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
5
|
Patel NP, Wu C, Lad SP, Jameson J, Kosek P, Sayed D, Waldorff EI, Shum LC, Province-Azalde R, Kapural L. Cost-effectiveness of 10-kHz spinal cord stimulation therapy compared with conventional medical management over the first 12 months of therapy for patients with nonsurgical back pain: randomized controlled trial. J Neurosurg Spine 2023; 38:249-257. [PMID: 36272125 DOI: 10.3171/2022.9.spine22416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This analysis evaluated if spinal cord stimulation (SCS) at 10 kHz plus conventional medical management (CMM) is cost-effective compared with CMM alone for the treatment of nonsurgical refractory back pain (NSRBP). METHODS NSRBP subjects were randomized 1:1 into the 10-kHz SCS (n = 83) or CMM (n = 76) group. Outcomes assessed at 6 months included EQ-5D 5-level (EQ-5D-5L), medication usage, and healthcare utilization (HCU). There was an optional crossover at 6 months and follow-up to 12 months. The incremental cost-effectiveness ratio (ICER) was calculated with cost including all HCU and medications except for the initial device and implant procedure, and cost-effectiveness was analyzed based on a willingness-to-pay threshold of < $50,000 per quality-adjusted life-year. RESULTS Treatment with 10-kHz SCS resulted in a significant improvement in quality of life (QOL) over CMM (EQ-5D-5L index score change of 0.201 vs -0.042, p < 0.001) at a lower cost, based on reduced frequency of HCU resulting in an ICER of -$4964 at 12 months. The ICER was -$8620 comparing the 6 months on CMM with postcrossover on 10-kHz SCS. CONCLUSIONS Treatment with 10-kHz SCS provides higher QOL at a lower average cost per patient compared with CMM. Assuming an average reimbursement for device and procedure, 10-kHz SCS therapy is predicted to be cost-effective for the treatment of NSRBP compared with CMM within 2.1 years.
Collapse
Affiliation(s)
- Naresh P Patel
- 1Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona
| | - Chengyuan Wu
- Departments of2Neurosurgery and
- 10Radiology, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania
| | - Shivanand P Lad
- 3Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | | | - Peter Kosek
- 5Oregon Neurosurgery Specialists, Springfield, Oregon
| | - Dawood Sayed
- 6Department of Anesthesiology, University of Kansas Hospital, Kansas City, Kansas
| | | | | | | | | |
Collapse
|
6
|
Kapural L, Calodney A. Retrospective Efficacy and Cost-Containment Assessment of 10 kHz Spinal Cord Stimulation (SCS) in Non-Surgical Refractory Back Pain Patients. J Pain Res 2022; 15:3589-3595. [PMID: 36415659 PMCID: PMC9676005 DOI: 10.2147/jpr.s373873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background Non-surgical refractory back pain (NSRBP) is persistent, severe back pain that is not considered surgically correctable. Published studies have demonstrated clinically important long-term improvement in pain and functional capacity when 10kHz spinal cord stimulation (SCS) is used to treat NSRBP. This study examines if real-world patients in interventional pain practice obtain the same outcomes, and have any reduction in health care utilization (HCU) following 10kHz SCS implant. Methods We conducted a retrospective chart review of 105 patients from two clinical sites who underwent implantation of 10kHz SCS for NSRBP. The three most frequent diagnoses were lumbosacral radiculopathy, degenerative disc disease (DDD)/discogenic back pain and foraminal stenosis. The complete set of patient-level electronic data, including clinical outcomes, HCU, and at least 12 months (12M) follow-up were available in 90 subjects. Results The 90 analyzed patients were 63.9 years old (median 67) with an average of 10.2 years since back pain diagnosis. Reported pain on the Visual Analog Scale (VAS) decreased from 7.78±1.3 cm to 3.4±2.4 cm at 12M after SCS implant (p<0.001). Opioid usage (n = 65) decreased from 57.9±89.9 mg to 34.3±66.4 mg MSO4 equivalents (p = 0.004) at 12M. There were 46 patients on various doses of anticonvulsants, mostly gabapentin. The average dose decreased from 1847.91±973.6 mg at baseline to 1297.9±1184.6 mg at 12M after implant (p = 0.016). HCU was analyzed comparing the 12M before to the 12M after implant. Number of office visits decreased from 10.83±8.0 per year to 8.86±7.64 (p = 0.036), number of procedures to control chronic pain decreased from 2.2±1.9 to 0.6±1.2 (p<0.001). There was no significant change in number of imaging procedures, hospital admissions, or days spent in the hospital. Conclusion 10kHz SCS warrants consideration as a therapeutic option for NSRBP patients and appears to provide a substantial reduction in HCU in the year following implant.
Collapse
Affiliation(s)
- Leonardo Kapural
- Carolinas Pain Institute, Winston-Salem, NC, USA
- Correspondence: Leonardo Kapural, Email
| | | |
Collapse
|
7
|
Spirollari E, Vazquez S, Ng C, Naftchi AF, Graifman G, Das A, Greisman JD, Dominguez JF, Kinon MD, Sukul VV. Comparison of Characteristics, Inpatient Outcomes, and Trends in Percutaneous vs Open Placement of Spinal Cord Stimulators. Neuromodulation 2022:S1094-7159(22)01253-3. [DOI: 10.1016/j.neurom.2022.08.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
|
8
|
Kapural L, Jameson J, Johnson C, Kloster D, Calodney A, Kosek P, Pilitsis J, Bendel M, Petersen E, Wu C, Cherry T, Lad SP, Yu C, Sayed D, Goree J, Lyons MK, Sack A, Bruce D, Rubenstein F, Province-Azalde R, Caraway D, Patel NP. Treatment of nonsurgical refractory back pain with high-frequency spinal cord stimulation at 10 kHz: 12-month results of a pragmatic, multicenter, randomized controlled trial. J Neurosurg Spine 2022; 37:188-199. [PMID: 35148512 DOI: 10.3171/2021.12.spine211301] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Spinal cord stimulation (SCS) at 10 kHz (10-kHz SCS) is a safe and effective therapy for treatment of chronic low-back pain. However, it is unclear from existing evidence whether these findings can be generalized to patients with chronic back pain that is refractory to conventional medical management (CMM) and who have no history of spine surgery and are not acceptable candidates for spine surgery. The authors have termed this condition "nonsurgical refractory back pain" (NSRBP) and conducted a multicenter, randomized controlled trial to compare CMM with and without 10-kHz SCS in this population. METHODS Patients with NSRBP, as defined above and with a spine surgeon consultation required for confirmation, were randomized 1:1 to patients undergoing CMM with and without 10-kHz SCS. CMM included nonsurgical treatment for back pain, according to physicians' best practices and clinical guidelines. Primary and secondary endpoints included the responder rate (≥ 50% pain relief), disability (Oswestry Disability Index [ODI]), global impression of change, quality of life (EQ-5D-5L), and change in daily opioid use and were analyzed 3 and 6 months after randomization. The protocol allowed for an optional crossover at 6 months for both arms, with observational follow-up over 12 months. RESULTS In total, 159 patients were randomized; 76 received CMM, and 69 (83.1%) of the 83 patients who were assigned to the 10-kHz SCS group received a permanent implant. At the 3-month follow-up, 80.9% of patients who received stimulation and 1.3% of those who received CMM were found to be study responders (primary outcome, ≥ 50% pain relief; p < 0.001). There was also a significant difference between the treatment groups in all secondary outcomes at 6 months (p < 0.001). In the 10-kHz SCS arm, outcomes were sustained, including a mean 10-cm visual analog scale score of 2.1 ± 2.3 and 2.1 ± 2.2 and mean ODI score of 24.1 ± 16.1 and 24.0 ± 17.0 at 6 and 12 months, respectively (p = 0.9). In the CMM arm, 74.7% (56/75) of patients met the criteria for crossover and received an implant. The crossover arm obtained a 78.2% responder rate 6 months postimplantation. Five serious adverse events occurred (procedure-related, of 125 total permanent implants), all of which resolved without sequelae. CONCLUSIONS The study results, which included follow-up over 12 months, provide important insights into the durability of 10-kHz SCS therapy with respect to chronic refractory back pain, physical function, quality of life, and opioid use, informing the current clinical practice for pain management in patients with NSRBP.
Collapse
Affiliation(s)
| | | | | | | | - Aaron Calodney
- 5Interventional Spine, Texas Spine and Joint Hospital, Tyler, Texas
| | - Peter Kosek
- 6Pain Management, Oregon Neurosurgery Specialists, Springfield, Oregon
| | | | | | - Erika Petersen
- 9Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Chengyuan Wu
- 10Neurosurgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania
| | - Taissa Cherry
- 11Department of Neurosurgery and Neuroscience, Kaiser Permanente, Redwood City, California
| | - Shivanand P Lad
- 12Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Cong Yu
- 13Pain Research, Swedish Health Services, Seattle, Washington
| | - Dawood Sayed
- 14Anesthesiology and Pain Medicine, University of Kansas Hospital, Kansas City, Kansas
| | - Johnathan Goree
- 9Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mark K Lyons
- 16Neurosurgery, Mayo Clinic Arizona, Phoenix, Arizona
| | - Andrew Sack
- 14Anesthesiology and Pain Medicine, University of Kansas Hospital, Kansas City, Kansas
| | - Diana Bruce
- 11Department of Neurosurgery and Neuroscience, Kaiser Permanente, Redwood City, California
| | | | | | | | | |
Collapse
|
9
|
Desai MJ, Aschenbrener R, Carrera EJ, Thalla N. Spinal Cord Stimulation. Phys Med Rehabil Clin N Am 2022; 33:335-357. [DOI: 10.1016/j.pmr.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
O'Connell NE, Ferraro MC, Gibson W, Rice AS, Vase L, Coyle D, Eccleston C. Implanted spinal neuromodulation interventions for chronic pain in adults. Cochrane Database Syst Rev 2021; 12:CD013756. [PMID: 34854473 PMCID: PMC8638262 DOI: 10.1002/14651858.cd013756.pub2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Implanted spinal neuromodulation (SNMD) techniques are used in the treatment of refractory chronic pain. They involve the implantation of electrodes around the spinal cord (spinal cord stimulation (SCS)) or dorsal root ganglion (dorsal root ganglion stimulation (DRGS)), and a pulse generator unit under the skin. Electrical stimulation is then used with the aim of reducing pain intensity. OBJECTIVES To evaluate the efficacy, effectiveness, adverse events, and cost-effectiveness of implanted spinal neuromodulation interventions for people with chronic pain. SEARCH METHODS We searched CENTRAL, MEDLINE Ovid, Embase Ovid, Web of Science (ISI), Health Technology Assessments, ClinicalTrials.gov and World Health Organization International Clinical Trials Registry from inception to September 2021 without language restrictions, searched the reference lists of included studies and contacted experts in the field. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing SNMD interventions with placebo (sham) stimulation, no treatment or usual care; or comparing SNMD interventions + another treatment versus that treatment alone. We included participants ≥ 18 years old with non-cancer and non-ischaemic pain of longer than three months duration. Primary outcomes were pain intensity and adverse events. Secondary outcomes were disability, analgesic medication use, health-related quality of life (HRQoL) and health economic outcomes. DATA COLLECTION AND ANALYSIS Two review authors independently screened database searches to determine inclusion, extracted data and evaluated risk of bias for prespecified results using the Risk of Bias 2.0 tool. Outcomes were evaluated at short- (≤ one month), medium- four to eight months) and long-term (≥12 months). Where possible we conducted meta-analyses. We used the GRADE system to assess the certainty of evidence. MAIN RESULTS We included 15 unique published studies that randomised 908 participants, and 20 unique ongoing studies. All studies evaluated SCS. We found no eligible published studies of DRGS and no studies comparing SCS with no treatment or usual care. We rated all results evaluated as being at high risk of bias overall. For all comparisons and outcomes where we found evidence, we graded the certainty of the evidence as low or very low, downgraded due to limitations of studies, imprecision and in some cases, inconsistency. Active stimulation versus placebo SCS versus placebo (sham) Results were only available at short-term follow-up for this comparison. Pain intensity Six studies (N = 164) demonstrated a small effect in favour of SCS at short-term follow-up (0 to 100 scale, higher scores = worse pain, mean difference (MD) -8.73, 95% confidence interval (CI) -15.67 to -1.78, very low certainty). The point estimate falls below our predetermined threshold for a clinically important effect (≥10 points). No studies reported the proportion of participants experiencing 30% or 50% pain relief for this comparison. Adverse events (AEs) The quality and inconsistency of adverse event reporting in these studies precluded formal analysis. Active stimulation + other intervention versus other intervention alone SCS + other intervention versus other intervention alone (open-label studies) Pain intensity Mean difference Three studies (N = 303) demonstrated a potentially clinically important mean difference in favour of SCS of -37.41 at short term (95% CI -46.39 to -28.42, very low certainty), and medium-term follow-up (5 studies, 635 participants, MD -31.22 95% CI -47.34 to -15.10 low-certainty), and no clear evidence for an effect of SCS at long-term follow-up (1 study, 44 participants, MD -7 (95% CI -24.76 to 10.76, very low-certainty). Proportion of participants reporting ≥50% pain relief We found an effect in favour of SCS at short-term (2 studies, N = 249, RR 15.90, 95% CI 6.70 to 37.74, I2 0% ; risk difference (RD) 0.65 (95% CI 0.57 to 0.74, very low certainty), medium term (5 studies, N = 597, RR 7.08, 95 %CI 3.40 to 14.71, I2 = 43%; RD 0.43, 95% CI 0.14 to 0.73, low-certainty evidence), and long term (1 study, N = 87, RR 15.15, 95% CI 2.11 to 108.91 ; RD 0.35, 95% CI 0.2 to 0.49, very low certainty) follow-up. Adverse events (AEs) Device related No studies specifically reported device-related adverse events at short-term follow-up. At medium-term follow-up, the incidence of lead failure/displacement (3 studies N = 330) ranged from 0.9 to 14% (RD 0.04, 95% CI -0.04 to 0.11, I2 64%, very low certainty). The incidence of infection (4 studies, N = 548) ranged from 3 to 7% (RD 0.04, 95%CI 0.01, 0.07, I2 0%, very low certainty). The incidence of reoperation/reimplantation (4 studies, N =5 48) ranged from 2% to 31% (RD 0.11, 95% CI 0.02 to 0.21, I2 86%, very low certainty). One study (N = 44) reported a 55% incidence of lead failure/displacement (RD 0.55, 95% CI 0.35, 0 to 75, very low certainty), and a 94% incidence of reoperation/reimplantation (RD 0.94, 95% CI 0.80 to 1.07, very low certainty) at five-year follow-up. No studies provided data on infection rates at long-term follow-up. We found reports of some serious adverse events as a result of the intervention. These included autonomic neuropathy, prolonged hospitalisation, prolonged monoparesis, pulmonary oedema, wound infection, device extrusion and one death resulting from subdural haematoma. Other No studies reported the incidence of other adverse events at short-term follow-up. We found no clear evidence of a difference in otherAEs at medium-term (2 studies, N = 278, RD -0.05, 95% CI -0.16 to 0.06, I2 0%) or long term (1 study, N = 100, RD -0.17, 95% CI -0.37 to 0.02) follow-up. Very limited evidence suggested that SCS increases healthcare costs. It was not clear whether SCS was cost-effective. AUTHORS' CONCLUSIONS We found very low-certainty evidence that SCS may not provide clinically important benefits on pain intensity compared to placebo stimulation. We found low- to very low-certainty evidence that SNMD interventions may provide clinically important benefits for pain intensity when added to conventional medical management or physical therapy. SCS is associated with complications including infection, electrode lead failure/migration and a need for reoperation/re-implantation. The level of certainty regarding the size of those risks is very low. SNMD may lead to serious adverse events, including death. We found no evidence to support or refute the use of DRGS for chronic pain.
Collapse
Affiliation(s)
- Neil E O'Connell
- Department of Health Sciences, Centre for Health and Wellbeing Across the Lifecourse, Brunel University London, Uxbridge, UK
| | - Michael C Ferraro
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
- School of Health Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - William Gibson
- School of Physiotherapy, The University of Notre Dame Australia, Fremantle, Australia
| | - Andrew Sc Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Lene Vase
- Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| | - Doug Coyle
- Epidemiology and Community Medicine, Ottawa Health Research Institute, Ottawa, Canada
- Health Economics Research Group, Institute of Environment, Health and Societies, Department of Clinical Sciences, Brunel University London, Uxbridge, UK
| | | |
Collapse
|
11
|
Eckermann JM, Pilitsis JG, Vannaboutathong C, Wagner BJ, Province-Azalde R, Bendel MA. Systematic Literature Review of Spinal Cord Stimulation in Patients With Chronic Back Pain Without Prior Spine Surgery. Neuromodulation 2021; 25:648-656. [PMID: 34407288 DOI: 10.1111/ner.13519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Low back pain is the leading cause of disability worldwide and one of the most common reasons for seeking healthcare. Despite numerous care strategies, patients with low back pain continue to exhibit poor outcomes. Spinal cord stimulation (SCS) is an evidence-based therapeutic modality for patients with failed back surgery syndrome. For patients without a surgical lesion or history, minimally invasive interventions that provide long-term reduction of chronic back pain are needed. Therefore, we conducted a systematic review of the evidence on SCS therapy in patients with chronic back pain who have not undergone spinal surgery. MATERIALS AND METHODS A systematic literature search was performed to identify studies reporting outcomes for SCS in chronic back pain patients (with or without secondary radicular leg pain) without prior surgery using date limits from database inception to February 2021. Study results were analyzed and described qualitatively. RESULTS A total of ten primary studies (16 publications) were included. The included studies consistently demonstrated favorable outcomes in terms of pain reduction and functional improvement following SCS therapy. Improvements also occurred in quality of life scores; however, not all studies reported statistically significant findings. Additionally, the studies reported that SCS resulted in high patient satisfaction, reductions in opioid use, and an acceptable safety profile, although these data were more limited. CONCLUSION Findings suggest that SCS is a promising, safe, minimally invasive, and reversible alternative option for managing chronic back pain in patients who have not undergone spinal surgery.
Collapse
Affiliation(s)
| | | | | | | | | | - Markus A Bendel
- Division of Pain Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|