1
|
Escrich A, Jonguitud-Borrego N, Malcı K, Sanchez-Muñoz R, Palazon J, Rios-Solis L, Moyano E. A novel step towards the heterologous biosynthesis of paclitaxel: Characterization of T1βOH taxane hydroxylase. Metab Eng 2024; 85:201-212. [PMID: 39197725 DOI: 10.1016/j.ymben.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
In the quest for innovative cancer therapeutics, paclitaxel remains a cornerstone in clinical oncology. However, its complex biosynthetic pathway, particularly the intricate oxygenation steps, has remained a puzzle in the decades following the characterization of the last taxane hydroxylase. The high divergence and promiscuity of enzymes involved have posed significant challenges. In this study, we adopted an innovative approach, combining in silico methods and functional gene analysis, to shed light on this elusive pathway. Our molecular docking investigations using a library of potential ligands uncovered TB574 as a potential missing enzyme in the paclitaxel biosynthetic pathway, demonstrating auspicious interactions. Complementary in vivo assays utilizing engineered S. cerevisiae strains as novel microbial cell factory consortia not only validated TB574's critical role in forging the elusive paclitaxel intermediate, T5αAc-1β,10β-diol, but also achieved the biosynthesis of paclitaxel precursors at an unprecedented yield including T5αAc-1β,10β-diol with approximately 40 mg/L. This achievement is highly promising, offering a new direction for further exploration of a novel metabolic engineering approaches using microbial consortia. In conclusion, our study not only furthers study the roles of previously uncharacterized enzymes in paclitaxel biosynthesis but also forges a path for pioneering advancements in the complete understanding of paclitaxel biosynthesis and its heterologous production. The characterization of T1βOH underscores a significant leap forward for future advancements in paclitaxel production using heterologous systems to improve cancer treatment and pharmaceutical production, thereby holding immense promise for enhancing the efficacy of cancer therapies and the efficiency of pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Ainoa Escrich
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nestor Jonguitud-Borrego
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Koray Malcı
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Raul Sanchez-Muñoz
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Javier Palazon
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom; Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, WC1E 6EB, United Kingdom.
| | - Elisabeth Moyano
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
2
|
Ren G, Zhang Y, Chen Z, Xue X, Fan H. Research Progress of Small Plant Peptides on the Regulation of Plant Growth, Development, and Abiotic Stress. Int J Mol Sci 2024; 25:4114. [PMID: 38612923 PMCID: PMC11012589 DOI: 10.3390/ijms25074114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Small peptides in plants are typically characterized as being shorter than 120 amino acids, with their biologically active variants comprising fewer than 20 amino acids. These peptides are instrumental in regulating plant growth, development, and physiological processes, even at minimal concentrations. They play a critical role in long-distance signal transduction within plants and act as primary responders to a range of stress conditions, including salinity, alkalinity, drought, high temperatures, and cold. This review highlights the crucial roles of various small peptides in plant growth and development, plant resistance to abiotic stress, and their involvement in long-distance transport. Furthermore, it elaborates their roles in the regulation of plant hormone biosynthesis. Special emphasis is given to the functions and mechanisms of small peptides in plants responding to abiotic stress conditions, aiming to provide valuable insights for researchers working on the comprehensive study and practical application of small peptides.
Collapse
Affiliation(s)
- Guocheng Ren
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China
| | - Yanling Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| | - Xin Xue
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| |
Collapse
|
3
|
Zhang Y, Wiese L, Fang H, Alseekh S, Perez de Souza L, Scossa F, Molloy J, Christmann M, Fernie AR. Synthetic biology identifies the minimal gene set required for paclitaxel biosynthesis in a plant chassis. MOLECULAR PLANT 2023; 16:1951-1961. [PMID: 37897038 DOI: 10.1016/j.molp.2023.10.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
The diterpenoid paclitaxel (Taxol) is a chemotherapy medication widely used as a first-line treatment against several types of solid cancers. The supply of paclitaxel from natural sources is limited. However, missing knowledge about the genes involved in several specific metabolic steps of paclitaxel biosynthesis has rendered it difficult to engineer the full pathway. In this study, we used a combination of transcriptomics, cell biology, metabolomics, and pathway reconstitution to identify the complete gene set required for the heterologous production of paclitaxel. We identified the missing steps from the current model of paclitaxel biosynthesis and confirmed the activity of most of the missing enzymes via heterologous expression in Nicotiana benthamiana. Notably, we identified a new C4β-C20 epoxidase that could overcome the first bottleneck of metabolic engineering. We used both previously characterized and newly identified oxomutases/epoxidases, taxane 1β-hydroxylase, taxane 9α-hydroxylase, taxane 9α-dioxygenase, and phenylalanine-CoA ligase, to successfully biosynthesize the key intermediate baccatin III and to convert baccatin III into paclitaxel in N. benthamiana. In combination, these approaches establish a metabolic route to taxoid biosynthesis and provide insights into the unique chemistry that plants use to generate complex bioactive metabolites.
Collapse
Affiliation(s)
- Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| | - Lorenz Wiese
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Hao Fang
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany; Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Saleh Alseekh
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Leonardo Perez de Souza
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Research Center for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178 Rome, Italy
| | - John Molloy
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Mathias Christmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria.
| |
Collapse
|
4
|
Lyapina I, Filippova A, Kovalchuk S, Ziganshin R, Mamaeva A, Lazarev V, Latsis I, Mikhalchik E, Panasenko O, Ivanov O, Ivanov V, Fesenko I. Possible role of small secreted peptides (SSPs) in immune signaling in bryophytes. PLANT MOLECULAR BIOLOGY 2021; 106:123-143. [PMID: 33713297 DOI: 10.1007/s11103-021-01133-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Plants utilize a plethora of peptide signals to regulate their immune response. Peptide ligands and their cognate receptors involved in immune signaling share common motifs among many species of vascular plants. However, the origin and evolution of immune peptides is still poorly understood. Here, we searched for genes encoding small secreted peptides in the genomes of three bryophyte lineages-mosses, liverworts and hornworts-that occupy a critical position in the study of land plant evolution. We found that bryophytes shared common predicted small secreted peptides (SSPs) with vascular plants. The number of SSPs is higher in the genomes of mosses than in both the liverwort Marchantia polymorpha and the hornwort Anthoceros sp. The synthetic peptide elicitors-AtPEP and StPEP-specific for vascular plants, triggered ROS production in the protonema of the moss Physcomitrella patens, suggesting the possibility of recognizing peptide ligands from angiosperms by moss receptors. Mass spectrometry analysis of the moss Physcomitrella patens, both the wild type and the Δcerk mutant secretomes, revealed peptides that specifically responded to chitosan treatment, suggesting their role in immune signaling.
Collapse
Affiliation(s)
- Irina Lyapina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Filippova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Kovalchuk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Rustam Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Mamaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Ivan Latsis
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Elena Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Oleg Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Oleg Ivanov
- V.F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Vadim Ivanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor Fesenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
5
|
Khojasteh A, Mirjalili MH, Alcalde MA, Cusido RM, Eibl R, Palazon J. Powerful Plant Antioxidants: A New Biosustainable Approach to the Production of Rosmarinic Acid. Antioxidants (Basel) 2020; 9:E1273. [PMID: 33327619 PMCID: PMC7765155 DOI: 10.3390/antiox9121273] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Modern lifestyle factors, such as physical inactivity, obesity, smoking, and exposure to environmental pollution, induce excessive generation of free radicals and reactive oxygen species (ROS) in the body. These by-products of oxygen metabolism play a key role in the development of various human diseases such as cancer, diabetes, heart failure, brain damage, muscle problems, premature aging, eye injuries, and a weakened immune system. Synthetic and natural antioxidants, which act as free radical scavengers, are widely used in the food and beverage industries. The toxicity and carcinogenic effects of some synthetic antioxidants have generated interest in natural alternatives, especially plant-derived polyphenols (e.g., phenolic acids, flavonoids, stilbenes, tannins, coumarins, lignins, lignans, quinines, curcuminoids, chalcones, and essential oil terpenoids). This review focuses on the well-known phenolic antioxidant rosmarinic acid (RA), an ester of caffeic acid and (R)-(+)-3-(3,4-dihydroxyphenyl) lactic acid, describing its wide distribution in thirty-nine plant families and the potential productivity of plant sources. A botanical and phytochemical description is provided of a new rich source of RA, Satureja khuzistanica Jamzad (Lamiaceae). Recently reported approaches to the biotechnological production of RA are summarized, highlighting the establishment of cell suspension cultures of S. khuzistanica as an RA chemical biofactory.
Collapse
Affiliation(s)
- Abbas Khojasteh
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran;
| | - Miguel Angel Alcalde
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| | - Rosa M. Cusido
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| | - Regine Eibl
- Campus Grüental, Institute of Biotechnology, Biotechnological Engineering and Cell Cultivation Techniques, Zurich University of Applied Sciences, CH-8820 Wädenswill, Switzerland;
| | - Javier Palazon
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| |
Collapse
|
6
|
Sanchez-Muñoz R, Perez-Mata E, Almagro L, Cusido RM, Bonfill M, Palazon J, Moyano E. A Novel Hydroxylation Step in the Taxane Biosynthetic Pathway: A New Approach to Paclitaxel Production by Synthetic Biology. Front Bioeng Biotechnol 2020; 8:410. [PMID: 32528936 PMCID: PMC7247824 DOI: 10.3389/fbioe.2020.00410] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
Engineered plant cell lines have the potential to achieve enhanced metabolite production rates, providing a high-yielding source of compounds of interest. Improving the production of taxanes, pharmacologically valuable secondary metabolites of Taxus spp., is hindered by an incomplete knowledge of the taxane biosynthetic pathway. Of the five unknown steps, three are thought to involve cytochrome P450-like hydroxylases. In the current work, after an in-depth in silico characterization of four candidate enzymes proposed in a previous cDNA-AFLP assay, TB506 was selected as a candidate for the hydroxylation of the taxane side chain. A docking assay indicated TB506 is active after the attachment of the side chain based on its affinity to the ligand 3'N-dehydroxydebenzoyltaxol. Finally, the involvement of TB506 in the last hydroxylation step of the paclitaxel biosynthetic pathway was confirmed by functional assays. The identification of this hydroxylase will contribute to the development of alternative sustainable paclitaxel production systems using synthetic biology techniques.
Collapse
Affiliation(s)
- Raul Sanchez-Muñoz
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Edgar Perez-Mata
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Almagro
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Rosa M. Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Mercedes Bonfill
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Javier Palazon
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Elisabeth Moyano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
7
|
Sanchez-Muï Oz R, Almagro L, Cusido RM, Bonfill M, Palazon J, Moyano E. Transfecting Taxus � media Protoplasts to Study Transcription Factors BIS2 and TSAR2 as Activators of Taxane-Related Genes. PLANT & CELL PHYSIOLOGY 2020; 61:576-583. [PMID: 31841159 DOI: 10.1093/pcp/pcz225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Taxane diterpenes are secondary metabolites with an important pharmacological role in the treatment of cancer. Taxus spp. biofactories have been used for taxane production, but the lack of knowledge about the taxane biosynthetic pathway and its molecular regulation hinders their optimal function. The difficulties in introducing foreign genes in Taxus spp. genomes hinder the study of the molecular mechanisms involved in taxane production, and a new approach is required to overcome them. In this study, a reliable, simple and fast method to obtain Taxus � media protoplasts was developed, allowing their manipulation in downstream assays for the study of physiological changes in Taxus spp. cells. Using this method, Taxus protoplasts were transiently transfected for the first time, corroborating their suitability for transfection assays and the study of specific physiological responses. The two assayed transcription factors (BIS2 and TSAR2) had a positive effect on the expression of several taxane-related genes, suggesting their potential use for the improvement of taxane yields. Furthermore, the results indicate that the developed method is suitable for obtaining T. � media protoplasts for transfection with the aim of unraveling regulatory mechanisms in taxane production.
Collapse
Affiliation(s)
- Raul Sanchez-Muï Oz
- Departament de Ci�ncies Experimentals i de la Salut, Universitat Pompeu Fabra, Avda. Dr. Aiguader 80, E-08003 Barcelona, Spain
| | - Lorena Almagro
- Departamento de Biolog�a vegetal, Facultad de Biolog�a, Universidad de Murcia, E-30100 Murcia, Spain
| | - Rosa M Cusido
- Departament de Biologia, Sanitat i Medi Ambient, Secci� de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Mercedes Bonfill
- Departament de Biologia, Sanitat i Medi Ambient, Secci� de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Javier Palazon
- Departament de Biologia, Sanitat i Medi Ambient, Secci� de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Elisabeth Moyano
- Departament de Ci�ncies Experimentals i de la Salut, Universitat Pompeu Fabra, Avda. Dr. Aiguader 80, E-08003 Barcelona, Spain
| |
Collapse
|
8
|
Pollier J, De Geyter N, Moses T, Boachon B, Franco-Zorrilla JM, Bai Y, Lacchini E, Gholami A, Vanden Bossche R, Werck-Reichhart D, Goormachtig S, Goossens A. The MYB transcription factor Emission of Methyl Anthranilate 1 stimulates emission of methyl anthranilate from Medicago truncatula hairy roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:637-654. [PMID: 31009122 DOI: 10.1111/tpj.14347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcript profiling of jasmonate-elicited Medicago truncatula cells, we identified Emission of Methyl Anthranilate (EMA) 1, a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate when expressed in M. truncatula hairy roots, giving them a fruity scent. RNA sequencing (RNA-Seq) analysis of the fragrant roots revealed the upregulation of a methyltransferase that was subsequently characterized to catalyze the O-methylation of anthranilic acid and was hence named M. truncatula anthranilic acid methyl transferase (MtAAMT) 1. Given that direct activation of the MtAAMT1 promoter by EMA1 could not be unambiguously demonstrated, we further probed the RNA-Seq data and identified the repressor protein M. truncatula plant AT-rich sequence and zinc-binding (MtPLATZ) 1. Emission of Methyl Anthranilate 1 binds a tandem repeat of the ACCTAAC motif in the MtPLATZ1 promoter to transactivate gene expression. Overexpression of MtPLATZ1 in transgenic M. truncatula hairy roots led to transcriptional silencing of EMA1, indicating that MtPLATZ1 may be part of a negative feedback loop to control the expression of EMA1. Finally, application of exogenous methyl anthranilate boosted EMA1 and MtAAMT1 expression dramatically, thus also revealing a positive amplification loop. Such positive and negative feedback loops seem to be the norm rather than the exception in the regulation of plant specialized metabolism.
Collapse
Affiliation(s)
- Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Nathan De Geyter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Tessa Moses
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Benoît Boachon
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67000, Strasbourg, France
| | | | - Yuechen Bai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Azra Gholami
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Danièle Werck-Reichhart
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67000, Strasbourg, France
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| |
Collapse
|
9
|
Nazhand A, Durazzo A, Lucarini M, Mobilia MA, Omri B, Santini A. Rewiring cellular metabolism for heterologous biosynthesis of Taxol. Nat Prod Res 2019; 34:110-121. [DOI: 10.1080/14786419.2019.1630122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Amirhossein Nazhand
- Biotechnology Department, Sari University of Agricultural Sciences and Natural Resources, Mazandaran, Sari, Iran
| | | | | | | | - Besma Omri
- Laboratory of Improvement & Integrated Development of Animal Productivity & Food Resources, Higher School of Agriculture of Mateur, University of Carthage, Bizerte, Tunisia
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| |
Collapse
|
10
|
de Bang TC, Lay KS, Scheible WR, Takahashi H. Small peptide signaling pathways modulating macronutrient utilization in plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:31-39. [PMID: 28582679 DOI: 10.1016/j.pbi.2017.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/28/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
Root system architecture (RSA) and physiological functions define macronutrient uptake efficiency. Small signaling peptides (SSPs), that act in manners similar to hormones, and their cognate receptors transmit signals both locally and systemically. Several SSPs controlling morphological and physiological traits of roots have been identified to be associated with macronutrient uptake. Recent development in plant genome research has provided an avenue toward systems-based identification and prediction of additional SSPs. This review highlights recent studies on SSP pathways important for optimization of macronutrient uptake and provides new insights into the diversity of SSPs regulated in response to changes in macronutrient availabilities.
Collapse
Affiliation(s)
- Thomas C de Bang
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Katerina S Lay
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
11
|
Larsen B, Fuller VL, Pollier J, Van Moerkercke A, Schweizer F, Payne R, Colinas M, O’Connor SE, Goossens A, Halkier BA. Identification of Iridoid Glucoside Transporters in Catharanthus roseus. PLANT & CELL PHYSIOLOGY 2017; 58:1507-1518. [PMID: 28922750 PMCID: PMC5921532 DOI: 10.1093/pcp/pcx097] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/06/2017] [Indexed: 05/02/2023]
Abstract
Monoterpenoid indole alkaloids (MIAs) are plant defense compounds and high-value pharmaceuticals. Biosynthesis of the universal MIA precursor, secologanin, is organized between internal phloem-associated parenchyma (IPAP) and epidermis cells. Transporters for intercellular transport of proposed mobile pathway intermediates have remained elusive. Screening of an Arabidopsis thaliana transporter library expressed in Xenopus oocytes identified AtNPF2.9 as a putative iridoid glucoside importer. Eight orthologs were identified in Catharanthus roseus, of which three, CrNPF2.4, CrNPF2.5 and CrNPF2.6, were capable of transporting the iridoid glucosides 7-deoxyloganic acid, loganic acid, loganin and secologanin into oocytes. Based on enzyme expression data and transporter specificity, we propose that several enzymes of the biosynthetic pathway are present in both IPAP and epidermis cells, and that the three transporters are responsible for transporting not only loganic acid, as previously proposed, but multiple intermediates. Identification of the iridoid glucoside-transporting CrNPFs is an important step toward understanding the complex orchestration of the seco-iridioid pathway.
Collapse
Affiliation(s)
- Bo Larsen
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Victoria L. Fuller
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jacob Pollier
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Alex Van Moerkercke
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Fabian Schweizer
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Richard Payne
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Maite Colinas
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Sarah E. O’Connor
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Barbara A. Halkier
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Corresponding author: E-mail, ; Fax, +45 35333333
| |
Collapse
|
12
|
Ramirez-Estrada K, Castillo N, Lara JA, Arró M, Boronat A, Ferrer A, Altabella T. Tomato UDP-Glucose Sterol Glycosyltransferases: A Family of Developmental and Stress Regulated Genes that Encode Cytosolic and Membrane-Associated Forms of the Enzyme. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28649260 PMCID: PMC5465953 DOI: 10.3389/fpls.2017.00984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Sterol glycosyltransferases (SGTs) catalyze the glycosylation of the free hydroxyl group at C-3 position of sterols to produce sterol glycosides. Glycosylated sterols and free sterols are primarily located in cell membranes where in combination with other membrane-bound lipids play a key role in modulating their properties and functioning. In contrast to most plant species, those of the genus Solanum contain very high levels of glycosylated sterols, which in the case of tomato may account for more than 85% of the total sterol content. In this study, we report the identification and functional characterization of the four members of the tomato (Solanum lycopersicum cv. Micro-Tom) SGT gene family. Expression of recombinant SlSGT proteins in E. coli cells and N. benthamiana leaves demonstrated the ability of the four enzymes to glycosylate different sterol species including cholesterol, brassicasterol, campesterol, stigmasterol, and β-sitosterol, which is consistent with the occurrence in their primary structure of the putative steroid-binding domain found in steroid UDP-glucuronosyltransferases and the UDP-sugar binding domain characteristic for a superfamily of nucleoside diphosphosugar glycosyltransferases. Subcellular localization studies based on fluorescence recovery after photobleaching and cell fractionation analyses revealed that the four tomato SGTs, like the Arabidopsis SGTs UGT80A2 and UGT80B1, localize into the cytosol and the PM, although there are clear differences in their relative distribution between these two cell fractions. The SlSGT genes have specialized but still largely overlapping expression patterns in different organs of tomato plants and throughout the different stages of fruit development and ripening. Moreover, they are differentially regulated in response to biotic and abiotic stress conditions. SlSGT4 expression increases markedly in response to osmotic, salt, and cold stress, as well as upon treatment with abscisic acid and methyl jasmonate. Stress-induced SlSGT2 expression largely parallels that of SlSGT4. On the contrary, SlSGT1 and SlSGT3 expression remains almost unaltered under the tested stress conditions. Overall, this study contributes to broaden the current knowledge on plant SGTs and provides support to the view that tomato SGTs play overlapping but not completely redundant biological functions involved in mediating developmental and stress responses.
Collapse
Affiliation(s)
- Karla Ramirez-Estrada
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Nídia Castillo
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Juan A. Lara
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
| | - Monserrat Arró
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
| | - Albert Boronat
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of BarcelonaBarcelona, Spain
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
- *Correspondence: Teresa Altabella, Albert Ferrer,
| | - Teresa Altabella
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB)Barcelona, Spain
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of BarcelonaBarcelona, Spain
- *Correspondence: Teresa Altabella, Albert Ferrer,
| |
Collapse
|
13
|
Elicitation, an Effective Strategy for the Biotechnological Production of Bioactive High-Added Value Compounds in Plant Cell Factories. Molecules 2016; 21:182. [PMID: 26848649 PMCID: PMC6273650 DOI: 10.3390/molecules21020182] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 12/04/2022] Open
Abstract
Plant in vitro cultures represent an attractive and cost-effective alternative to classical approaches to plant secondary metabolite (PSM) production (the “Plant Cell Factory” concept). Among other advantages, they constitute the only sustainable and eco-friendly system to obtain complex chemical structures biosynthesized by rare or endangered plant species that resist domestication. For successful results, the biotechnological production of PSM requires an optimized system, for which elicitation has proved one of the most effective strategies. In plant cell cultures, an elicitor can be defined as a compound introduced in small concentrations to a living system to promote the biosynthesis of the target metabolite. Traditionally, elicitors have been classified in two types, abiotic or biotic, according to their chemical nature and exogenous or endogenous origin, and notably include yeast extract, methyl jasmonate, salicylic acid, vanadyl sulphate and chitosan. In this review, we summarize the enhancing effects of elicitors on the production of high-added value plant compounds such as taxanes, ginsenosides, aryltetralin lignans and other types of polyphenols, focusing particularly on the use of a new generation of elicitors such as coronatine and cyclodextrins.
Collapse
|
14
|
Colling J, Pollier J, Bossche RV, Makunga NP, Pauwels L, Goossens A. Hypersensitivity of Arabidopsis TAXIMIN1 overexpression lines to light stress is correlated with decreased sinapoyl malate abundance and countered by the antibiotic cefotaxime. PLANT SIGNALING & BEHAVIOR 2016; 11:e1143998. [PMID: 26967827 PMCID: PMC4883828 DOI: 10.1080/15592324.2016.1143998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
Peptide signaling in plants is involved in regulating development, (1,2) ensuring cross pollination through initiation of self-incompatibility (4) and assisting with recognition of beneficial (nitrogen fixing bacteria (5)) or unfavorable organisms (pathogens (6) or herbivores (7)). Peptides function to help plants to respond to a changing environment and improve their chances of survival. Constitutive expression of the gene encoding a novel cysteine rich peptide TAXIMIN1 (TAX1) resulted in fusion of lateral organs and in abnormal fruit morphology. TAX1 signaling functions independently from transcription factors known to play a role in this process such as LATERAL ORGAN FUSION1 (LOF1). Here, we report that the TAX1 promoter is not induced by the LOF1 transcription factor and that the TAX1 peptide neither interferes with transcriptional activation by LOF1.1 or transcriptional repression by LOF1.2. Furthermore, we found that TAX1 overexpressing lines were hypersensitive to continuous light, which may be reflected by a decreased accumulation of the UV-B protecting compound sinapoyl-malate. Finally, adding the antibiotic cefotaxime to the medium surprisingly countered the light hypersensitivity phenotype of TAX1 overexpressing seedlings.
Collapse
Affiliation(s)
- Janine Colling
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, (VIB), Technologiepark, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Gent, Belgium
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Jacob Pollier
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, (VIB), Technologiepark, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Gent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, (VIB), Technologiepark, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Gent, Belgium
| | - Nokwanda Pearl Makunga
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Laurens Pauwels
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, (VIB), Technologiepark, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Gent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, (VIB), Technologiepark, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Gent, Belgium
| |
Collapse
|
15
|
Ramírez-Estrada K, Altabella T, Onrubia M, Moyano E, Notredame C, Osuna L, Vanden Bossche R, Goossens A, Cusido RM, Palazon J. Transcript profiling of jasmonate-elicited Taxus cells reveals a β-phenylalanine-CoA ligase. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:85-96. [PMID: 25899320 PMCID: PMC11389183 DOI: 10.1111/pbi.12359] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/28/2015] [Accepted: 02/16/2015] [Indexed: 05/22/2023]
Abstract
Plant cell cultures constitute eco-friendly biotechnological platforms for the production of plant secondary metabolites with pharmacological activities, as well as a suitable system for extending our knowledge of secondary metabolism. Despite the high added value of taxol and the importance of taxanes as anticancer compounds, several aspects of their biosynthesis remain unknown. In this work, a genomewide expression analysis of jasmonate-elicited Taxus baccata cell cultures by complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) indicated a correlation between an extensive elicitor-induced genetic reprogramming and increased taxane production in the targeted cultures. Subsequent in silico analysis allowed us to identify 15 genes with a jasmonate-induced differential expression as putative candidates for genes encoding enzymes involved in five unknown steps of taxane biosynthesis. Among them, the TB768 gene showed a strong homology, including a very similar predicted 3D structure, with other genes previously reported to encode acyl-CoA ligases, thus suggesting a role in the formation of the taxol lateral chain. Functional analysis confirmed that the TB768 gene encodes an acyl-CoA ligase that localizes to the cytoplasm and is able to convert β-phenylalanine, as well as coumaric acid, into their respective derivative CoA esters. β-phenylalanyl-CoA is attached to baccatin III in one of the last steps of the taxol biosynthetic pathway. The identification of this gene will contribute to the establishment of sustainable taxol production systems through metabolic engineering or synthetic biology approaches.
Collapse
Affiliation(s)
- Karla Ramírez-Estrada
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Teresa Altabella
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
- Center for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Cerdanyola, Barcelona, Spain
| | - Miriam Onrubia
- Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elisabeth Moyano
- Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cedric Notredame
- Departament de Ciències Experimentals i de Salut, Universitat Pompeu Fabra, Barcelona, Spain
- Comparative Bioinformatics, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Lidia Osuna
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Xochitepec, Mexico
| | - Robin Vanden Bossche
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Rosa M Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Javier Palazon
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Ramirez-Estrada K, Osuna L, Moyano E, Bonfill M, Tapia N, Cusido RM, Palazon J. Changes in gene transcription and taxane production in elicited cell cultures of Taxus × media and Taxus globosa. PHYTOCHEMISTRY 2015; 117:174-184. [PMID: 26091963 DOI: 10.1016/j.phytochem.2015.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 05/27/2023]
Abstract
The response of two Taxus cell systems to the action of cyclodextrin (CD) and coronatine (CORO), supplied to the culture medium either separately or together, was studied. Two-stage Taxus globosa and Taxus media cell cultures were established and the elicitors were added at the beginning of the second stage. Growth, taxane production, and the expression of known taxol biosynthetic genes, including the recently characterized CoA ligase gene, were studied. Although CORO reduced the growth capacity of both cell lines, CD apparently counteracted this negative effect. Taxane production was significantly enhanced by the simultaneous addition of CD and CORO to the medium. The total taxane production in the T. media cell line was more than double that of T. globosa, but in the latter more than 90% of the taxanes produced were excreted to the medium. Individual taxane patterns also differed: at the height of production, the main taxanes in T. globosa cultures were cephalomannine and 10-deacetyltaxol, and in T. media, taxol and baccatin III. The low transcript levels of taxane biosynthetic genes found in T. globosa cells mirrored the lower taxane production in these cultures, while a high expression was strongly correlated with a high taxane production in T. media.
Collapse
Affiliation(s)
- Karla Ramirez-Estrada
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Lidia Osuna
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Morelos, Mexico
| | - Elisabeth Moyano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mercedes Bonfill
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Nadia Tapia
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Morelos, Mexico
| | - Rosa M Cusido
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Javier Palazon
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
17
|
Colling J, Tohge T, De Clercq R, Brunoud G, Vernoux T, Fernie AR, Makunga NP, Goossens A, Pauwels L. Overexpression of the Arabidopsis thaliana signalling peptide TAXIMIN1 affects lateral organ development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5337-49. [PMID: 26071531 PMCID: PMC4526920 DOI: 10.1093/jxb/erv291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Lateral organ boundary formation is highly regulated by transcription factors and hormones such as auxins and brassinosteroids. However, in contrast to many other developmental processes in plants, no role for signalling peptides in the regulation of this process has been reported yet. The first characterization of the secreted cysteine-rich TAXIMIN (TAX) signalling peptides in Arabidopsis is presented here. TAX1 overexpression resulted in minor alterations in the primary shoot and root metabolome, abnormal fruit morphology, and fusion of the base of cauline leaves to stems forming a decurrent leaf attachment. The phenotypes at the paraclade junction match TAX1 promoter activity in this region and are similar to loss of LATERAL ORGAN FUSION (LOF) transcription factor function. Nevertheless, TAX1 expression was unchanged in lof1lof2 paraclade junctions and, conversely, LOF gene expression was unchanged in TAX1 overexpressing plants, suggesting TAX1 may act independently. This study identifies TAX1 as the first plant signalling peptide influencing lateral organ separation and implicates the existence of a peptide signal cascade regulating this process in Arabidopsis.
Collapse
Affiliation(s)
- Janine Colling
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, (VIB), Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Rebecca De Clercq
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, (VIB), Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Geraldine Brunoud
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, Lyon, France
| | - Teva Vernoux
- Laboratoire de Reproduction et Développement des Plantes, CNRS, INRA, ENS Lyon, Lyon, France
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Nokwanda P Makunga
- Institute for Plant Biotechnology, Department of Genetics, Stellenbosch University, Stellenbosch, 7602, South Africa Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, (VIB), Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Laurens Pauwels
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, (VIB), Technologiepark 927, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| |
Collapse
|
18
|
Sabater-Jara AB, Onrubia M, Moyano E, Bonfill M, Palazón J, Pedreño MA, Cusidó RM. Synergistic effect of cyclodextrins and methyl jasmonate on taxane production in Taxus x media cell cultures. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:1075-84. [PMID: 24909837 DOI: 10.1111/pbi.12214] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/30/2014] [Accepted: 05/09/2014] [Indexed: 05/27/2023]
Abstract
Methyl jasmonate and cyclodextrins are proven effective inducers of secondary metabolism in plant cell cultures. Cyclodextrins, which are cyclic oligosaccharides, can form inclusion complexes with nonhydrophilic secondary products, thus increasing their excretion from the producer cells to the culture medium. In the present work, using a selected Taxus x media cell line cultured in a two-stage system, the relationship between taxane production and the transcript profiles of several genes involved in taxol metabolism was studied to gain more insight into the mechanism by which these two elicitors regulate the biosynthesis and excretion of taxol and related taxanes. Gene expression was not clearly enhanced by the presence of cyclodextrins in the culture medium and variably induced by methyl jasmonate, but when the culture was supplemented with both elicitors, a synergistic effect on transcript accumulation was observed. The BAPT and DBTNBT genes, which encode the last two transferases involved in the taxol pathway, appeared to control limiting biosynthetic steps. In the cell cultures treated with both elicitors, the produced taxanes were found mainly in the culture medium, which limited retroinhibition processes and taxane toxicity for the producer cells. The expression level of a putative ABC gene was found to have increased, suggesting it played a role in the taxane excretion. Taxol biosynthesis was clearly increased by the joint action of methyl jasmonate and cyclodextrins, reaching production levels 55 times higher than in nonelicited cultures.
Collapse
Affiliation(s)
- Ana-Belén Sabater-Jara
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|