1
|
Kergaravat B, Plener L, Castan M, Grizard D, Chabrière É, Daudé D. Enzymes, Proteins, and Peptides as Promising Biosolutions for Crop Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11546-11555. [PMID: 40310649 DOI: 10.1021/acs.jafc.5c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The development of environmentally friendly alternatives to plant protection products is essential for sustainable agriculture. In this context, natural compounds, such as enzymes, proteins, and peptides, represent a promising reservoir of bioactive molecules. Although little represented on the market, their potential as fertilizers, biostimulants, and biopesticides is highlighted by numerous reports and patents, which the present review aims to bring together. While fertilization and biostimulation are primarily aimed at improving plant yield and health, biopesticides can be used to target a wide range of microbial plant pathogens and pests. The nature and effects of proteinaceous molecules are discussed in light of restrictive regulations.
Collapse
Affiliation(s)
- Baptiste Kergaravat
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13284 Marseille, France
- Gene&GreenTK, 13005 Marseille, France
| | | | - Magali Castan
- Efika, ZA Sainte-Anne, 85600 La Boissière-de-Montaigu, France
| | - Damien Grizard
- Gene&GreenTK, 13005 Marseille, France
- Efika, ZA Sainte-Anne, 85600 La Boissière-de-Montaigu, France
| | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13284 Marseille, France
| | | |
Collapse
|
2
|
Leelagud P, Wang HL, Lu KH, Dai SM. Pseudomonas mosselii: a potential alternative for managing pyrethroid-resistant Aedes aegypti. PEST MANAGEMENT SCIENCE 2024; 80:4344-4351. [PMID: 38634536 DOI: 10.1002/ps.8139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/23/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Aedes aegypti is a widespread mosquito in tropical and subtropical regions that causes significant mortality and morbidity in humans by transmitting diseases, such as dengue fever and Zika virus disease. Synthetic insecticides, such as pyrethroids, have been used to control Ae. aegypti, but these insecticides can also affect nontarget organisms and contaminate soil and water. This study aimed to investigate the mosquitocidal activity of Pseudomonas mosselii isolated from pond sludge against larvae of Ae. aegypti. RESULTS Based on the initial results, similar time-course profiles were obtained for the mosquitocidal activity of the bacterial culture and its supernatant, and the pellet resuspended in Luria-Bertani (LB) medium also showed delayed toxicity. These results imply that the toxic component can be released into the medium from live bacteria. Further research indicated that the toxic component appeared in the supernatant approximately 4 h after a 3-mL stock was cultured in 200 mL of LB medium. The stabilities of the P. mosselii culture and supernatant stored at different temperatures were also evaluated, and the best culture stability was obtained at 28 °C and supernatant stability at 4 °C. The bacterial culture and supernatant were toxic to larvae and pupae of not only susceptible Ae. aegypti but also pyrethroid-resistant strains. CONCLUSION This study highlights the value of the mosquitocidal activity of P. mosselii, which has potential as an alternative insecticide to control pyrethroid-resistant Ae. aegypti in the field. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Piyatida Leelagud
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Liang Wang
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Kuang-Hui Lu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Mei Dai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Lu Y, Sui L, Dai C, Zheng W, Zhao Y, Li Q, Liang X, Li Q, Zhang Z. Immobilization of Bacillus thuringiensis Cry1Ac in metal-organic frameworks through biomimetic mineralization for sustainable pest management. Int J Biol Macromol 2024; 274:133388. [PMID: 38925193 DOI: 10.1016/j.ijbiomac.2024.133388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Traditional chemical pesticide dosage forms and crude application methods have resulted in low pesticide utilization, increased environmental pollution, and the development of resistance. Compared to traditional pesticides, nanopesticides enhance the efficiency of pesticide utilization and reduce the quantity required, thereby decreasing environmental pollution. Herein, Cry1Ac insecticidal crystal protein from Bacillus thuringiensis Subsp. Kurstaki HD-73 was encapsulated in a metal-organic framework (zeolite imidazolate framework-8, ZIF-8) through biomimetic mineralization to obtain Cry1Ac@ZIF-8 nanopesticides. The Cry1Ac@ZIF-8 nanopesticides exhibited a dodecahedral porous structure, and the introduction of Cry1Ac did not affect the intrinsic crystal structure of ZIF-8. The indoor toxicity analysis revealed that the toxicity of Cry1Ac towards Ostrinia furnacalis (Guenée), Helicoverpa armigera Hubner, and Spodoptera litura Fabricius was not affected by ZIF-8 encapsulation. Surprisingly, Cry1Ac@ZIF-8 still exhibited excellent pest management efficacy even after exposure to heat, UV irradiation, and long-term storage. More importantly, the encapsulation of ZIF-8 significantly enhanced the internal absorption performance of Cry1Ac in maize leaves and extended its persistence period. Thus, ZIF-8 could potentially serve as a promising carrier for the preparation of nanopesticides with enhanced applicability, stability, and persistence period, providing a powerful strategy to improve the application of Cry1Ac in future agricultural pest management.
Collapse
Affiliation(s)
- Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Gongzhuling 136100, China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Gongzhuling 136100, China
| | - Chunyan Dai
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun 130000, China
| | - Wenjing Zheng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Gongzhuling 136100, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Gongzhuling 136100, China; Jilin Agricultural Science and Technology University, Jilin 132109, China.
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Science/Jilin Key Laboratory of Agricultural Microbiology/Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Gongzhuling 136100, China.
| |
Collapse
|
4
|
Badiyal A, Mahajan R, Rana RS, Sood R, Walia A, Rana T, Manhas S, Jayswal DK. Synergizing biotechnology and natural farming: pioneering agricultural sustainability through innovative interventions. FRONTIERS IN PLANT SCIENCE 2024; 15:1280846. [PMID: 38584951 PMCID: PMC10995308 DOI: 10.3389/fpls.2024.1280846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/29/2024] [Indexed: 04/09/2024]
Abstract
The world has undergone a remarkable transformation from the era of famines to an age of global food production that caters to an exponentially growing population. This transformation has been made possible by significant agricultural revolutions, marked by the intensification of agriculture through the infusion of mechanical, industrial, and economic inputs. However, this rapid advancement in agriculture has also brought about the proliferation of agricultural inputs such as pesticides, fertilizers, and irrigation, which have given rise to long-term environmental crises. Over the past two decades, we have witnessed a concerning plateau in crop production, the loss of arable land, and dramatic shifts in climatic conditions. These challenges have underscored the urgent need to protect our global commons, particularly the environment, through a participatory approach that involves countries worldwide, regardless of their developmental status. To achieve the goal of sustainability in agriculture, it is imperative to adopt multidisciplinary approaches that integrate fields such as biology, engineering, chemistry, economics, and community development. One noteworthy initiative in this regard is Zero Budget Natural Farming, which highlights the significance of leveraging the synergistic effects of both plant and animal products to enhance crop establishment, build soil fertility, and promote the proliferation of beneficial microorganisms. The ultimate aim is to create self-sustainable agro-ecosystems. This review advocates for the incorporation of biotechnological tools in natural farming to expedite the dynamism of such systems in an eco-friendly manner. By harnessing the power of biotechnology, we can increase the productivity of agro-ecology and generate abundant supplies of food, feed, fiber, and nutraceuticals to meet the needs of our ever-expanding global population.
Collapse
Affiliation(s)
- Anila Badiyal
- Department of Microbiology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Rishi Mahajan
- Department of Microbiology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Ranbir Singh Rana
- Centre for Geo-Informatics Research and Training, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Ruchi Sood
- Centre for Geo-Informatics Research and Training, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Abhishek Walia
- Department of Microbiology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Tanuja Rana
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Shilpa Manhas
- Lovely Professional University, Phagwara, Punjab, India
| | - D. K. Jayswal
- National Agricultural Higher Education Project, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
5
|
Toepfer S, Toth S, Zupan T, Bogataj U, Žnidaršič N, Ladanyi M, Sabotič J. Diabrotica v. virgifera Seems Not Affected by Entomotoxic Protease Inhibitors from Higher Fungi. INSECTS 2024; 15:60. [PMID: 38249066 PMCID: PMC10816698 DOI: 10.3390/insects15010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024]
Abstract
Certain soil insects, such as the root-damaging larvae of the maize pest Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), are increasingly difficult to control because of recent bans of some insecticides. An alternative and safer approach may be the development of biopesticides based on entomotoxic defense proteins of higher fungi. Many of these potentially interesting proteins are protease inhibitors, and some have been shown to adversely affect insects. We examined the effects of the cysteine protease inhibitors macrocypin 1, 3, and 4 from Macrolepiota procera, clitocypin from Clitocybe nebularis, and cocaprin 1 and the serine protease inhibitor cospin 1 from Coprinopsis cinerea on D. v. virgifera. We confirmed the inhibition by mycocypins of the cysteine catalytic-type proteolytic activities in gut extracts of larvae and adults. The inhibition of pGlu-Phe-Leu-hydrolyzing activity was stronger than that of Z-Phe-Arg-hydrolyzing activity. Mycocypins and cospin resisted long-term proteolytic digestion, whereas cocaprin 1 was digested. Bioassays with overlaid artificial diet revealed no effects of proteins on neonatal mortality or stunting, and no effects on adult mortality. Immersion of eggs in protein solutions had little effect on egg hatching or mortality of hatching neonates. Microscopic analysis of the peritrophic matrix and apical surface of the midguts revealed the similarity between larvae of D. v. virgifera and the chrysomelid Leptinotarsa decemlineata, which are sensitive to these inhibitors. The resistance of D. v. virgifera to fungal protease inhibitors is likely due to effective adaptation of digestive enzyme expression to dietary protease inhibitors. We continue to study unique protein complexes of higher fungi for the development of new approaches to pest control.
Collapse
Affiliation(s)
- Stefan Toepfer
- Department of Integrated Plant Protection, Plant Protection Institute, Hungarian University of Agriculture and Life Sciences (MATE), 2100 Godollo, Hungary;
- CABI, 2800 Delemont, Switzerland
| | - Szabolcs Toth
- Department of Integrated Plant Protection, Plant Protection Institute, Hungarian University of Agriculture and Life Sciences (MATE), 2100 Godollo, Hungary;
| | - Tanja Zupan
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.Z.); (J.S.)
| | - Urban Bogataj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (U.B.); (N.Ž.)
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (U.B.); (N.Ž.)
| | - Marta Ladanyi
- Department of Applied Statistics, Institute of Mathematics and Basic Science, Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary;
| | - Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.Z.); (J.S.)
| |
Collapse
|
6
|
El Fakhouri K, Ramdani C, Aasfar A, Boulamtat R, Sijilmassi B, El Bouhssini M, Kadmiri IM. Isolation, identification and pathogenicity of local entomopathogenic bacteria as biological control agents against the wild cochineal Dactylopius opuntiae (Cockerell) on cactus pear in Morocco. Sci Rep 2023; 13:21647. [PMID: 38062128 PMCID: PMC10703873 DOI: 10.1038/s41598-023-48976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The Opuntia ficus-indica (L.) cactus, a crucial crop in Morocco, is threatened by the wild cochineal, Dactylopius opuntiae (Cockerell). The aim of this research was to investigate the efficacy of nine bacterial strains against both D. opuntiae nymphs and adults females applied individually or after black soap in the laboratory, greenhouse, and field conditions. Using the partial 16S ribosomal DNA, the bacterial isolates were identified as Pseudomonas koreensis, Pseudomonas sp., Burkholderia sp. and Bacillus sp. Under laboratory conditions, the insecticidal activity of P. koreensis strain 66Ms.04 showed the level mortality (88%) of adult females' at 108 CFU/mL, 7 days after application. At a concentration of 108 CFU/mL, P. koreensis strain 66Ms.04 and Pseudomonas sp. (strains 37 and 5) caused 100% nymphs mortality rate three days after application. Under greenhouse conditions, the use of P. koreensis strain 66Ms.04 at 108 CFU/mL following the application of black soap (60 g/L) demonstrated the maximum levels of females and nymphs' mortalities with 80 and 91.25%, respectively, after 8 days of treatment. In field conditions, the combined application of the P. koreensis strain 66Ms.04 at 108 CFU/mL with black soap at 60 g/L, for an interval of 7 days, significantly increased the mortality of adult females to 93.33% at 7 days after the second application. These findings showed that the combined treatment of P. koreensis strain 66Ms.04 with black soap can be a potent and eco-friendly pesticide against D. opuntiae.
Collapse
Affiliation(s)
- Karim El Fakhouri
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco.
| | - Chaimae Ramdani
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Abderrahim Aasfar
- Plant and Microbial Biotechnology center, Moroccan Foundation for Advanced Science, Innovation and Rescarch (MAScIR), Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Rachid Boulamtat
- Entomology Laboratory, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Institutes, P.O. Box 6299, Rabat, Morocco
| | - Badreddine Sijilmassi
- Rhizobium Laboratory, Genetic Resources Section, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Institutes, P.O. Box 6299, Rabat, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Issam Meftah Kadmiri
- Plant and Microbial Biotechnology center, Moroccan Foundation for Advanced Science, Innovation and Rescarch (MAScIR), Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| |
Collapse
|
7
|
IPD072Aa from Pseudomonas chlororaphis Targets Midgut Epithelial Cells in Killing Western Corn Rootworm ( Diabrotica virgifera virgifera). Appl Environ Microbiol 2023; 89:e0162222. [PMID: 36847510 PMCID: PMC10057879 DOI: 10.1128/aem.01622-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
IPD072Aa from Pseudomonas chlororaphis is a new insecticidal protein that has been shown to have high activity against western corn rootworm (WCR). IPD072 has no sequence signatures or predicted structural motifs with any known protein revealing little insight into its mode of action using bioinformatic tools. As many bacterially derived insecticidal proteins are known to act through mechanisms that lead to death of midgut cells, we evaluated whether IPD072Aa also acts by targeting the cells of WCR midgut. IPD072Aa exhibits specific binding to brush border membrane vesicles (BBMVs) prepared from WCR guts. The binding was found to occur at binding sites that are different than those recognized by Cry3A or Cry34Ab1/Cry35Ab1, proteins expressed by current maize traits that target WCR. Using fluorescence confocal microscopy, immuno-detection of IPD072Aa in longitudinal sections from whole WCR larvae that were fed IPD072Aa revealed the association of the protein with the cells that line the gut. High-resolution scanning electron microscopy of similar whole larval sections revealed the disruption of the gut lining resulting from cell death caused by IPD072Aa exposure. These data show that the insecticidal activity of IPD072Aa results from specific targeting and killing of rootworm midgut cells. IMPORTANCE Transgenic traits targeting WCR based on insecticidal proteins from Bacillus thuringiensis have proven effective in protecting maize yield in North America. High adoption has led to WCR populations that are resistant to the trait proteins. Four proteins have been developed into commercial traits, but they represent only two modes of action due to cross-resistance among three. New proteins suited for trait development are needed. IPD072Aa, identified from the bacterium Pseudomonas chlororaphis, was shown to be effective in protecting transgenic maize against WCR. To be useful, IPD072Aa must work through binding to different receptors than those utilized by current traits to reduce risk of cross-resistance and understanding its mechanism of toxicity could aid in countering resistance development. Our results show that IPD072Aa binds to receptors in WCR gut that are different than those utilized by current commercial traits and its targeted killing of midgut cells results in larval death.
Collapse
|
8
|
Jabeur R, Guyon V, Toth S, Pereira AE, Huynh MP, Selmani Z, Boland E, Bosio M, Beuf L, Clark P, Vallenet D, Achouak W, Audiffrin C, Torney F, Paul W, Heulin T, Hibbard BE, Toepfer S, Sallaud C. A novel binary pesticidal protein from Chryseobacterium arthrosphaerae controls western corn rootworm by a different mode of action to existing commercial pesticidal proteins. PLoS One 2023; 18:e0267220. [PMID: 36800363 PMCID: PMC9937505 DOI: 10.1371/journal.pone.0267220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/04/2022] [Indexed: 02/18/2023] Open
Abstract
The western corn rootworm (WCR) Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) remains one of the economically most important pests of maize (Zea mays) due to its adaptive capabilities to pest management options. This includes the ability to develop resistance to some of the commercial pesticidal proteins originating from different strains of Bacillus thuringiensis. Although urgently needed, the discovery of new, environmentally safe agents with new modes of action is a challenge. In this study we report the discovery of a new family of binary pesticidal proteins isolated from several Chryseobacterium species. These novel binary proteins, referred to as GDI0005A and GDI0006A, produced as recombinant proteins, prevent growth and increase mortality of WCR larvae, as does the bacteria. These effects were found both in susceptible and resistant WCR colonies to Cry3Bb1 and Cry34Ab1/Cry35Ab1 (reassigned Gpp34Ab1/Tpp35Ab1). This suggests GDI0005A and GDI0006A may not share the same binding sites as those commercially deployed proteins and thereby possess a new mode of action. This paves the way towards the development of novel biological or biotechnological management solutions urgently needed against rootworms.
Collapse
Affiliation(s)
- Rania Jabeur
- Limagrain Europe, Centre de recherche, Chappes, France
| | | | - Szabolcs Toth
- Integrated Pest Management Department, Hungarian University of Agriculture and Life Sciences—MATE, Godollo, Hungary
- CABI Switzerland, c/o Plant Protection and Soil Conservation Directorate, Hodmezovasarhely, Hungary
| | - Adriano E. Pereira
- Division of Plant Science & Technology, University of Missouri, Columbia, MO, United States of America
| | - Man P. Huynh
- Division of Plant Science & Technology, University of Missouri, Columbia, MO, United States of America
| | - Zakia Selmani
- Laboratoire de Biologie et Physiologie des Organismes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediène, USTHB, Alger, Algérie
| | - Erin Boland
- Genective USA Corp, Champaign, IL, United States of America
| | - Mickael Bosio
- Limagrain Europe, Centre de recherche, Chappes, France
| | - Laurent Beuf
- Limagrain Europe, Centre de recherche, Chappes, France
| | - Pete Clark
- Genective USA Corp, Champaign, IL, United States of America
| | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d’Evry, Université Paris-Saclay, CNRS, Evry, France
| | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Saint Paul-Lez-Durance, France
| | | | | | - Wyatt Paul
- Limagrain Europe, Centre de recherche, Chappes, France
| | - Thierry Heulin
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Saint Paul-Lez-Durance, France
| | - Bruce E. Hibbard
- USDA-ARS, Plant Genetics Research Unit, Univ. Missouri, Columbia, MO, United States of America
| | - Stefan Toepfer
- CABI Switzerland, c/o Plant Protection and Soil Conservation Directorate, Hodmezovasarhely, Hungary
| | | |
Collapse
|
9
|
Yang R, Shi Q, Huang T, Yan Y, Li S, Fang Y, Li Y, Liu L, Liu L, Wang X, Peng Y, Fan J, Zou L, Lin S, Chen G. The natural pyrazolotriazine pseudoiodinine from Pseudomonas mosselii 923 inhibits plant bacterial and fungal pathogens. Nat Commun 2023; 14:734. [PMID: 36759518 PMCID: PMC9911603 DOI: 10.1038/s41467-023-36433-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Natural products largely produced by Pseudomonads-like soil-dwelling microorganisms are a consistent source of antimicrobial metabolites and pesticides. Herein we report the isolation of Pseudomonas mosselii strain 923 from rice rhizosphere soils of paddy fields, which specifically inhibit the growth of plant bacterial pathogens Xanthomonas species and the fungal pathogen Magnaporthe oryzae. The antimicrobial compound is purified and identified as pseudoiodinine using high-resolution mass spectra, nuclear magnetic resonance and single-crystal X-ray diffraction. Genome-wide random mutagenesis, transcriptome analysis and biochemical assays define the pseudoiodinine biosynthetic cluster as psdABCDEFG. Pseudoiodinine biosynthesis is proposed to initiate from guanosine triphosphate and 1,6-didesmethyltoxoflavin is a biosynthetic intermediate. Transposon mutagenesis indicate that GacA is the global regulator. Furthermore, two noncoding small RNAs, rsmY and rsmZ, positively regulate pseudoiodinine transcription, and the carbon storage regulators CsrA2 and CsrA3, which negatively regulate the expression of psdA. A 22.4-fold increase in pseudoiodinine production is achieved by optimizing the media used for fermentation, overexpressing the biosynthetic operon, and removing the CsrA binding sites. Both of the strain 923 and purified pseudoiodinine in planta inhibit the pathogens without affecting the rice host, suggesting that pseudoiodinine can be used to control plant diseases.
Collapse
Affiliation(s)
- Ruihuan Yang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Shi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yichao Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengzhang Li
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Fang
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Li
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linlin Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Longyu Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongzheng Peng
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiangbo Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lifang Zou
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China. .,State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Chromobacterium Csp_P biopesticide is toxic to larvae of three Diabrotica species including strains resistant to Bacillus thuringiensis. Sci Rep 2022; 12:17858. [PMID: 36284199 PMCID: PMC9596699 DOI: 10.1038/s41598-022-22229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 01/20/2023] Open
Abstract
The development of new biopesticides to control the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is urgent due to resistance evolution to various control methods. We tested an air-dried non-live preparation of Chromobacterium species Panama (Csp_P), against multiple corn rootworm species, including Bt-resistant and -susceptible WCR strains, northern (NCR, D. barberi Smith & Lawrence), and southern corn rootworm (SCR, D. undecimpunctata howardi Barber), in diet toxicity assays. Our results documented that Csp_P was toxic to all three corn rootworms species based on lethal (LC50), effective (EC50), and molt inhibition concentration (MIC50). In general, toxicity of Csp_P was similar among all WCR strains and ~ 3-fold less toxic to NCR and SCR strains. Effective concentration (EC50) was also similar among WCR and SCR strains, and 5-7-fold higher in NCR strains. Molt inhibition (MIC50) was similar among all corn rootworm strains except NCR diapause strain that was 2.5-6-fold higher when compared to all other strains. There was no apparent cross-resistance between Csp_P and any of the currently available Bt proteins. Our results indicate that Csp_P formulation was effective at killing multiple corn rootworm strains including Bt-resistant WCR and could be developed as a potential new management tool for WCR control.
Collapse
|
11
|
Bravo A, Soberón M. Mining versus
in vitro
evolution for the selection of novel microbial insecticidal proteins. Microb Biotechnol 2022; 15:2518-2520. [PMID: 36170342 PMCID: PMC9518981 DOI: 10.1111/1751-7915.14136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Alejandra Bravo
- Instituto de Biotecnología Universidad Nacional Autónoma de México Cuernavaca Mexico
| | - Mario Soberón
- Instituto de Biotecnología Universidad Nacional Autónoma de México Cuernavaca Mexico
| |
Collapse
|
12
|
Chen W, Yu L, Zhu B, Qin L. Dendrobium officinale Endophytes May Colonize the Intestinal Tract and Regulate Gut Microbiota in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2607506. [PMID: 35990847 PMCID: PMC9388241 DOI: 10.1155/2022/2607506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
Dendrobium officinale is a traditional Chinese medicine for treating gastrointestinal diseases by nourishing "Yin" and thickening the stomach lining. To study whether D. officinale endophytes can colonize the intestinal tract and regulate gut microbiota in mice, we used autoclave steam sterilizing and 60Co-γ radiation to eliminate D. officinale endophytes from its juice. Then, high-throughput ITS1-ITS2 rDNA and 16S rRNA gene amplicons were sequenced to analyze the microbial community of D. officinale endophytes and fecal samples of mice after administration of fresh D. officinale juice. Sterilization of D. officinale juice by autoclaving for 40 min (ASDO40) could more effectively eliminate the D. officinale endophytes and decrease their interference on the gut microbiota. D. officinale juice could increase beneficial gut microbiota and metabolites including short-chain fatty acids. D. officinale endophytes Pseudomonas mosselii, Trichocladium asperum, Titata maxilliformis, Clonostachys epichloe, and Rhodotorula babjevae could colonize the intestinal tract of mice and modulate gut microbiota after oral administration of the juice for 28 days. Thus, the regulatory effect of D. officinale juice on gut microbiota was observed, which provides a basis for inferring that D. officinale endophytes might colonize the intestinal tract and participate in regulating gut microbiota to treat diseases. Thus, this study further provides a new approach for the treatment of diseases by colonizing plant endophytes in the intestinal tract and regulating gut microbiota.
Collapse
Affiliation(s)
- Wenhua Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lilong Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
13
|
Moar WJ, Giddings KS, Narva KE, Nelson ME. Enhancing global food security by using bacterial proteins with improved safety profiles to control insect pests. J Invertebr Pathol 2021; 187:107704. [PMID: 34896129 DOI: 10.1016/j.jip.2021.107704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- William J Moar
- Bayer Crop Science, 700 Chesterfield Parkway, Chesterfield, MO 63017, USA.
| | - Kara S Giddings
- Bayer Crop Science, 700 Chesterfield Parkway, Chesterfield, MO 63017, USA
| | - Kenneth E Narva
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA 50131, USA
| | - Mark E Nelson
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA 50131, USA
| |
Collapse
|
14
|
Pereira AE, Huynh MP, Carlson AR, Haase A, Kennedy RM, Shelby KS, Coudron TA, Hibbard BE. Assessing the Single and Combined Toxicity of the Bioinsecticide Spear and Cry3Bb1 Protein Against Susceptible and Resistant Western Corn Rootworm Larvae (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2220-2228. [PMID: 34453170 DOI: 10.1093/jee/toab160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 06/13/2023]
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), poses a serious threat to maize (Zea mays L.) growers in the U.S. Corn Belt. Transgenic corn expressing Bacillus thuringiensis (Bt) Berliner is the major management tactic along with crop rotation. Bt crops targeting WCR populations have been widely planted throughout the Corn Belt. Rootworms have developed resistance to nearly all management strategies including Bt corn. Therefore, there is a need for new products that are not cross-resistant with the current Bt proteins. In this study, we evaluated the susceptibility of WCR strains resistant and susceptible to Cry3Bb1 to the biological insecticide Spear-T (GS-omega/kappa-Hexatoxin-Hv1a) alone and combined with Cry3Bb1 protein. The activity of Hv1a alone was similar between Cry3Bb1-resistant and susceptible strains (LC50s = 0.95 mg/cm2 and 1.50 mg/cm2, respectively), suggesting that there is no cross-resistance with Cry3Bb1 protein. Effective concentration (EC50), molt inhibition concentration (MIC50), and inhibition concentration (IC50) values of Hv1a alone were also similar between both strains, based on non-overlapping confidence intervals. Increased mortality (64%) was observed on resistant larvae exposed to Hv1a (0.6 mg/cm2) + Cry3Bb1 protein (170.8 µg/cm2) compared to 0% mortality when exposed to Cry3Bb1 alone and 34% mortality to Hv1a alone (0.3 mg/cm2). The time of larval death was not significantly different between Hv1a alone (3.79 mg/cm2) and Hv1a (0.6 mg/cm2) + Cry3Bb1 (170.8 µg/cm2). New control strategies that are not cross-resistant with current insecticides and Bt proteins are needed to better manage the WCR, and Hv1a together with Cry3Bb1 may fit this role.
Collapse
Affiliation(s)
- Adriano E Pereira
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Man P Huynh
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | | | | | | | - Kent S Shelby
- Biological Control of Insect Research Laboratory, USDA/ARS, Columbia, MO, USA
| | - Thomas A Coudron
- Biological Control of Insect Research Laboratory, USDA/ARS, Columbia, MO, USA
| | | |
Collapse
|
15
|
Milijaš Jotić M, Panevska A, Iacovache I, Kostanjšek R, Mravinec M, Skočaj M, Zuber B, Pavšič A, Razinger J, Modic Š, Trenti F, Guella G, Sepčić K. Dissecting Out the Molecular Mechanism of Insecticidal Activity of Ostreolysin A6/Pleurotolysin B Complexes on Western Corn Rootworm. Toxins (Basel) 2021; 13:toxins13070455. [PMID: 34209983 PMCID: PMC8310357 DOI: 10.3390/toxins13070455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/04/2023] Open
Abstract
Ostreolysin A6 (OlyA6) is a protein produced by the oyster mushroom (Pleurotus ostreatus). It binds to membrane sphingomyelin/cholesterol domains, and together with its protein partner, pleurotolysin B (PlyB), it forms 13-meric transmembrane pore complexes. Further, OlyA6 binds 1000 times more strongly to the insect-specific membrane sphingolipid, ceramide phosphoethanolamine (CPE). In concert with PlyB, OlyA6 has potent and selective insecticidal activity against the western corn rootworm. We analysed the histological alterations of the midgut wall columnar epithelium of western corn rootworm larvae fed with OlyA6/PlyB, which showed vacuolisation of the cell cytoplasm, swelling of the apical cell surface into the gut lumen, and delamination of the basal lamina underlying the epithelium. Additionally, cryo-electron microscopy was used to explore the membrane interactions of the OlyA6/PlyB complex using lipid vesicles composed of artificial lipids containing CPE, and western corn rootworm brush border membrane vesicles. Multimeric transmembrane pores were formed in both vesicle preparations, similar to those described for sphingomyelin/cholesterol membranes. These results strongly suggest that the molecular mechanism of insecticidal action of OlyA6/PlyB arises from specific interactions of OlyA6 with CPE, and the consequent formation of transmembrane pores in the insect midgut.
Collapse
Affiliation(s)
- Matej Milijaš Jotić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (I.I.); (B.Z.)
| | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Martina Mravinec
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (I.I.); (B.Z.)
| | - Ana Pavšič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Jaka Razinger
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.R.); (Š.M.)
| | - Špela Modic
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.R.); (Š.M.)
| | - Francesco Trenti
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, 38123 Trento, Italy; (F.T.); (G.G.)
| | - Graziano Guella
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, 38123 Trento, Italy; (F.T.); (G.G.)
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
- Correspondence: ; Tel.: +386-1-320-3419
| |
Collapse
|
16
|
Fenibo EO, Ijoma GN, Matambo T. Biopesticides in Sustainable Agriculture: A Critical Sustainable Development Driver Governed by Green Chemistry Principles. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.619058] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
17
|
Pérez Ortega C, Leininger C, Barry J, Poland B, Yalpani N, Altier D, Nelson ME, Lu AL. Coordinated binding of a two-component insecticidal protein from Alcaligenes faecalis to western corn rootworm midgut tissue. J Invertebr Pathol 2021; 183:107597. [PMID: 33945817 DOI: 10.1016/j.jip.2021.107597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
AfIP-1A/1B is a two-component insecticidal protein identified from the soil bacterium Alcaligenes faecalis that has high activity against western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte). Previous results revealed that AfIP-1A/1B is cross-resistant to the binary protein from Bacillus thuringiensis (Bt), Cry34Ab1/Cry35Ab1 (also known as Gpp34Ab1/Tpp35Ab1; Crickmore et al., 2020), which was attributed to shared binding sites in WCR gut tissue (Yalpani et al., 2017). To better understand the interaction of AfIP-1A/1B with its receptor, we have systematically evaluated the binding of these proteins with WCR brush border membrane vesicles (BBMVs). Our findings show that AfIP-1A binds directly to BBMVs, while AfIP-1B does not; AfIP-1B binding only occurred in the presence of AfIP-1A which was accompanied by the presence of stable, high molecular weight oligomers of AfIP-1B observed on denaturing protein gels. Additionally, we show that AfIP-1A/1B forms pores in artificial lipid membranes. Finally, binding of AfIP-1A/1B was found to be reduced in BBMVs from Cry34Ab1/Cry35Ab1-resistant WCR where Cry34Ab1/Cry35Ab1 binding was also reduced. The reduced binding of both proteins is consistent with recognition of a shared receptor that has been altered in the resistant strain. The coordination of AfIP-1B binding by AfIP-1A, the similar structures between AfIP-1A and Cry34Ab1, along with their shared binding sites and cross-resistance, suggest a similar role for AfIP1A and Cry34Ab1 in receptor recognition and docking site for their cognate partners, AfIP-1B and Cry35Ab1, respectively.
Collapse
Affiliation(s)
| | - Chris Leininger
- Corteva Agriscience, 7300 NW 62(nd) Ave., Johnston, IA 50131, USA
| | - Jennifer Barry
- Corteva Agriscience, 7300 NW 62(nd) Ave., Johnston, IA 50131, USA
| | - Brad Poland
- Corteva Agriscience, 7300 NW 62(nd) Ave., Johnston, IA 50131, USA
| | - Nasser Yalpani
- Corteva Agriscience, 7300 NW 62(nd) Ave., Johnston, IA 50131, USA
| | - Dan Altier
- Corteva Agriscience, 7300 NW 62(nd) Ave., Johnston, IA 50131, USA
| | - Mark E Nelson
- Corteva Agriscience, 7300 NW 62(nd) Ave., Johnston, IA 50131, USA.
| | - Albert L Lu
- Corteva Agriscience, 7300 NW 62(nd) Ave., Johnston, IA 50131, USA
| |
Collapse
|
18
|
Teoh MC, Furusawa G, Veera Singham G. Multifaceted interactions between the pseudomonads and insects: mechanisms and prospects. Arch Microbiol 2021; 203:1891-1915. [PMID: 33634321 DOI: 10.1007/s00203-021-02230-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/19/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Insects and bacteria are the most widespread groups of organisms found in nearly all habitats on earth, establishing diverse interactions that encompass the entire range of possible symbiotic associations from strict parasitism to obligate mutualism. The complexity of their interactions is instrumental in shaping the roles of insects in the environment, meanwhile ensuring the survival and persistence of the associated bacteria. This review aims to provide detailed insight on the multifaceted symbiosis between one of the most versatile bacterial genera, Pseudomonas (Gammaproteobacteria: Pseudomonadaceae) and a diverse group of insect species. The Pseudomonas engages with varied interactions with insects, being either a pathogen or beneficial endosymbiont, as well as using insects as vectors. In addition, this review also provides updates on existing and potential applications of Pseudomonas and their numerous insecticidal metabolites as biocontrol agents against pest insects for the improvement of integrated pest management strategies. Here, we have summarized several known modes of action and the virulence factors of entomopathogenic Pseudomonas strains essential for their pathogenicity against insects. Meanwhile, the beneficial interactions between pseudomonads and insects are currently limited to a few known insect taxa, despite numerous studies reporting identification of pseudomonads in the guts and haemocoel of various insect species. The vector-symbiont association between pseudomonads and insects can be diverse from strict phoresy to a role switch from commensalism to parasitism following a dose-dependent response. Overall, the pseudomonads appeared to have evolved independently to be either exclusively pathogenic or beneficial towards insects.
Collapse
Affiliation(s)
- Miao-Ching Teoh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
19
|
Paddock KJ, Robert CAM, Erb M, Hibbard BE. Western Corn Rootworm, Plant and Microbe Interactions: A Review and Prospects for New Management Tools. INSECTS 2021; 12:171. [PMID: 33671118 PMCID: PMC7922318 DOI: 10.3390/insects12020171] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
The western corn rootworm, Diabrotica virgifera virgifera LeConte, is resistant to four separate classes of traditional insecticides, all Bacillius thuringiensis (Bt) toxins currently registered for commercial use, crop rotation, innate plant resistance factors, and even double-stranded RNA (dsRNA) targeting essential genes via environmental RNA interference (RNAi), which has not been sold commercially to date. Clearly, additional tools are needed as management options. In this review, we discuss the state-of-the-art knowledge about biotic factors influencing herbivore success, including host location and recognition, plant defensive traits, plant-microbe interactions, and herbivore-pathogens/predator interactions. We then translate this knowledge into potential new management tools and improved biological control.
Collapse
Affiliation(s)
- Kyle J. Paddock
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Christelle A. M. Robert
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland; (C.A.M.R.); (M.E.)
- Oeschger Centre for Climate Change Research, University of Bern, 3013 Bern, Switzerland
| | - Bruce E. Hibbard
- Plant Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Columbia, MO 65211, USA
| |
Collapse
|
20
|
Cry75Aa (Mpp75Aa) Insecticidal Proteins for Controlling the Western Corn Rootworm, Diabrotica virgifera virgifera, (Coleoptera: Chrysomelidae), Isolated from the Insect Pathogenic Bacteria Brevibacillus laterosporus. Appl Environ Microbiol 2021; 87:AEM.02507-20. [PMID: 33310708 PMCID: PMC8090868 DOI: 10.1128/aem.02507-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This study describes three closely related proteins, cloned from Brevibacillus laterosporus strains, that are lethal upon feeding to Diabrotica virgifera virgifera LeConte, the western corn rootworm (WCR). Mpp75Aa1, Mpp75Aa2 and Mpp75Aa3 were toxic to WCR larvae when fed purified protein. Transgenic plants expressing each mMpp75Aa protein were protected from feeding damage and showed significant reduction in adult emergence from infested plants by both susceptible and Cry3Bb1 and Cry34Ab1/Cry35Ab1-resistant WCR. These results demonstrate that proteins from B. laterosporus are as efficacious as the well-known Bacillus thuringiensis (Bt) insecticidal proteins in controlling major insect pests such as WCR. The deployment of transgenic maize expressing mMpp75Aa along with other active molecules lacking cross-resistance have the potential to be a useful tool for control of WCR populations resistant to current Bt traits.IMPORTANCE Insects feeding on roots of crops can damage the plant roots resulting in yield loss due to poor water and nutrient uptake and plant lodging. In maize the western corn rootworm (WCR) can cause severe damage to the roots resulting in significant economic loss for farmers. Genetically modified (GM) expressing Bacillus thuringiensis (Bt) insect control proteins, has provided a solution for control of these pests. In recent years populations of WCR resistant to the Bt proteins in commercial GM maize have emerged. There is a need to develop new insecticidal traits for the control of WCR populations resistant to current commercial traits. New proteins with commercial level efficacy on WCR from sources other than Bt are becoming more critical. The Mpp75Aa proteins, from B. laterosporus, when expressed in maize, are efficacious against the resistant populations of WCR and have the potential to provide solutions for control of resistant WCR.
Collapse
|
21
|
Functional validation of DvABCB1 as a receptor of Cry3 toxins in western corn rootworm, Diabrotica virgifera virgifera. Sci Rep 2020; 10:15830. [PMID: 32985523 PMCID: PMC7522262 DOI: 10.1038/s41598-020-72572-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/03/2020] [Indexed: 02/03/2023] Open
Abstract
Western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is a serious insect pest in the major corn growing areas of North America and in parts of Europe. WCR populations with resistance to Bacillus thuringiensis (Bt) toxins utilized in commercial transgenic traits have been reported, raising concerns over their continued efficacy in WCR management. Understanding the modes of action of Bt toxins is important for WCR control and resistance management. Although different classes of proteins have been identified as Bt receptors for lepidopteran insects, identification of receptors in WCR has been limited with no reports of functional validation. Our results demonstrate that heterologous expression of DvABCB1 in Sf9 and HEK293 cells conferred sensitivity to the cytotoxic effects of Cry3A toxins. The result was further validated using knockdown of DvABCB1 by RNAi which rendered WCR larvae insensitive to a Cry3A toxin. However, silencing of DvABCB2 which is highly homologous to DvABCB1 at the amino acid level, did not reduce the sensitivity of WCR larvae to a Cry3A toxin. Furthermore, our functional studies corroborate different mode-of-actions for other insecticidal proteins including Cry34Ab1/35Ab1, Cry6Aa1, and IPD072Aa against WCR. Finally, reduced expression and alternatively spliced transcripts of DvABCB1 were identified in a mCry3A-resistant strain of WCR. Our results provide the first clear demonstration of a functional receptor in the molecular mechanism of Cry3A toxicity in WCR and confirmed its role in the mechanism of resistance in a mCry3A resistant strain of WCR.
Collapse
|
22
|
Panevska A, Skočaj M, Modic Š, Razinger J, Sepčić K. Aegerolysins from the fungal genus Pleurotus - Bioinsecticidal proteins with multiple potential applications. J Invertebr Pathol 2020; 186:107474. [PMID: 32971130 DOI: 10.1016/j.jip.2020.107474] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
The aegerolysin proteins ostreolysin A6, pleurotolysin A2 and erylysin A are produced by mushrooms of the genus Pleurotus. These aegerolysins can interact specifically with sphingolipid-enriched membranes. In particular, they strongly bind insect cells and to artificial lipid membranes that contain physiologically relevant concentrations of the main invertebrate-specific sphingolipid, ceramide phosphoethanolamine. Moreover, the aegerolysins permeabilise these membranes when combined with their protein partner pleurotolysin B, which contains a membrane-attack-complex/perforin domain. These aegerolysin/ pleurotolysin B complexes show strong and selective toxicity towards western corn rootworm larvae and adults and Colorado potato beetle larvae. Their insecticidal activities arise through aegerolysin binding to ceramide phosphoethanolamine in the insect midgut. This mode of membrane binding is different from those described for similar aegerolysin-based complexes of bacterial origin (e.g., Cry34Ab1/Cry35Ab1), or other Bacillus thuringiensis proteinaceous crystal toxins, which associate with protein receptors. The ability of Pleurotus aegerolysins to specifically interact with sphingolipid-enriched domains in mammalian cells can be further exploited to visualize lipid rafts in living cells, and to treat certain types of tumours and metabolic disorders. Finally, these proteins can strongly enhance fruiting initiation of P. ostreatus even when applied externally. In this review, we summarise the current knowledge of the potential biotechnological and biomedical applications of the Pleurotus aegerolysins, either alone or when complexed with pleurotolysin B, with special emphasis on their bioinsecticidal effects.
Collapse
Affiliation(s)
- Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Špela Modic
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia.
| | - Jaka Razinger
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia.
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
23
|
Wang S, Cui J, Bilal M, Hu H, Wang W, Zhang X. Pseudomonas spp. as cell factories (MCFs) for value-added products: from rational design to industrial applications. Crit Rev Biotechnol 2020; 40:1232-1249. [PMID: 32907412 DOI: 10.1080/07388551.2020.1809990] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In recent years, there has been increasing interest in microbial biotechnology for the production of value-added compounds from renewable resources. Pseudomonas species have been proposed as a suitable workhorse for high-value secondary metabolite production because of their unique characteristics for fast growth on sustainable carbon sources, a clear inherited background, versatile intrinsic metabolism with diverse enzymatic capacities, and their robustness in an extreme environment. It has also been demonstrated that metabolically engineered Pseudomonas strains can produce several industrially valuable aromatic chemicals and natural products such as phenazines, polyhydroxyalkanoates, rhamnolipids, and insecticidal proteins from renewable feedstocks with remarkably high yields suitable for commercial application. In this review, we summarize cell factory construction in Pseudomonas for the biosynthesis of native and non-native bioactive compounds in P. putida, P. chlororaphis, P. aeruginosa, as well as pharmaceutical proteins production by P. fluorescens. Additionally, some novel strategies together with metabolic engineering strategies in order to improve the biosynthetic abilities of Pseudomonas as an ideal chassis are discussed. Finally, we proposed emerging opportunities, challenges, and essential strategies to enable the successful development of Pseudomonas as versatile microbial cell factories for the bioproduction of diverse bioactive compounds.
Collapse
Affiliation(s)
- Songwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajia Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Wang K, Shu C, Zhang J. Effective bacterial insecticidal proteins against coleopteran pests: A review. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21558. [PMID: 31094011 DOI: 10.1002/arch.21558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/02/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Coleoptera, the order of insects commonly referred to as beetles, are able to survive in various environments, and thus, comprise the largest order in the animal kingdom. Coleopterans mainly include coprophagous and phytophagous lineages, and many species of the latter lineage are serious pests. In addition to traditional chemical methods, biocontrol measures using various bacterial insecticidal proteins have also gradually been developed to control these insect pests. In this review, we summarized the possible coleopteran-pest-specific bacteria and insecticidal proteins that have been reported in the literature thus far and have provided a comprehensive overview and long-term guidance for the control of coleopteran pests in the future.
Collapse
Affiliation(s)
- Kui Wang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Calles-Torrez V, Knodel JJ, Boetel MA, French BW, Fuller BW, Ransom JK. Field-Evolved Resistance of Northern and Western Corn Rootworm (Coleoptera: Chrysomelidae) Populations to Corn Hybrids Expressing Single and Pyramided Cry3Bb1 and Cry34/35Ab1 Bt Proteins in North Dakota. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1875-1886. [PMID: 31114868 DOI: 10.1093/jee/toz111] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Northern, Diabrotica barberi Smith & Lawrence, and western, D. virgifera virgifera LeConte, corn rootworms (Coleoptera: Chrysomelidae) are major economic pests of corn, Zea mays L., in North America. Corn hybrids expressing Bacillus thuringiensis Berliner (Bt) toxins are commonly used by growers to manage these pests. Several cases of field-evolved resistance to insecticidal proteins expressed by Bt corn hybrids have been documented in many corn-producing areas of North America, but only for D. v. virgifera. In 2016, beetles of both species were collected from five eastern North Dakota corn fields and reared in a growth chamber. In 2017, larvae reared from those populations were subjected to single-plant bioassays to screen for potential resistance to Cry3Bb1, Cry34/35Ab1, and pyramided Cry3Bb1 + Cry34/35Ab1 Bt toxins. Our results provide the first documented report of field-evolved resistance in D. barberi to corn hybrids expressing Cry3Bb1 (Arthur problem population) and Cry34/35Ab1 (Arthur and Page problem populations, and the Ransom and Sargent populations) proteins in North America. Resistance to Cry3Bb1 was also observed in the Ransom population of D. v. virgifera. Increased larval survival on the pyramided Cry3Bb1 + Cry34/35Ab1 hybrid was observed in both species. No cross-resistance was evident between Cry3Bb1 and Cry34/35Ab1 in any of the D. barberi populations tested. Our experiments identified field-evolved resistance to Bt toxins in some North Dakota populations of D. barberi and D. v. virgifera. Thus, more effective control tools and improved resistance management strategies are needed to prolong the durability of this technology for managing these important pests.
Collapse
Affiliation(s)
| | - Janet J Knodel
- Department of Plant Pathology, North Dakota State University, Dept., Fargo, ND
| | - Mark A Boetel
- Department of Entomology, North Dakota State University, Dept., Fargo, ND
| | - B Wade French
- USDA-ARS North Central Agricultural Research Laboratory, Brookings, SD
| | - Billy W Fuller
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD
| | - Joel K Ransom
- Department of Plant Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
26
|
Liu L, Schepers E, Lum A, Rice J, Yalpani N, Gerber R, Jiménez-Juárez N, Haile F, Pascual A, Barry J, Qi X, Kassa A, Heckert MJ, Xie W, Ding C, Oral J, Nguyen M, Le J, Procyk L, Diehn SH, Crane VC, Damude H, Pilcher C, Booth R, Liu L, Zhu G, Nowatzki TM, Nelson ME, Lu AL, Wu G. Identification and Evaluations of Novel Insecticidal Proteins from Plants of the Class Polypodiopsida for Crop Protection against Key Lepidopteran Pests. Toxins (Basel) 2019; 11:E383. [PMID: 31266212 PMCID: PMC6669613 DOI: 10.3390/toxins11070383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022] Open
Abstract
Various lepidopteran insects are responsible for major crop losses worldwide. Although crop plant varieties developed to express Bacillus thuringiensis (Bt) proteins are effective at controlling damage from key lepidopteran pests, some insect populations have evolved to be insensitive to certain Bt proteins. Here, we report the discovery of a family of homologous proteins, two of which we have designated IPD083Aa and IPD083Cb, which are from Adiantum spp. Both proteins share no known peptide domains, sequence motifs, or signatures with other proteins. Transgenic soybean or corn plants expressing either IPD083Aa or IPD083Cb, respectively, show protection from feeding damage by several key pests under field conditions. The results from comparative studies with major Bt proteins currently deployed in transgenic crops indicate that the IPD083 proteins function by binding to different target sites. These results indicate that IPD083Aa and IPD083Cb can serve as alternatives to traditional Bt-based insect control traits with potential to counter insect resistance to Bt proteins.
Collapse
Affiliation(s)
- Lu Liu
- Corteva Agriscience, Hayward, CA 94545, USA
| | | | - Amy Lum
- Corteva Agriscience, Hayward, CA 94545, USA
| | - Janet Rice
- Corteva Agriscience, Johnston, IA 50131, USA
| | | | - Ryan Gerber
- Corteva Agriscience, Johnston, IA 50131, USA
| | | | - Fikru Haile
- Corteva Agriscience, Johnston, IA 50131, USA
| | | | | | - Xiuli Qi
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Adane Kassa
- Corteva Agriscience, Johnston, IA 50131, USA
| | | | | | | | | | | | - James Le
- Corteva Agriscience, Hayward, CA 94545, USA
| | - Lisa Procyk
- Corteva Agriscience, Johnston, IA 50131, USA
| | | | | | | | | | - Russ Booth
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Lu Liu
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Genhai Zhu
- Corteva Agriscience, Hayward, CA 94545, USA
| | | | | | - Albert L Lu
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Gusui Wu
- Corteva Agriscience, Hayward, CA 94545, USA
| |
Collapse
|
27
|
Panevska A, Hodnik V, Skočaj M, Novak M, Modic Š, Pavlic I, Podržaj S, Zarić M, Resnik N, Maček P, Veranič P, Razinger J, Sepčić K. Pore-forming protein complexes from Pleurotus mushrooms kill western corn rootworm and Colorado potato beetle through targeting membrane ceramide phosphoethanolamine. Sci Rep 2019; 9:5073. [PMID: 30911026 PMCID: PMC6433908 DOI: 10.1038/s41598-019-41450-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 03/08/2019] [Indexed: 01/13/2023] Open
Abstract
Aegerolysins ostreolysin A (OlyA) and pleurotolysin A (PlyA), and pleurotolysin B (PlyB) with the membrane-attack-complex/perforin domain are proteins from the mushroom genus Pleurotus. Upon binding to sphingomyelin/cholesterol-enriched membranes, OlyA and PlyA can recruit PlyB to form multimeric bi-component transmembrane pores. Recently, Pleurotus aegerolysins OlyA, PlyA2 and erylysin A (EryA) were demonstrated to preferentially bind to artificial lipid membranes containing 50 mol% ceramide phosphoethanolamine (CPE), the main sphingolipid in invertebrate cell membranes. In this study, we demonstrate that OlyA6, PlyA2 and EryA bind to insect cells and to artificial lipid membranes with physiologically relevant CPE concentrations. Moreover, these aegerolysins permeabilize these membranes when combined with PlyB. These aegerolysin/PlyB complexes show selective toxicity toward western corn rootworm larvae and adults and Colorado potato beetle larvae. These data strongly suggest that these aegerolysin/PlyB complexes recognize CPE as their receptor molecule in the insect midgut. This mode of binding is different from those described for similar aegerolysin-based bacterial complexes, or other Bacillus thuringiensis Cry toxins, which have protein receptors. Targeting of Pleurotus aegerolysins to CPE and formation of transmembrane pores in concert with PlyB suggest the use of aegerolysin/PlyB complexes as novel biopesticides for the control of western corn rootworm and Colorado potato beetle.
Collapse
Affiliation(s)
- Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Maruša Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Špela Modic
- Agricultural Institute of Slovenia, Hacquetova 17, 1000, Ljubljana, Slovenia
| | - Ivana Pavlic
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.,Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
| | - Sara Podržaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Miki Zarić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Jaka Razinger
- Agricultural Institute of Slovenia, Hacquetova 17, 1000, Ljubljana, Slovenia.
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia.
| |
Collapse
|
28
|
Pereira AE, Coudron TA, Shelby K, French BW, Bernklau EJ, Bjostad LB, Hibbard BE. Comparative Susceptibility of Western Corn Rootworm (Coleoptera: Chrysomelidae) Neonates to Selected Insecticides and Bt Proteins in the Presence and Absence of Feeding Stimulants. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:842-851. [PMID: 30668732 DOI: 10.1093/jee/toy415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 06/09/2023]
Abstract
The susceptibility of western corn rootworm, Diabrotica virgifera virgifera LeConte, larvae to nine insecticides from five different classes and to Bt proteins eCry3.1Ab and mCry3A in the presence or absence of feeding stimulants, was estimated in filter paper and diet toxicity assays, respectively. The use of a synthetic feeding stimulant blend of the sugars glucose, sucrose, and fructose plus linoleic acid at a ratio of 30:4:4:0.3 mg/ml of distilled water was evaluated to determine whether they increase the efficacy of insecticides and Bt proteins. The efficacy of thiamethoxam diluted in solutions with feeding stimulants was significantly increased when compared to thiamethoxam dilutions in water (>60-fold). Differences in the efficacy of the other insecticide classes when diluted in feeding stimulant solutions were no greater than fivefold when compared to the insecticides diluted in water. The presence of corn root juice as a natural feeding stimulant diminished toxicity of the insecticides, except for thiamethoxam, even though larval fresh weight was higher when fed on root juice compared to feeding stimulant or water. The use of feeding stimulants in diet toxicity assays did not enhance efficacy of eCry3.1Ab nor mCry3A proteins. Feeding stimulants can be recommended in combination with thiamethoxam to increase larval mortality. These results are discussed in terms of applicability of feeding stimulants to improve susceptibility of western corn rootworm larvae to pesticides in general.
Collapse
Affiliation(s)
| | - Thomas A Coudron
- Biological Control of Insect Research Laboratory, USDA/ARS, Columbia, MO
| | - Kent Shelby
- Biological Control of Insect Research Laboratory, USDA/ARS, Columbia, MO
| | - B Wade French
- North Central Agricultural Research Laboratory, USDA/ARS, Brookings, SD
| | - Elisa J Bernklau
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO
| | - Louis B Bjostad
- Department of Bioagricultural Sciences & Pest Management, Colorado State University, Fort Collins, CO
| | | |
Collapse
|
29
|
Susceptible and mCry3A resistant corn rootworm larvae killed by a non-hemolytic Bacillus thuringiensis Cyt1Aa mutant. Sci Rep 2018; 8:17805. [PMID: 30546034 PMCID: PMC6292897 DOI: 10.1038/s41598-018-36205-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/16/2018] [Indexed: 11/12/2022] Open
Abstract
The western corn rootworm (WCR) Diabrotica virgifera virgifera causes substantial damage in corn. Genetically modified (GM) plants expressing some Bacillus thuringiensis (Bt) insecticidal Cry proteins efficiently controlled this pest. However, changes in WCR susceptibility to these Bt traits have evolved and identification of insecticidal proteins with different modes of action against WCR is necessary. We show here for the first time that Cyt1Aa from Bt exhibits toxicity against WCR besides to the dipteran Aedes aegypti larvae. Cyt1Aa is a pore-forming toxin that shows no cross-resistance with mosquitocidal Cry toxins. We characterized different mutations in helix α-A from Cyt1Aa. Two mutants (A61C and A59C) exhibited reduced or absent hemolytic activity but retained toxicity to A. aegypti larvae, suggesting that insecticidal and hemolytic activities of Cyt1Aa are independent activities. These mutants were still able to form oligomers in synthetic lipid vesicles and to synergize Cry11Aa toxicity. Remarkably, mutant A61C showed a five-fold increase insecticidal activity against mosquito and almost 11-fold higher activity against WCR. Cyt1Aa A61C mutant was as potent in killing WCR that were selected for resistance to mCry3A as it was against unselected WCR indicating that this toxin could be a useful resistance management option in the control of WCR.
Collapse
|