1
|
Entila F, Tsuda K. Taming of the microbial beasts: Plant immunity tethers potentially pathogenic microbiota members. Bioessays 2025; 47:e2400171. [PMID: 39404753 DOI: 10.1002/bies.202400171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 12/22/2024]
Abstract
Plants are in intimate association with taxonomically structured microbial communities called the plant microbiota. There is growing evidence that the plant microbiota contributes to the holistic performance and general health of plants, especially under unfavorable situations. Despite the attached benefits, surprisingly, the plant microbiota in nature also includes potentially pathogenic strains, signifying that the plant hosts have tight control over these microbes. Despite the conceivable role of plant immunity in regulating its microbiota, we lack a complete understanding of its role in governing the assembly, maintenance, and function of the plant microbiota. Here, we highlight the recent progress on the mechanistic relevance of host immunity in orchestrating plant-microbiota dialogues and discuss the pluses and perils of these microbial assemblies.
Collapse
Affiliation(s)
- Frederickson Entila
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Li T, Moreno-Pérez A, Coaker G. Plant Pattern recognition receptors: Exploring their evolution, diversification, and spatiotemporal regulation. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102631. [PMID: 39303367 DOI: 10.1016/j.pbi.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Plant genomes possess hundreds of candidate surface localized receptors capable of recognizing microbial components or modified-self molecules. Surface-localized pattern recognition receptors (PRRs) can recognize proteins, peptides, or structural microbial components as nonself, triggering complex signaling pathways leading to defense. PRRs possess diverse extracellular domains capable of recognizing epitopes, lipids, glycans and polysaccharides. Recent work highlights advances in our understanding of the diversity and evolution of PRRs recognizing pathogen components. We also discuss PRR functional diversification, pathogen strategies to evade detection, and the role of tissue and age-related resistance for effective plant defense.
Collapse
Affiliation(s)
- Tianrun Li
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Leuschen-Kohl R, Roberts R, Stevens DM, Zhang N, Buchanan S, Pilkey B, Coaker G, Iyer-Pascuzzi AS. Tomato roots exhibit distinct, development-specific responses to bacterial-derived peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621969. [PMID: 39574743 PMCID: PMC11580956 DOI: 10.1101/2024.11.04.621969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Plants possess cell-surface recognition receptors that detect molecular patterns from microbial invaders and initiate an immune response. Understanding the conservation of pattern-triggered immunity within different plant organs and across species is crucial to its sustainable and effective use in plant disease management but is currently unclear. We examined the activation and immune response patterns of three pattern recognition receptors (PRRs: Sl FLS2, Sl FLS3, and Sl CORE) in different developmental regions of roots and in leaves of multiple accessions of domesticated and wild tomato ( Solanum lycopersicum and S. pimpinellifolium ) using biochemical and genetic assays. Roots from different tomato accessions differed in the amplitude and dynamics of their immune response, but all exhibited developmental-specific PTI responses in which the root early differentiation zone was the most sensitive to molecular patterns. PRR signaling pathways also showed distinct but occasionally overlapping responses downstream of each immune receptor in tomato roots.These results reveal that each PRR initiates a unique PTI pathway and suggest that the specificity and complexity of tomato root immunity are tightly linked to the developmental stage, emphasizing the importance of spatial and temporal regulation in PTI.
Collapse
Affiliation(s)
- Rebecca Leuschen-Kohl
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| | - Robyn Roberts
- Department of Agricultural Biology, Colorado State University, 200 W Lake St, Fort Collins, CO 80523, U. S. A
| | - Danielle M. Stevens
- Department of Plant Pathology, University of California, Davis, Davis CA 95616 USA
- Current Address: Plant and Microbial Biology, University of California, Berkeley, Berkeley CA 94720 USA
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
- Current Address: Department of Biology, James Madison University, Harrisonburg, Virginia 22807, USA
| | - Silas Buchanan
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| | - Brooke Pilkey
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis CA 95616 USA
| | - Anjali S. Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| |
Collapse
|
4
|
Qi P, Zhang D, Zhang Y, Zhu W, Du X, Ma X, Xiao C, Lin Y, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. Ubiquitination and degradation of plant helper NLR by the Ralstonia solanacearum effector RipV2 overcome tomato bacterial wilt resistance. Cell Rep 2024; 43:114596. [PMID: 39110591 DOI: 10.1016/j.celrep.2024.114596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
The Ralstonia solanacearum species complex causes bacterial wilt in a variety of crops. Tomato cultivar Hawaii 7996 is a widely used resistance resource; however, the resistance is evaded by virulent strains, with the underlying mechanisms still unknown. Here, we report that the phylotype Ⅱ strain ES5-1 can overcome Hawaii 7996 resistance. RipV2, a type Ⅲ effector specific to phylotype Ⅱ strains, is vital in overcoming tomato resistance. RipV2, which encodes an E3 ubiquitin ligase, suppresses immune responses and Toll/interleukin-1 receptor/resistance nucleotide-binding/leucine-rich repeat (NLR) (TNL)-mediated cell death. Tomato helper NLR N requirement gene 1 (NRG1), enhanced disease susceptibility 1 (EDS1), and senescence-associated gene 101b (SAG101b) are identified as RipV2 target proteins. RipV2 is essential for ES5-1 virulence in Hawaii 7996 but not in SlNRG1-silenced tomato, demonstrating SlNRG1 to be an RipV2 virulence target. Our results dissect the mechanisms of RipV2 in disrupting immunity and highlight the importance of converged immune components in conferring bacterial wilt resistance.
Collapse
Affiliation(s)
- Peipei Qi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Wanting Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xinya Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xiaoshuang Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Chunfang Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
5
|
Zhao A, Xian L, Franco Ortega S, Yu G, Macho AP. A bacterial effector manipulates plant metabolism, cell death, and immune responses via independent mechanisms. THE NEW PHYTOLOGIST 2024; 243:1137-1153. [PMID: 38877712 DOI: 10.1111/nph.19899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/19/2024] [Indexed: 06/16/2024]
Abstract
Bacterial pathogens inject effector proteins inside plant cells to manipulate cellular functions and achieve a successful infection. The soil-borne pathogen Ralstonia solanacearum (Smith), the causal agent of bacterial wilt disease, secretes > 70 different effectors inside plant cells, although only a handful of them have been thoroughly characterized. One of these effectors, named RipI, is required for full R. solanacearum pathogenicity. RipI associates with plant glutamate decarboxylases (GADs) to promote the accumulation of gamma-aminobutyric acid (GABA), which serves as bacterial nutrient. In this work, we found that RipI can also suppress plant immune responses to bacterial elicitors, which seems to be unrelated to the ability of RipI to induce GABA accumulation and plant cell death. A detailed characterization of the RipI features that contribute to its virulence activities identified two residues at the C-terminal domain that mediate RipI interaction with plant GADs and the subsequent promotion of GABA accumulation. These residues are also required for the appropriate homeostasis of RipI in plant cells and the induction of cell death, although they are partially dispensable for the suppression of plant immune responses. Altogether, we decipher and uncouple the virulence activities of an important bacterial effector at the biochemical level.
Collapse
Affiliation(s)
- Achen Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Xian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Sara Franco Ortega
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, York, YO10 5DD, UK
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
6
|
Stevens DM, Moreno-Pérez A, Weisberg AJ, Ramsing C, Fliegmann J, Zhang N, Madrigal M, Martin G, Steinbrenner A, Felix G, Coaker G. Natural variation of immune epitopes reveals intrabacterial antagonism. Proc Natl Acad Sci U S A 2024; 121:e2319499121. [PMID: 38814867 PMCID: PMC11161748 DOI: 10.1073/pnas.2319499121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Plants and animals detect biomolecules termed microbe-associated molecular patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multicopy MAMPs on immune induction is unknown. Here, we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy, and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple cold shock proteins, and 46% carry a nonimmunogenic form. We uncovered a mechanism for immune evasion, intrabacterial antagonism, where a nonimmunogenic cold shock protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.
Collapse
Affiliation(s)
- Danielle M. Stevens
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA95616
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR97331
| | - Charis Ramsing
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Judith Fliegmann
- Center for Plant Molecular Biology, University of Tübingen, Tübingen72074, Germany
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, NY14853
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | - Melanie Madrigal
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Gregory Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY14853
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | | | - Georg Felix
- Center for Plant Molecular Biology, University of Tübingen, Tübingen72074, Germany
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA95616
| |
Collapse
|
7
|
Yu G, Zhang L, Xue H, Chen Y, Liu X, Del Pozo JC, Zhao C, Lozano-Duran R, Macho AP. Cell wall-mediated root development is targeted by a soil-borne bacterial pathogen to promote infection. Cell Rep 2024; 43:114179. [PMID: 38691455 DOI: 10.1016/j.celrep.2024.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Plant pathogens manipulate host development, facilitating colonization and proliferation. Ralstonia solanacearum is a soil-borne bacterial pathogen that penetrates roots and colonizes plants through the vascular system, causing wilting and death. Here, we find that RipAC, an effector protein from R. solanacearum, alters root development in Arabidopsis, promoting the formation of lateral roots and root hairs. RipAC interacts with CELLULOSE SYNTHASE (CESA)-INTERACTIVE PROTEIN 1 (CSI1), which regulates the activity of CESA complexes at the plasma membrane. RipAC disrupts CESA-CSI1 interaction, leading to a reduction in cellulose content, root developmental alterations, and a promotion of bacterial pathogenicity. We find that CSI1 also associates with the receptor kinase FERONIA, forming a complex that negatively regulates immunity in roots; this interaction, however, is not affected by RipAC. Our work reveals a bacterial virulence strategy that selectively affects the activities of a host target, promoting anatomical alterations that facilitate infection without causing activation of immunity.
Collapse
Affiliation(s)
- Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lu Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Yujiao Chen
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
8
|
Stevens DM, Moreno-Pérez A, Weisberg AJ, Ramsing C, Fliegmann J, Zhang N, Madrigal M, Martin G, Steinbrenner A, Felix G, Coaker G. Natural variation of immune epitopes reveals intrabacterial antagonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558511. [PMID: 37790530 PMCID: PMC10543004 DOI: 10.1101/2023.09.21.558511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Plants and animals detect biomolecules termed Microbe-Associated Molecular Patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multi-copy MAMPs on immune induction is unknown. Here we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple Cold Shock Proteins and 46% carry a non-immunogenic form. We uncovered a new mechanism for immune evasion, intrabacterial antagonism, where a non-immunogenic Cold Shock Protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.
Collapse
Affiliation(s)
- Danielle M. Stevens
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis CA 95616, USA
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis OR, USA
| | - Charis Ramsing
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Judith Fliegmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca NY, USA
| | - Melanie Madrigal
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Gregory Martin
- Boyce Thompson Institute for Plant Research, Ithaca NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca NY, USA
| | - Adam Steinbrenner
- University of Washington, Department of Biology, Box 351800, Seattle, WA, 98195, USA
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
9
|
Macho AP. Walking down the phosphorylation path to root immunity. Cell Host Microbe 2023; 31:1953-1955. [PMID: 38096788 DOI: 10.1016/j.chom.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
Pathogen perception in plant roots is under-explored compared to that in shoots. In this issue of Cell Host & Microbe, Wang et al. characterize the phosphorylation-mediated signaling pathway that positively and negatively regulates plant resistance to bacterial wilt disease upon perception of a metabolite from the soil-borne vascular pathogen Ralstonia solanacearum.
Collapse
Affiliation(s)
- Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
10
|
Chen Y, Zhao A, Wei Y, Mao Y, Zhu JK, Macho AP. GmFLS2 contributes to soybean resistance to Ralstonia solanacearum. THE NEW PHYTOLOGIST 2023; 240:17-22. [PMID: 37391882 DOI: 10.1111/nph.19111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/06/2023] [Indexed: 07/02/2023]
Affiliation(s)
- Yujiao Chen
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Achen Zhao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yali Wei
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfei Mao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
11
|
Meline V, Hendrich CG, Truchon AN, Caldwell D, Hiles R, Leuschen-Kohl R, Tran T, Mitra RM, Allen C, Iyer-Pascuzzi AS. Tomato deploys defence and growth simultaneously to resist bacterial wilt disease. PLANT, CELL & ENVIRONMENT 2023; 46:3040-3058. [PMID: 36213953 DOI: 10.1111/pce.14456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Plant disease limits crop production, and host genetic resistance is a major means of control. Plant pathogenic Ralstonia causes bacterial wilt disease and is best controlled with resistant varieties. Tomato wilt resistance is multigenic, yet the mechanisms of resistance remain largely unknown. We combined metaRNAseq analysis and functional experiments to identify core Ralstonia-responsive genes and the corresponding biological mechanisms in wilt-resistant and wilt-susceptible tomatoes. While trade-offs between growth and defence are common in plants, wilt-resistant plants activated both defence responses and growth processes. Measurements of innate immunity and growth, including reactive oxygen species production and root system growth, respectively, validated that resistant plants executed defence-related processes at the same time they increased root growth. In contrast, in wilt-susceptible plants roots senesced and root surface area declined following Ralstonia inoculation. Wilt-resistant plants repressed genes predicted to negatively regulate water stress tolerance, while susceptible plants repressed genes predicted to promote water stress tolerance. Our results suggest that wilt-resistant plants can simultaneously promote growth and defence by investing in resources that act in both processes. Infected susceptible plants activate defences, but fail to grow and so succumb to Ralstonia, likely because they cannot tolerate the water stress induced by vascular wilt.
Collapse
Affiliation(s)
- Valerian Meline
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Connor G Hendrich
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Alicia N Truchon
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Denise Caldwell
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Rachel Hiles
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Rebecca Leuschen-Kohl
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Tri Tran
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Raka M Mitra
- Department of Biology, Carleton College, Northfield, Minnesota, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
12
|
Vailleau F, Genin S. Ralstonia solanacearum: An Arsenal of Virulence Strategies and Prospects for Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:25-47. [PMID: 37506349 DOI: 10.1146/annurev-phyto-021622-104551] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The group of strains constituting the Ralstonia solanacearum species complex (RSSC) is a prominent model for the study of plant-pathogenic bacteria because of its impact on agriculture, owing to its wide host range, worldwide distribution, and long persistence in the environment. RSSC strains have led to numerous studies aimed at deciphering the molecular bases of virulence, and many biological functions and mechanisms have been described to contribute to host infection and pathogenesis. In this review, we put into perspective recent advances in our understanding of virulence in RSSC strains, both in terms of the inventory of functions that participate in this process and their evolutionary dynamics. We also present the different strategies that have been developed to combat these pathogenic strains through biological control, antimicrobial agents, plant genetics, or microbiota engineering.
Collapse
Affiliation(s)
- Fabienne Vailleau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; ,
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France; ,
| |
Collapse
|
13
|
Ke J, Zhu W, Yuan Y, Du X, Xu A, Zhang D, Cao S, Chen W, Lin Y, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. Duality of immune recognition by tomato and virulence activity of the Ralstonia solanacearum exo-polygalacturonase PehC. THE PLANT CELL 2023; 35:2552-2569. [PMID: 36977631 PMCID: PMC10291029 DOI: 10.1093/plcell/koad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Ralstonia solanacearum is a devastating soil-borne bacterial pathogen capable of infecting many plant species, including tomato (Solanum lycopersicum). However, the perception of Ralstonia by the tomato immune system and the pathogen's counter-defense strategy remain largely unknown. Here, we show that PehC, a specific exo-polygalacturonase secreted by Ralstonia, acts as an elicitor that triggers typical immune responses in tomato and other Solanaceous plants. The elicitor activity of PehC depends on its N-terminal epitope, and not on its polygalacturonase activity. The recognition of PehC specifically occurs in tomato roots and relies on unknown receptor-like kinase(s). Moreover, PehC hydrolyzes plant pectin-derived oligogalacturonic acids (OGs), a type of damage-associated molecular pattern (DAMP), which leads to the release of galacturonic acid (GalA), thereby dampening DAMP-triggered immunity (DTI). Ralstonia depends on PehC for its growth and early infection and can utilize GalA as a carbon source in the xylem. Our findings demonstrate the specialized and dual functions of Ralstonia PehC, which enhance virulence by degrading DAMPs to evade DTI and produce nutrients, a strategy used by pathogens to attenuate plant immunity. Solanaceous plants have evolved to recognize PehC and induce immune responses, which highlights the significance of PehC. Overall, this study provides insight into the arms race between plants and pathogens.
Collapse
Affiliation(s)
- Jingjing Ke
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Wanting Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Ying Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xinya Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Ai Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Sen Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Wei Chen
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
14
|
Dodds I, Chen C, Buscaill P, van der Hoorn RAL. Depletion of the NbCORE receptor drastically improves agroinfiltration productivity in older Nicotiana benthamiana plants. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1103-1105. [PMID: 36917445 DOI: 10.1111/pbi.14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 05/27/2023]
Abstract
Nicotiana benthamiana is increasingly used for transient gene expression to produce antibodies, vaccines, and other pharmaceutical proteins but transient gene expression is low in fully developed, 6-8-week old plants. This low gene expression is thought to be caused by the perception of the cold shock protein (CSP) of Agrobacterium tumefaciens. The CSP receptor is contested because both NbCSPR and NbCORE have been claimed to perceive CSP. Here, we demonstrate that CSP perception is abolished in 6-week-old plants silenced for NbCORE but not NbCSPR. Importantly, older NbCORE-silenced plants support a highly increased level of GFP fluorescence and protein upon agroinfiltration. The drastic increase in transient protein production in NbCORE-depleted plants offers new opportunities for molecular farming, where older plants with larger biomass can now be used for efficient protein expression.
Collapse
Affiliation(s)
- Isobel Dodds
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| | - Changlong Chen
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| | | |
Collapse
|
15
|
Qi P, Wang N, Zhang T, Feng Y, Zhou X, Zeng D, Meng J, Liu L, Jin L, Yang S. Anti-Virulence Strategy of Novel Dehydroabietic Acid Derivatives: Design, Synthesis, and Antibacterial Evaluation. Int J Mol Sci 2023; 24:2897. [PMID: 36769220 PMCID: PMC9917773 DOI: 10.3390/ijms24032897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Anti-virulence strategies are attractive and interesting strategies for controlling bacterial diseases because virulence factors are fundamental to the infection process of numerous serious phytopathogenics. To extend the novel anti-virulence agents, a series of dehydroabietic acid (DAA) derivatives decorated with amino alcohol unit were semi-synthesized based on structural modification of the renewable natural DAA and evaluated for their antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Pseudomonas syringae pv. actinidiae (Psa). Compound 2b showed the most promising antibacterial activity against Xoo with an EC50 of 2.7 μg mL-1. Furthermore, compound 2b demonstrated remarkable control effectiveness against bacterial leaf blight (BLB) in rice, with values of 48.6% and 61.4% for curative and protective activities. In addition, antibacterial behavior suggested that compound 2b could suppress various virulence factors, including EPS, biofilm, swimming motility, and flagella. Therefore, the current study provided promising lead compounds for novel bactericides discovery by inhibiting bacterial virulence factors.
Collapse
Affiliation(s)
| | | | | | | | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | | | | | | | | | | |
Collapse
|
16
|
Yu G, Derkacheva M, Rufian JS, Brillada C, Kowarschik K, Jiang S, Derbyshire P, Ma M, DeFalco TA, Morcillo RJL, Stransfeld L, Wei Y, Zhou J, Menke FLH, Trujillo M, Zipfel C, Macho AP. The Arabidopsis E3 ubiquitin ligase PUB4 regulates BIK1 and is targeted by a bacterial type-III effector. EMBO J 2022; 41:e107257. [PMID: 36314733 PMCID: PMC9713774 DOI: 10.15252/embj.2020107257] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 12/03/2022] Open
Abstract
Plant immunity is tightly controlled by a complex and dynamic regulatory network, which ensures optimal activation upon detection of potential pathogens. Accordingly, each component of this network is a potential target for manipulation by pathogens. Here, we report that RipAC, a type III-secreted effector from the bacterial pathogen Ralstonia solanacearum, targets the plant E3 ubiquitin ligase PUB4 to inhibit pattern-triggered immunity (PTI). PUB4 plays a positive role in PTI by regulating the homeostasis of the central immune kinase BIK1. Before PAMP perception, PUB4 promotes the degradation of non-activated BIK1, while after PAMP perception, PUB4 contributes to the accumulation of activated BIK1. RipAC leads to BIK1 degradation, which correlates with its PTI-inhibitory activity. RipAC causes a reduction in pathogen-associated molecular pattern (PAMP)-induced PUB4 accumulation and phosphorylation. Our results shed light on the role played by PUB4 in immune regulation, and illustrate an indirect targeting of the immune signalling hub BIK1 by a bacterial effector.
Collapse
Affiliation(s)
- Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Maria Derkacheva
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Present address:
The Earlham InstituteNorwich Research ParkNorwichUK
| | - Jose S Rufian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Carla Brillada
- Faculty of Biology, Institute of Biology IIAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | | | - Shushu Jiang
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Present address:
Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
| | - Paul Derbyshire
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Miaomiao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Thomas A DeFalco
- Institute of Plant and Microbial Biology, Zurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| | - Rafael J L Morcillo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Lena Stransfeld
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Institute of Plant and Microbial Biology, Zurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| | - Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian‐Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Frank L H Menke
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Marco Trujillo
- Faculty of Biology, Institute of Biology IIAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Leibniz Institute for Plant BiochemistryHalle (Saale)Germany
| | - Cyril Zipfel
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkNorwichUK
- Institute of Plant and Microbial Biology, Zurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
17
|
A Zaki M, A Saleh ES, M Zaki M, S Korayem A, A Amin S. Antibacterial Activity of a New Strain of Streptomyces maritimus MSQ21 against Ralstonia solanacearum. Pak J Biol Sci 2022; 25:642-653. [PMID: 36098171 DOI: 10.3923/pjbs.2022.642.653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
<b>Background and Objective:</b> Actinobacteria represent the most prominent group of microorganisms, which produce a vast number of bioactive compounds especially antibiotics. The present study investigated the antibacterial activity of some actinomycete isolates against <i>Ralstonia solanacearum</i> type 3 biovar 2 (phytopathogenic bacterium that causes tomato wilt disease and brown rot of potatoes). <b>Materials and Methods:</b> The most potent actinomycete isolates in the antibacterial activity was further identified up to species based on its phenotypic and molecular characteristics. Additionally, the most suitable carbon and nitrogen sources for increasing the antibacterial activity were also investigated. <b>Results:</b> Interestingly, <i>Streptomyces </i>isolate MSQ21 achieved the highest antibacterial activity against <i>R. solanacearum</i> with an inhibition zone of 18 mm. 16S rRNA gene analysis suggested that <i>Streptomyces </i>MSQ21 was identified as a strain of <i>S. maritimus</i> Glycerol (2.25%, w/v) and (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (0.13%, w/v) were the most suitable carbon and nitrogen sources for increasing the antibacterial activity. <b>Conclusion:</b> It could be concluded that the maximum antibacterial activity (30mm) produced by <i>S. maritimus </i>strain MSQ21 against <i>R. solanacearum </i>could be obtained by using the modified starch nitrate medium containing (g L<sup>1</sup>): Glycerol, 25: Ammonium sulphate, 1.6: Dipotassium hydrogen phosphate, 1: Magnesium sulphate, 0.5: Sodium chloride, 0.5: Calcium carbonate, 3: Ferrous sulphate and 0.01: Distilled water up to 1 L and under the following conditions: Temperature 30°C, agitation speed 250 rpm, inoculum size 1-50 mL medium, incubation period 4 days and pH 8.5.
Collapse
|
18
|
Qi P, Huang M, Hu X, Zhang Y, Wang Y, Li P, Chen S, Zhang D, Cao S, Zhu W, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling. THE PLANT CELL 2022; 34:1666-1683. [PMID: 35043960 PMCID: PMC9048914 DOI: 10.1093/plcell/koac015] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/13/2022] [Indexed: 05/25/2023]
Abstract
The bacterial pathogen Ralstonia solanacearum causes wilt disease on Arabidopsis thaliana and tomato (Solanum lycopersicum). This pathogen uses type III effectors to inhibit the plant immune system; however, how individual effectors interfere with plant immune responses, including transcriptional reprograming, remain elusive. Here, we show that the type III effector RipAB targets Arabidopsis TGACG SEQUENCE-SPECIFIC BINDING PROTEIN (TGA) transcription factors, the central regulators of plant immune gene regulation, via physical interaction in the nucleus to dampen immune responses. RipAB was required for R. solanacearum virulence on wild-type tomato and Arabidopsis but not Arabidopsis tga1 tga4 and tga2 tga5 tga6 mutants. Stable expression of RipAB in Arabidopsis suppressed the pathogen-associated molecular pattern-triggered reactive oxygen species (ROS) burst and immune gene induction as well as salicylic acid (SA) regulons including RBOHD and RBOHF, responsible for ROS production, all of which were phenocopied by the tga1 tga4 and tga2 tga5 tga6 mutants. We found that TGAs directly activate RBOHD and RBOHF expression and that RipAB inhibits this through interfering with the recruitment of RNA polymerase II. These results suggest that TGAs are the bona fide and major virulence targets of RipAB, which disrupts SA signaling by inhibiting TGA activity to achieve successful infection.
Collapse
Affiliation(s)
| | | | | | - Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ying Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Pengyue Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shiyun Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sen Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wanting Zhu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory Wuhan, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bo Li
- Author for correspondence:
| |
Collapse
|
19
|
Zeiss DR, Steenkamp PA, Piater LA, Dubery IA. Metabolomic Evaluation of Ralstonia solanacearum Cold Shock Protein Peptide (csp22)-Induced Responses in Solanum lycopersicum. FRONTIERS IN PLANT SCIENCE 2022; 12:803104. [PMID: 35069661 PMCID: PMC8780328 DOI: 10.3389/fpls.2021.803104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Ralstonia solanacearum, the causal agent of bacterial wilt, is one of the most destructive bacterial plant pathogens. This is linked to its evolutionary adaptation to evade host surveillance during the infection process since many of the pathogen's associated molecular patterns escape recognition. However, a 22-amino acid sequence of R. solanacearum-derived cold shock protein (csp22) was discovered to elicit an immune response in the Solanaceae. Using untargeted metabolomics, the effects of csp22-elicitation on the metabolome of Solanum lycopersicum leaves were investigated. Additionally, the study set out to discover trends that may suggest that csp22 inoculation bestows enhanced resistance on tomato against bacterial wilt. Results revealed the redirection of metabolism toward the phenylpropanoid pathway and sub-branches thereof. Compared to the host response with live bacteria, csp22 induced a subset of the discriminant metabolites, but also metabolites not induced in response to R. solanacearum. Here, a spectrum of hydroxycinnamic acids (especially ferulic acid), their conjugates and derivatives predominated as signatory biomarkers. From a metabolomics perspective, the results support claims that csp22 pre-treatment of tomato plants elicits increased resistance to R. solanacearum infection and contribute to knowledge on plant immune systems operation at an integrative level. The functional significance of these specialized compounds may thus support a heightened state of defense that can be applied to ward off attacking pathogens or toward priming of defense against future infections.
Collapse
|
20
|
Xu Y, Shang K, Wang C, Yu Z, Zhao X, Song Y, Meng F, Zhu C. WIPK-NtLTP4 pathway confers resistance to Ralstonia solanacearum in tobacco. PLANT CELL REPORTS 2022; 41:249-261. [PMID: 34697685 DOI: 10.1007/s00299-021-02808-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE WIPK-NtLTP4 module improves the resistance to R. solanacearum via upregulating the expression of defense-related genes, increasing the antioxidant enzyme activity, and promoting stomatal closure in tobacco. Lipid transfer proteins (LTPs) are a class of small lipid binding proteins that play important roles in biotic and abiotic stresses. The previous study revealed that NtLTP4 positively regulates salt and drought stresses in Nicotiana tabacum. However, the role of NtLTP4 in biotic stress, especially regarding its function in disease resistance remains unclear. Here, the critical role of NtLTP4 in regulating resistance to Ralstonia solanacearum (R. solanacearum), a causal agent of bacterial wilt disease in tobacco, was reported. The NtLTP4-overexpressing lines markedly improved the resistance to R. solanacearum by upregulating the expression of defense-related genes, increasing the antioxidant enzyme activity, and promoting stomatal closure. Moreover, NtLTP4 interacted with wound-induced protein kinase (WIPK; a homolog of MAPK3 in tobacco) and acted in a genetically epistatic manner to WIPK in planta. WIPK could directly phosphorylate NtLTP4 to positively regulate its protein abundance. Taken together, these results broaden the knowledge about the functions of the WIPK-NtLTP4 module in disease resistance and may provide valuable information for improving tobacco plant tolerance to R. solanacearum.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, 266100, People's Republic of China
| | - Kaijie Shang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Chenchen Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zipeng Yu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Xuechen Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Yunzhi Song
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Fanxiao Meng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
21
|
Khairy AM, Tohamy MRA, Zayed MA, Ali MAS. Detecting pathogenic bacterial wilt disease of potato using biochemical markers and evaluate resistant in some cultivars. Saudi J Biol Sci 2021; 28:5193-5203. [PMID: 34466097 PMCID: PMC8381064 DOI: 10.1016/j.sjbs.2021.05.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
Bacterial wilt caused by Ralstonia solanacearum (Smith), is one of the chief severe diseases of potato in warm temperate regions, tropics and subtropics of the world. The study was conducted to isolate and identify bacterial pathogens and select the most resistant cultivars and avoid the decrease in the total value of Egyptian potato exports to the European Union (EU) due to the quarantine restrictions imposed by the EU on potato tubers exported from Egypt affected by bacterial wilt. The results of traditional identification through morphological and serological studies showed that the five isolates were isolated and identified as Ralstonia solanacearum. Furthermore, the results illustrated that RS5 isolate showed the lowest percentage of disease incidence reduction on the three tested potatoes cultivar Bellini, Spunta and Mondial recorded 9.64%, 15.41% and 34.12%, respectively. While, RS8 isolate exhibited the highest effective one the percentage of disease reduction on all tested potato cultivars. This isolate reduced disease incidence 60.60%, 63.21% and 71.66%, compering to the healthy control treatment. The result of molecular identification represent that the probe used in Taq-man (PCR) was of the type (B2) capable to detect only biovar 2 of R. solanacearum bacterial wilt. Furthermore, primer and probe are specific for detection of the race 3 biovar 2 strain. Positive results were obtained in all assays used including IFAS, protein content and SDS-PAGE with all five isolates. So the isolate (RS5) was the most virulence one, followed by RS1, RS3, RS2 and RS8, registered that the tested isolates were R. solanacearum race 3, biovar 2. Also, studies focused on the form of genetic distances and similarities based on pathogenic and plant growth parameters. The results illustrate that the highest genetic similarity (0.998) was found between Bellini and Spunta cultivars as the closest but the lowest value (0.946) was found between Mondial and Bellini as most distant. These results were similarity with genetic distances and SDS-PAGE profile of the three tested potato cultivars.
Collapse
Affiliation(s)
- Ahmed M Khairy
- Plant Pathology Department, Faculty of Agric, Zagazig Univ, Egypt
| | | | - Mohamed A Zayed
- Plant Pathology Department, Faculty of Agric, Zagazig Univ, Egypt
| | - Mohamed A S Ali
- Plant Pathology Department, Faculty of Agric, Zagazig Univ, Egypt
| |
Collapse
|
22
|
Buscaill P, van der Hoorn RAL. Defeated by the nines: nine extracellular strategies to avoid microbe-associated molecular patterns recognition in plants. THE PLANT CELL 2021; 33:2116-2130. [PMID: 33871653 PMCID: PMC8364246 DOI: 10.1093/plcell/koab109] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/07/2021] [Indexed: 05/13/2023]
Abstract
Recognition of microbe-associated molecular patterns (MAMPs) by cell-surface receptors is pivotal in host-microbe interactions. Both pathogens and symbionts establish plant-microbe interactions using fascinating intricate extracellular strategies to avoid recognition. Here we distinguish nine different extracellular strategies to avoid recognition by the host, acting at three different levels. To avoid the accumulation of MAMP precursors (Level 1), microbes take advantage of polymorphisms in both MAMP proteins and glycans, or downregulate MAMP production. To reduce hydrolytic MAMP release (Level 2), microbes shield MAMP precursors with proteins or glycans and inhibit or degrade host-derived hydrolases. And to prevent MAMP perception directly (Level 3), microbes degrade or sequester MAMPs before they are perceived. We discuss examples of these nine strategies and envisage three additional extracellular strategies to avoid MAMP perception in plants.
Collapse
Affiliation(s)
- Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, UK
| | | |
Collapse
|
23
|
Wang Y, Zhao A, Morcillo RJL, Yu G, Xue H, Rufian JS, Sang Y, Macho AP. A bacterial effector protein uncovers a plant metabolic pathway involved in tolerance to bacterial wilt disease. MOLECULAR PLANT 2021; 14:1281-1296. [PMID: 33940211 DOI: 10.1016/j.molp.2021.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 05/27/2023]
Abstract
Bacterial wilt caused by the soil-borne plant pathogen Ralstonia solanacearum is a devastating disease worldwide. Upon plant colonization, R. solanacearum replicates massively, causing plant wilting and death; collapsed infected tissues then serve as a source of inoculum. In this work, we show that the plant metabolic pathway mediated by pyruvate decarboxylases (PDCs) contributes to plant tolerance to bacterial wilt disease. Arabidopsis and tomato plants respond to R. solanacearum infection by increasing PDC activity, and plants with deficient PDC activity are more susceptible to bacterial wilt. Treatment with either pyruvic acid or acetic acid (substrate and product of the PDC pathway, respectively) enhances plant tolerance to bacterial wilt disease. An effector protein secreted by R. solanacearum, RipAK, interacts with PDCs and inhibits their oligomerization and enzymatic activity. Collectively, our work reveals a metabolic pathway involved in plant resistance to biotic and abiotic stresses, and a bacterial virulence strategy to promote disease and the completion of the pathogenic life cycle.
Collapse
Affiliation(s)
- Yaru Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing, China
| | - Achen Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing, China
| | - Rafael J L Morcillo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jose S Rufian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China
| | - Yuying Sang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China.
| |
Collapse
|
24
|
Yu TY, Sun MK, Liang LK. Receptors in the Induction of the Plant Innate Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:587-601. [PMID: 33512246 DOI: 10.1094/mpmi-07-20-0173-cr] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants adjust amplitude and duration of immune responses via different strategies to maintain growth, development, and resistance to pathogens. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) play vital roles. Pattern recognition receptors, comprising a large number of receptor-like protein kinases and receptor-like proteins, recognize related ligands and trigger immunity. PTI is the first layer of the innate immune system, and it recognizes PAMPs at the plasma membrane to prevent infection. However, pathogens exploit effector proteins to bypass or directly inhibit the PTI immune pathway. Consistently, plants have evolved intracellular nucleotide-binding domain and leucine-rich repeat-containing proteins to detect pathogenic effectors and trigger a hypersensitive response to activate ETI. PTI and ETI work together to protect plants from infection by viruses and other pathogens. Diverse receptors and the corresponding ligands, especially several pairs of well-studied receptors and ligands in PTI immunity, are reviewed to illustrate the dynamic process of PTI response here.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Tian-Ying Yu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Meng-Kun Sun
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Li-Kun Liang
- College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
25
|
Kashyap A, Planas-Marquès M, Capellades M, Valls M, Coll NS. Blocking intruders: inducible physico-chemical barriers against plant vascular wilt pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:184-198. [PMID: 32976552 PMCID: PMC7853604 DOI: 10.1093/jxb/eraa444] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/16/2020] [Indexed: 05/20/2023]
Abstract
Xylem vascular wilt pathogens cause devastating diseases in plants. Proliferation of these pathogens in the xylem causes massive disruption of water and mineral transport, resulting in severe wilting and death of the infected plants. Upon reaching the xylem vascular tissue, these pathogens multiply profusely, spreading vertically within the xylem sap, and horizontally between vessels and to the surrounding tissues. Plant resistance to these pathogens is very complex. One of the most effective defense responses in resistant plants is the formation of physico-chemical barriers in the xylem tissue. Vertical spread within the vessel lumen is restricted by structural barriers, namely, tyloses and gels. Horizontal spread to the apoplast and surrounding healthy vessels and tissues is prevented by vascular coating of the colonized vessels with lignin and suberin. Both vertical and horizontal barriers compartmentalize the pathogen at the infection site and contribute to their elimination. Induction of these defenses are tightly coordinated, both temporally and spatially, to avoid detrimental consequences such as cavitation and embolism. We discuss current knowledge on mechanisms underlying plant-inducible structural barriers against major xylem-colonizing pathogens. This knowledge may be applied to engineer metabolic pathways of vascular coating compounds in specific cells, to produce plants resistant towards xylem colonizers.
Collapse
Affiliation(s)
- Anurag Kashyap
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
| | - Marc Planas-Marquès
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
| | | | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Genetics Department, Universitat de Barcelona, Barcelona, Spain
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
| |
Collapse
|
26
|
Teper D, Wang N. Consequences of adaptation of TAL effectors on host susceptibility to Xanthomonas. PLoS Genet 2021; 17:e1009310. [PMID: 33465093 PMCID: PMC7845958 DOI: 10.1371/journal.pgen.1009310] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/29/2021] [Accepted: 12/11/2020] [Indexed: 12/03/2022] Open
Abstract
Transcription activator-like effectors (TALEs) are virulence factors of Xanthomonas that induce the expression of host susceptibility (S) genes by specifically binding to effector binding elements (EBEs) in their promoter regions. The DNA binding specificity of TALEs is dictated by their tandem repeat regions, which are highly variable between different TALEs. Mutation of the EBEs of S genes is being utilized as a key strategy to generate resistant crops against TALE-dependent pathogens. However, TALE adaptations through rearrangement of their repeat regions is a potential obstacle for successful implementation of this strategy. We investigated the consequences of TALE adaptations in the citrus pathogen Xanthomonas citri subsp. citri (Xcc), in which PthA4 is the TALE required for pathogenicity, whereas CsLOB1 is the corresponding susceptibility gene, on host resistance. Seven TALEs, containing two-to-nine mismatching-repeats to the EBEPthA4 that were unable to induce CsLOB1 expression, were introduced into Xcc pthA4:Tn5 and adaptation was simulated by repeated inoculations into and isolations from sweet orange for a duration of 30 cycles. While initially all strains failed to promote disease, symptoms started to appear between 9–28 passages in four TALEs, which originally harbored two-to-five mismatches. Sequence analysis of adapted TALEs identified deletions and mutations within the TALE repeat regions which enhanced putative affinity to the CsLOB1 promoter. Sequence analyses suggest that TALEs adaptations result from recombinations between repeats of the TALEs. Reintroduction of these adapted TALEs into Xcc pthA4:Tn5 restored the ability to induce the expression of CsLOB1, promote disease symptoms and colonize host plants. TALEs harboring seven-to-nine mismatches were unable to adapt to overcome the incompatible interaction. Our study experimentally documented TALE adaptations to incompatible EBE and provided strategic guidance for generation of disease resistant crops against TALE-dependent pathogens. Mutation of the EBEs of susceptibility (S) genes via genome editing and utilization of naturally occurring EBE variants have been used to generate disease resistant plants. However, TALE adaptations may lead to resistance loss, limiting the long-term efficacy of the strategy. We utilized an experimental evolution approach to test TALEs adaptations in the Xanthomonas citri-citrus pathosystem using designer TALEs that cannot recognize the EBE of host targets. We identified adaptive TALE mutations and deletions that occurred during less than 30 cycles of repeated infections, which reconstituted the virulence on the host. Adaptive variants originated from TALEs that harbored a small number of mismatches (≤5) to the EBE, whereas designer TALEs that harbored larger number of mismatches (≥7) to the EBE failed to adapt in the duration of this study. Our study experimentally demonstrates adaptive rearrangements of TALEs during host adaptation and suggests that the potential durability in the resistance of modified crops should be a significant factor to be considered prior to their introduction into the field.
Collapse
Affiliation(s)
- Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
27
|
Xu L, Hu Y, Jin G, Lei P, Sang L, Luo Q, Liu Z, Guan F, Meng F, Zhao X. Physiological and Proteomic Responses to Drought in Leaves of Amygdalus mira ( Koehne) Yü et Lu. FRONTIERS IN PLANT SCIENCE 2021; 12:620499. [PMID: 34249029 PMCID: PMC8264794 DOI: 10.3389/fpls.2021.620499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/20/2021] [Indexed: 05/05/2023]
Abstract
Various environmental stresses strongly influence plant development. Among these stresses is drought, which is a serious threat that can reduce agricultural productivity and obstruct plant growth. Although the mechanism of plants in response to drought has been studied extensively, the adaptive strategies of Amygdalus mira (Koehne) Yü et Lu grown in drought and rewatered habitats remain undefined. Amygdalus mira from the Tibetan Plateau has outstanding nutritional and medicinal values and can thrive in extreme drought. In this study, the physiological and proteomic responses in leaves of A. mira were investigated during drought and recovery period. The changes in plant growth, photosynthesis, enzymes, and non-enzymatic antioxidant under drought and rewatering were also analyzed in leaves. Compared with controls, A. mira showed stronger adaptive and resistant characteristics to drought. In addition, the proteomic technique was also used to study drought tolerance mechanisms in A. mira leaves. Differentially expressed proteins were identified using mass spectrometry. Accordingly, 103 proteins involved in 10 functional categories: cytoskeleton dynamics, energy metabolism, carbohydrate metabolism, photosynthesis, transcription and translation, transport, stress and defense, molecular chaperones, other materials metabolism, and unknown function were identified. These results showed that an increase of stress-defense-related proteins in leaves after drought treatment contributed to coping with drought. Importantly, A. mira developed an adaptive mechanism to scavenge reactive oxygen species (ROS), including enhancing antioxidant enzyme activities and non-enzymatic antioxidant contents, reducing energy, and adjusting the efficiency of gas exchanges. These results may help to understand the acclimation of A. mira to drought.
Collapse
Affiliation(s)
- Liping Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanbo Hu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangze Jin
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Pei Lei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Liqun Sang
- Tibet Agriculture and Animal Husbandry College, Nyingchi, China
| | - Qiuxiang Luo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhi Liu
- Department of Medical Genetics, Center for Genome Research, Center for Precision Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fachun Guan
- Tibet Agriculture and Animal Husbandry College, Nyingchi, China
- Jilin Academy of Agricultural Science, Changchun, China
| | - Fanjuan Meng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- *Correspondence: Fanjuan Meng,
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Xiyang Zhao,
| |
Collapse
|
28
|
Montesinos L, Gascón B, Ruz L, Badosa E, Planas M, Feliu L, Montesinos E. A Bifunctional Synthetic Peptide With Antimicrobial and Plant Elicitation Properties That Protect Tomato Plants From Bacterial and Fungal Infections. FRONTIERS IN PLANT SCIENCE 2021; 12:756357. [PMID: 34733307 PMCID: PMC8558481 DOI: 10.3389/fpls.2021.756357] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
The hybrid peptide BP178 (KKLFKKILKYLAGPAGIGKFLHSAKKDEL-OH), derived from BP100 (KKLFKKILKYL) and magainin (1-10), and engineered for plant expression, had a strong bactericidal activity but not fungicidal. Moreover, the preventive spray of tomato plants with BP178 controlled infections by the plant pathogenic bacteria Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria, as well as the fungus Botrytis cinerea. The treatment of tomato plants with BP178 induced the expression of several genes according to microarray and RT-qPCR analysis. Upregulated genes coded for several pathogenesis-related proteins, including PR1, PR2, PR3, PR4, PR5, PR6, PR7, PR9, PR10, and PR14, as well as transcription factors like ethylene transcription factors, WRKY, NAC and MYB, involved in the salicylic acid, jasmonic acid, and ethylene-signaling pathways. BP178 induced a similar gene expression pattern to flg15 according to RT-qPCR analysis, whereas the parent peptide BP100 did not trigger such as a strong plant defense response. It was concluded that BP178 was a bifunctional peptide protecting the plant against pathogen infection through a dual mechanism of action consisting of antimicrobial activity against bacterial pathogens and plant defense elicitation on plant host.
Collapse
Affiliation(s)
- Laura Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Beatriz Gascón
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Lidia Ruz
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Esther Badosa
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, Girona, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
- *Correspondence: Emilio Montesinos
| |
Collapse
|
29
|
Yu G, Xian L, Zhuang H, Macho AP. SGT1 is not required for plant LRR-RLK-mediated immunity. MOLECULAR PLANT PATHOLOGY 2021; 22:145-150. [PMID: 33174685 PMCID: PMC7749753 DOI: 10.1111/mpp.13012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/16/2020] [Accepted: 09/29/2020] [Indexed: 06/01/2023]
Abstract
Plant immune signalling activated by the perception of pathogen-associated molecular patterns (PAMPs) or effector proteins is mediated by pattern-recognition receptors (PRRs) and nucleotide-binding and leucine-rich repeat domain-containing receptors (NLRs), which often share cellular components and downstream responses. Many PRRs are leucine-rich repeat receptor-like kinases (LRR-RLKs), which mostly perceive proteinaceous PAMPs. The suppressor of the G2 allele of skp1 (SGT1) is a core immune regulator required for the activation of NLR-mediated immunity. In this work, we examined the requirement of SGT1 for immune responses mediated by several LRR-RLKs in both Nicotiana benthamiana and Arabidopsis. Using complementary genetic approaches, we found that SGT1 is not limiting for early PRR-dependent responses or antibacterial immunity. We therefore conclude that SGT1 does not play a significant role in bacterial PAMP-triggered immunity.
Collapse
Affiliation(s)
- Gang Yu
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Liu Xian
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Haiyan Zhuang
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Alberto P. Macho
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
30
|
Bentham AR, De la Concepcion JC, Mukhi N, Zdrzałek R, Draeger M, Gorenkin D, Hughes RK, Banfield MJ. A molecular roadmap to the plant immune system. J Biol Chem 2020; 295:14916-14935. [PMID: 32816993 PMCID: PMC7606695 DOI: 10.1074/jbc.rev120.010852] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Plant diseases caused by pathogens and pests are a constant threat to global food security. Direct crop losses and the measures used to control disease (e.g. application of pesticides) have significant agricultural, economic, and societal impacts. Therefore, it is essential that we understand the molecular mechanisms of the plant immune system, a system that allows plants to resist attack from a wide variety of organisms ranging from viruses to insects. Here, we provide a roadmap to plant immunity, with a focus on cell-surface and intracellular immune receptors. We describe how these receptors perceive signatures of pathogens and pests and initiate immune pathways. We merge existing concepts with new insights gained from recent breakthroughs on the structure and function of plant immune receptors, which have generated a shift in our understanding of cell-surface and intracellular immunity and the interplay between the two. Finally, we use our current understanding of plant immunity as context to discuss the potential of engineering the plant immune system with the aim of bolstering plant defenses against disease.
Collapse
Affiliation(s)
- Adam R Bentham
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | | | - Nitika Mukhi
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Rafał Zdrzałek
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Markus Draeger
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Danylo Gorenkin
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Richard K Hughes
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom.
| |
Collapse
|
31
|
Zhou F, Emonet A, Dénervaud Tendon V, Marhavy P, Wu D, Lahaye T, Geldner N. Co-incidence of Damage and Microbial Patterns Controls Localized Immune Responses in Roots. Cell 2020; 180:440-453.e18. [PMID: 32032516 PMCID: PMC7042715 DOI: 10.1016/j.cell.2020.01.013] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/13/2019] [Accepted: 01/08/2020] [Indexed: 01/06/2023]
Abstract
Recognition of microbe-associated molecular patterns (MAMPs) is crucial for the plant's immune response. How this sophisticated perception system can be usefully deployed in roots, continuously exposed to microbes, remains a mystery. By analyzing MAMP receptor expression and response at cellular resolution in Arabidopsis, we observed that differentiated outer cell layers show low expression of pattern-recognition receptors (PRRs) and lack MAMP responsiveness. Yet, these cells can be gated to become responsive by neighbor cell damage. Laser ablation of small cell clusters strongly upregulates PRR expression in their vicinity, and elevated receptor expression is sufficient to induce responsiveness in non-responsive cells. Finally, localized damage also leads to immune responses to otherwise non-immunogenic, beneficial bacteria. Damage-gating is overridden by receptor overexpression, which antagonizes colonization. Our findings that cellular damage can "switch on" local immune responses helps to conceptualize how MAMP perception can be used despite the presence of microbial patterns in the soil.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Aurélia Emonet
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valérie Dénervaud Tendon
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland
| | - Peter Marhavy
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland
| | - Dousheng Wu
- ZMBP-General Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Thomas Lahaye
- ZMBP-General Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Niko Geldner
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
32
|
Wei Y, Balaceanu A, Rufian JS, Segonzac C, Zhao A, Morcillo RJL, Macho AP. An immune receptor complex evolved in soybean to perceive a polymorphic bacterial flagellin. Nat Commun 2020; 11:3763. [PMID: 32724132 PMCID: PMC7387336 DOI: 10.1038/s41467-020-17573-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/05/2020] [Indexed: 11/18/2022] Open
Abstract
In both animals and plants, the perception of bacterial flagella by immune receptors elicits the activation of defence responses. Most plants are able to perceive the highly conserved epitope flg22 from flagellin, the main flagellar protein, from most bacterial species. However, flagellin from Ralstonia solanacearum, the causal agent of the bacterial wilt disease, presents a polymorphic flg22 sequence (flg22Rso) that avoids perception by all plants studied to date. In this work, we show that soybean has developed polymorphic versions of the flg22 receptors that are able to perceive flg22Rso. Furthermore, we identify key residues responsible for both the evasion of perception by flg22Rso in Arabidopsis and the gain of perception by the soybean receptors. Heterologous expression of the soybean flg22 receptors in susceptible plant species, such as tomato, enhances resistance to bacterial wilt disease, demonstrating the potential of these receptors to enhance disease resistance in crop plants.
Collapse
Affiliation(s)
- Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alexandra Balaceanu
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Jose S Rufian
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Cécile Segonzac
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Achen Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rafael J L Morcillo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
33
|
Sang Y, Yu W, Zhuang H, Wei Y, Derevnina L, Yu G, Luo J, Macho AP. Intra-strain Elicitation and Suppression of Plant Immunity by Ralstonia solanacearum Type-III Effectors in Nicotiana benthamiana. PLANT COMMUNICATIONS 2020; 1:100025. [PMID: 33367244 PMCID: PMC7747989 DOI: 10.1016/j.xplc.2020.100025] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/12/2019] [Accepted: 01/16/2020] [Indexed: 05/11/2023]
Abstract
Effector proteins delivered inside plant cells are powerful weapons for bacterial pathogens, but this exposes the pathogen to potential recognition by the plant immune system. Therefore, the effector repertoire of a given pathogen must be balanced for a successful infection. Ralstonia solanacearum is an aggressive pathogen with a large repertoire of secreted effectors. One of these effectors, RipE1, is conserved in most R. solanacearum strains sequenced to date. In this work, we found that RipE1 triggers immunity in N. benthamiana, which requires the immune regulator SGT1, but not EDS1 or NRCs. Interestingly, RipE1-triggered immunity induces the accumulation of salicylic acid (SA) and the overexpression of several genes encoding phenylalanine-ammonia lyases (PALs), suggesting that the unconventional PAL-mediated pathway is responsible for the observed SA biosynthesis. Surprisingly, RipE1 recognition also induces the expression of jasmonic acid (JA)-responsive genes and JA biosynthesis, suggesting that both SA and JA may act cooperatively in response to RipE1. We further found that RipE1 expression leads to the accumulation of glutathione in plant cells, which precedes the activation of immune responses. R. solanacearum secretes another effector, RipAY, which is known to inhibit immune responses by degrading cellular glutathione. Accordingly, RipAY inhibits RipE1-triggered immune responses. This work shows a strategy employed by R. solanacearum to counteract the perception of its effector proteins by plant immune system.
Collapse
Affiliation(s)
- Yuying Sang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Wenjia Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Zhuang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yali Wei
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lida Derevnina
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jiamin Luo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| |
Collapse
|
34
|
Chen M, Wang J, Liu B, Zhu Y, Xiao R, Yang W, Ge C, Chen Z. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiol 2020; 20:160. [PMID: 32539679 PMCID: PMC7296739 DOI: 10.1186/s12866-020-01851-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/09/2020] [Indexed: 01/25/2023] Open
Abstract
Background There is an urgent need to discover biocontrol agents to control bacterial wilt. This study reports on a new lipopeptide-producing biocontrol strain FJAT-46737 and explores its lipopeptidic compounds, and this study investigates the antagonistic effects of these compounds. Results Based on a whole genome sequence analysis, the new strain FJAT-46737 was identified as Bacillus velezensis, and seven gene clusters responsible for the synthesis of bioactive secondary metabolites in FJAT-46737 were predicted. The antimicrobial results demonstrated that FJAT-46737 exhibited broad-spectrum antimicrobial activities in vitro against three bacteria and three fungi. Pot experiments showed that the control efficiencies for tomato bacterial wilt of the whole cultures, the 2-fold diluted supernatants and the crude lipopeptide of FJAT-46737 were 66.2%, 82.0%, and 96.2%, respectively. The above results suggested that one of the antagonistic mechanisms of FJAT-46737 was the secretion of lipopeptides consisting of iturins, fengycins and surfactins. The crude lipopeptides had significant antagonistic activities against several pathogens (including Ralstonia solanacearum, Escherichia coli and Fusarium oxysporum) and fengycins were the major antibacterial components of the lipopeptides against R. solanacearum in vitro. Furthermore, the rich organic nitrogen sources (especially yeast extracts) in the media promoted the production of fengycin and surfactin by FJAT-46737. The secretion of these two lipopeptides was related to temperature fluctuations, with the fengycin content decreasing by 96.6% and the surfactins content increasing by 59.9% from 20 °C to 40 °C. The optimal temperature for lipopeptide production by FJAT-46737 varied between 20 °C and 25 °C. Conclusions The B. velezensis strain FJAT-46737 and its secreted lipopeptides could be used as new sources of potential biocontrol agents against several plant pathogens, and especially the bacterial wilt pathogen R. solanacearum.
Collapse
Affiliation(s)
- Meichun Chen
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Jieping Wang
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China.
| | - Bo Liu
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Yujing Zhu
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Rongfeng Xiao
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Wenjing Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350001, China
| | - Cibin Ge
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Zheng Chen
- Agricultural Bioresources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| |
Collapse
|
35
|
Xue H, Lozano-Durán R, Macho AP. Insights into the Root Invasion by the Plant Pathogenic Bacterium Ralstonia solanacearum. PLANTS (BASEL, SWITZERLAND) 2020; 9:E516. [PMID: 32316375 PMCID: PMC7238422 DOI: 10.3390/plants9040516] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
Abstract
The plant pathogenic bacterium Ralstonia solanacearum, causal agent of the devastating bacterial wilt disease, is a soil-borne microbe that infects host plants through their roots. The initial mutual recognition between host plants and bacteria and the ensuing invasion of root tissues by R. solanacearum are critical steps in the establishment of the infection, and can determine the outcome of the interaction between plant and pathogen. In this minireview, we will focus on the early stages of the bacterial invasion, offering an overview of the defence mechanisms deployed by the host plants, the manipulation exerted by the pathogen in order to promote virulence, and the alterations in root development concomitant to bacterial colonization.
Collapse
Affiliation(s)
- Hao Xue
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 201602, China;
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 201602, China;
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 201602, China;
| |
Collapse
|
36
|
Moroz N, Tanaka K. FlgII-28 Is a Major Flagellin-Derived Defense Elicitor in Potato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:247-255. [PMID: 31644369 DOI: 10.1094/mpmi-06-19-0164-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first layer of plant immunity is deployed by recognition of pathogen-associated molecule patterns (PAMPs) and induction of early stress responses. Flagellin is the major protein component of the flagellum. Flagellin-derived peptide fragments such as Flg22, a short active peptide derived from the highly conserved part of the N-terminal region, are recognized as PAMPs by a specific perception system present in most higher plants. Some bacteria evade the plant recognition system by altering the Flg22 region in the flagellin. Instead, a small subset of plants (i.e., solanaceous plants) can sense these bacteria by recognizing a second region, termed FlgII-28. The function of FlgII-28 has been well-documented in tomato but not in potato plants. Here, we investigated the effect of FlgII-28 on several defense responses in potato. Cytosolic calcium (Ca2+) elevation is an early defense response upon pathogenic infection. We generated transgenic potato plants expressing aequorin, a nontoxic Ca2+-activated photoprotein. The results showed that FlgII-28 induced strong cytosolic Ca2+ elevation in a dose-dependent manner, whereas the response was attenuated when a Ca2+ channel blocker was added. In addition, the FlgII-28-triggered cytosolic Ca2+ elevation was shown to subsequently promote extracellular alkalinization, reactive oxygen species production, mitogen-activated protein kinase phosphorylation, and transcriptional reprogramming of defense-related genes in potato. Interestingly, all tested defense responses caused by FlgII-28 were significantly stronger than those caused by Flg22, suggesting that FlgII-28 acts as a primary flagellar PAMP to elicit multiple defense responses in potato.
Collapse
Affiliation(s)
- Natalia Moroz
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, U.S.A
| |
Collapse
|
37
|
Schellenberger R, Touchard M, Clément C, Baillieul F, Cordelier S, Crouzet J, Dorey S. Apoplastic invasion patterns triggering plant immunity: plasma membrane sensing at the frontline. MOLECULAR PLANT PATHOLOGY 2019; 20:1602-1616. [PMID: 31353775 PMCID: PMC6804340 DOI: 10.1111/mpp.12857] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants are able to effectively cope with invading pathogens by activating an immune response based on the detection of invasion patterns (IPs) originating from the pathogen or released by the plant after infection. At a first level, this perception takes place at the plasma membrane through cell surface immune receptors and although the involvement of proteinaceous pattern recognition receptors (PRRs) is well established, increasing data are also pointing out the role of membrane lipids in the sensing of IPs. In this review, we discuss the evolution of various conceptual models describing plant immunity and present an overview of well-characterized IPs from different natures and origins. We summarize the current knowledge on how they are perceived by plants at the plasma membrane, highlighting the increasingly apparent diversity of sentinel-related systems in plants.
Collapse
Affiliation(s)
- Romain Schellenberger
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Matthieu Touchard
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Christophe Clément
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Fabienne Baillieul
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Sylvain Cordelier
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Jérôme Crouzet
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| | - Stéphan Dorey
- University of Reims Champagne‐ArdenneRIBP EA 4707, SFR Condorcet FR CNRS 3417Reims51100France
| |
Collapse
|
38
|
Metabolomic Profiling of the Host Response of Tomato ( Solanum lycopersicum) Following Infection by Ralstonia solanacearum. Int J Mol Sci 2019; 20:ijms20163945. [PMID: 31416118 PMCID: PMC6720392 DOI: 10.3390/ijms20163945] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Tomato (Solanum lycopersicum) is an important dietary source of bioactive phytochemicals and active breeding programs constantly produce new cultivars possessing superior and desirable traits. The phytopathogenic Ralstonia solanacearum, the causal agent of bacterial wilt, is a highly destructive bacterial disease with a high economic impact on tomato production. This study followed an untargeted metabolomic approach involving four tomato cultivars and aimed at the identification of secondary metabolites involved in plant defense after infection with R. solanacearum. Liquid chromatography coupled to mass spectrometry (LC-MS) in combination with multivariate data analysis and chemometric modelling were utilized for the identification of discriminant secondary metabolites. The total of 81 statistically selected features were annotated belonging to the metabolite classes of amino acids, organic acids, fatty acids, various derivatives of cinnamic acid and benzoic acids, flavonoids and steroidal glycoalkaloids. The results indicate that the phenylpropanoid pathway, represented by flavonoids and hydroxycinnamic acids, is of prime importance in the tomato defense response. The hydroxycinnamic acids esters of quinic acid, hexoses and glucaric acids were identified as signatory biomarkers, as well as the hydroxycinnamic acid amides to polyamines and tyramine. Interestingly, the rapid and differential accumulation of putrescine, dopamine, and tyramine derivatives, along with the presence of a newly documented metabolite, feruloyl serotonin, were documented in the infected plants. Metabolite concentration variability in the different cultivar tissues point to cultivar-specific variation in the speed and manner of resource redistribution between the host tissues. These metabolic phenotypes provide insights into the differential metabolic signatures underlying the defense metabolism of the four cultivars, defining their defensive capabilities to R. solanacearum.
Collapse
|
39
|
Eckshtain‐Levi N, Weisberg AJ, Vinatzer BA. The population genetic test Tajima's D identifies genes encoding pathogen-associated molecular patterns and other virulence-related genes in Ralstonia solanacearum. MOLECULAR PLANT PATHOLOGY 2018; 19:2187-2192. [PMID: 29660239 PMCID: PMC6638162 DOI: 10.1111/mpp.12688] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
The detection of pathogen-associated molecular patterns (PAMPs) by plant pattern recognition receptors (PRRs) is an essential part of plant immunity. Until recently, elf18, an epitope of elongation factor-Tu (EF-Tu), was the sole confirmed PAMP of Ralstonia solanacearum, the causal agent of bacterial wilt disease, limiting our understanding of R. solanacearum-plant interactions. Therefore, we set out to identify additional R. solanacearum PAMPs based on the hypothesis that genes encoding PAMPs are under selection to avoid recognition by plant PRRs. We calculated Tajima's D, a population genetic test statistic which identifies genes that do not evolve neutrally, for 3003 genes conserved in 37 R. solanacearum genomes. The screen flagged 49 non-neutrally evolving genes, including not only EF-Tu but also the gene for Cold Shock Protein C, which encodes the PAMP csp22. Importantly, an R. solanacearum allele of this PAMP was recently identified in a parallel independent study. Genes coding for efflux pumps, some with known roles in virulence, were also flagged by Tajima's D. We conclude that Tajima's D is a straightforward test to identify genes encoding PAMPs and other virulence-related genes in plant pathogen genomes.
Collapse
Affiliation(s)
- Noam Eckshtain‐Levi
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburg VA 24061USA
| | - Alexandra J. Weisberg
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburg VA 24061USA
| | - Boris A. Vinatzer
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburg VA 24061USA
| |
Collapse
|