1
|
Borah A, Singh S, Chattopadhyay R, Kaur J, Bari VK. Integration of CRISPR/Cas9 with multi-omics technologies to engineer secondary metabolite productions in medicinal plant: Challenges and Prospects. Funct Integr Genomics 2024; 24:207. [PMID: 39496976 DOI: 10.1007/s10142-024-01486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Plants acts as living chemical factories that may create a large variety of secondary metabolites, most of which are used in pharmaceutical products. The production of these secondary metabolites is often much lower. Moreover, the primary constraint after discovering potential metabolites is the capacity to manufacture sufficiently for use in industrial and therapeutic contexts. The development of omics technology has brought revolutionary discoveries in various scientific fields, including transcriptomics, metabolomics, and genome sequencing. The metabolic pathways leading to the utilization of new secondary metabolites in the pharmaceutical industry can be identified with the use of these technologies. Genome editing (GEd) is a versatile technology primarily used for site-directed DNA insertions, deletions, replacements, base editing, and activation/repression at the targeted locus. Utilizing GEd techniques such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 (CRISPR-associated protein 9), metabolic pathways engineered to synthesize bioactive metabolites optimally. This article will briefly discuss omics and CRISPR/Cas9-based methods to improve secondary metabolite production in medicinal plants.
Collapse
Affiliation(s)
- Anupriya Borah
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO- Ghudda, Bathinda, India
| | - Shailey Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO- Ghudda, Bathinda, India
| | - Rituja Chattopadhyay
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO- Ghudda, Bathinda, India
| | - Jaspreet Kaur
- RT-PCR Testing Laboratory, District Hospital, Hoshiarpur, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO- Ghudda, Bathinda, India.
| |
Collapse
|
2
|
Merchán-Gaitán JB, Mendes JHL, Nunes LEC, Buss DS, Rodrigues SP, Fernandes PMB. The Role of Plant Latex in Virus Biology. Viruses 2023; 16:47. [PMID: 38257746 PMCID: PMC10819414 DOI: 10.3390/v16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
At least 20,000 plant species produce latex, a capacity that appears to have evolved independently on numerous occasions. With a few exceptions, latex is stored under pressure in specialized cells known as laticifers and is exuded upon injury, leading to the assumption that it has a role in securing the plant after mechanical injury. In addition, a defensive effect against insect herbivores and fungal infections has been well established. Latex also appears to have effects on viruses, and laticifers are a hostile environment for virus colonization. Only one example of successful colonization has been reported: papaya meleira virus (PMeV) and papaya meleira virus 2 (PMeV2) in Carica papaya. In this review, a summary of studies that support both the pro- and anti-viral effects of plant latex compounds is provided. The latex components represent a promising natural source for the discovery of new pro- and anti-viral molecules in the fields of agriculture and medicine.
Collapse
Affiliation(s)
| | - João H. L. Mendes
- Multidisciplinary Core for Research in Biology, Campus Duque de Caxias, Federal University of Rio de Janeiro, Duque de Caxias 25240-005, RJ, Brazil; (J.H.L.M.); (L.E.C.N.)
| | - Lucas E. C. Nunes
- Multidisciplinary Core for Research in Biology, Campus Duque de Caxias, Federal University of Rio de Janeiro, Duque de Caxias 25240-005, RJ, Brazil; (J.H.L.M.); (L.E.C.N.)
| | - David S. Buss
- School of Life Sciences, Keele University, Newcastle ST5 5BG, UK;
| | - Silas P. Rodrigues
- Multidisciplinary Core for Research in Biology, Campus Duque de Caxias, Federal University of Rio de Janeiro, Duque de Caxias 25240-005, RJ, Brazil; (J.H.L.M.); (L.E.C.N.)
| | | |
Collapse
|
3
|
Krishna TA, Maharajan T, Krishna TA, Ceasar SA. Insights into Metabolic Engineering of Bioactive Molecules in Tetrastigma hemsleyanum Diels & Gilg: A Traditional Medicinal Herb. Curr Genomics 2023; 24:72-83. [PMID: 37994327 PMCID: PMC10662378 DOI: 10.2174/0113892029251472230921053135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/17/2023] [Accepted: 08/20/2023] [Indexed: 11/24/2023] Open
Abstract
Plants are a vital source of bioactive molecules for various drug development processes. Tetrastigma hemsleyanum is one of the endangered medicinal plant species well known to the world due to its wide range of therapeutic effects. Many bioactive molecules have been identified from this plant, including many classes of secondary metabolites such as flavonoids, phenols, terpenoids, steroids, alkaloids, etc. Due to its slow growth, it usually takes 3-5 years to meet commercial medicinal materials for this plant. Also, T. hemsleyanum contains low amounts of specific bioactive compounds, which are challenging to isolate easily. Currently, scientists are attempting to increase bioactive molecules' production from medicinal plants in different ways or to synthesize them chemically. The genomic tools helped to understand medicinal plants' genome organization and led to manipulating genes responsible for various biosynthesis pathways. Metabolic engineering has made it possible to enhance the production of secondary metabolites by introducing manipulated biosynthetic pathways to attain high levels of desirable bioactive molecules. Metabolic engineering is a promising approach for improving the production of secondary metabolites over a short time period. In this review, we have highlighted the scope of various biotechnological approaches for metabolic engineering to enhance the production of secondary metabolites for pharmaceutical applications in T. hemsleyanum. Also, we summarized the progress made in metabolic engineering for bioactive molecule enhancement in T. hemsleyanum. It may lead to reducing the destruction of the natural habitat of T. hemsleyanum and conserving them through the cost-effective production of bioactive molecules in the future.
Collapse
Affiliation(s)
- T.P. Ajeesh Krishna
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, 683104, Kerala, India
| | - T. Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, 683104, Kerala, India
| | - T.P. Adarsh Krishna
- Research & Development Division, Sreedhareeyam Farmherbs India Pvt. Ltd, Ernakulam, 686-662, Kerala, India
| | - S. Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, 683104, Kerala, India
| |
Collapse
|
4
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
5
|
De Bruyn C, Ruttink T, Lacchini E, Rombauts S, Haegeman A, De Keyser E, Van Poucke C, Desmet S, Jacobs TB, Eeckhaut T, Goossens A, Van Laere K. Identification and characterization of CYP71 subclade cytochrome P450 enzymes involved in the biosynthesis of bitterness compounds in Cichorium intybus. FRONTIERS IN PLANT SCIENCE 2023; 14:1200253. [PMID: 37426959 PMCID: PMC10324620 DOI: 10.3389/fpls.2023.1200253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Industrial chicory (Cichorium intybus var. sativum) and witloof (C. intybus var. foliosum) are crops with an important economic value, mainly cultivated for inulin production and as a leafy vegetable, respectively. Both crops are rich in nutritionally relevant specialized metabolites with beneficial effects for human health. However, their bitter taste, caused by the sesquiterpene lactones (SLs) produced in leaves and taproot, limits wider applications in the food industry. Changing the bitterness would thus create new opportunities with a great economic impact. Known genes encoding enzymes involved in the SL biosynthetic pathway are GERMACRENE A SYNTHASE (GAS), GERMACRENE A OXIDASE (GAO), COSTUNOLIDE SYNTHASE (COS) and KAUNIOLIDE SYNTHASE (KLS). In this study, we integrated genome and transcriptome mining to further unravel SL biosynthesis. We found that C. intybus SL biosynthesis is controlled by the phytohormone methyl jasmonate (MeJA). Gene family annotation and MeJA inducibility enabled the pinpointing of candidate genes related with the SL biosynthetic pathway. We specifically focused on members of subclade CYP71 of the cytochrome P450 family. We verified the biochemical activity of 14 C. intybus CYP71 enzymes transiently produced in Nicotiana benthamiana and identified several functional paralogs for each of the GAO, COS and KLS genes, pointing to redundancy in and robustness of the SL biosynthetic pathway. Gene functionality was further analyzed using CRISPR/Cas9 genome editing in C. intybus. Metabolite profiling of mutant C. intybus lines demonstrated a successful reduction in SL metabolite production. Together, this study increases our insights into the C. intybus SL biosynthetic pathway and paves the way for the engineering of C. intybus bitterness.
Collapse
Affiliation(s)
- Charlotte De Bruyn
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Ellen De Keyser
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Christof Van Poucke
- Technology and Food Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | | | - Thomas B. Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Tom Eeckhaut
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Katrijn Van Laere
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| |
Collapse
|
6
|
Mipeshwaree Devi A, Khedashwori Devi K, Premi Devi P, Lakshmipriyari Devi M, Das S. Metabolic engineering of plant secondary metabolites: prospects and its technological challenges. FRONTIERS IN PLANT SCIENCE 2023; 14:1171154. [PMID: 37251773 PMCID: PMC10214965 DOI: 10.3389/fpls.2023.1171154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
Plants produce a wide range of secondary metabolites that play vital roles for their primary functions such as growth, defence, adaptations or reproduction. Some of the plant secondary metabolites are beneficial to mankind as nutraceuticals and pharmaceuticals. Metabolic pathways and their regulatory mechanism are crucial for targeting metabolite engineering. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated system has been widely applied in genome editing with high accuracy, efficiency, and multiplex targeting ability. Besides its vast application in genetic improvement, the technique also facilitates a comprehensive profiling approach to functional genomics related to gene discovery involved in various plant secondary metabolic pathways. Despite these wide applications, several challenges limit CRISPR/Cas system applicability in genome editing in plants. This review highlights updated applications of CRISPR/Cas system-mediated metabolic engineering of plants and its challenges.
Collapse
Affiliation(s)
| | | | | | | | - Sudripta Das
- Plant Bioresources Division, Institute of Bioresources and Sustainable Development, Imphal, Manipur, India
| |
Collapse
|
7
|
Cankar K, Hakkert JC, Sevenier R, Papastolopoulou C, Schipper B, Baixinho JP, Fernández N, Matos MS, Serra AT, Santos CN, Vahabi K, Tissier A, Bundock P, Bosch D. Lactucin Synthase Inactivation Boosts the Accumulation of Anti-inflammatory 8-Deoxylactucin and Its Derivatives in Chicory ( Cichorium intybus L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6061-6072. [PMID: 37036799 PMCID: PMC10119987 DOI: 10.1021/acs.jafc.2c08959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
For several sesquiterpene lactones (STLs) found in Asteraceae plants, very interesting biomedical activities have been demonstrated. Chicory roots accumulate the guaianolide STLs 8-deoxylactucin, lactucin, and lactucopicrin predominantly in oxalated forms in the latex. In this work, a supercritical fluid extract fraction of chicory STLs containing 8-deoxylactucin and 11β,13-dihydro-8-deoxylactucin was shown to have anti-inflammatory activity in an inflamed intestinal mucosa model. To increase the accumulation of these two compounds in chicory taproots, the lactucin synthase that takes 8-deoxylactucin as the substrate for the regiospecific hydroxylation to generate lactucin needs to be inactivated. Three candidate cytochrome P450 enzymes of the CYP71 clan were identified in chicory. Their targeted inactivation using the CRISPR/Cas9 approach identified CYP71DD33 to have lactucin synthase activity. The analysis of the terpene profile of the taproots of plants with edits in CYP71DD33 revealed a nearly complete elimination of the endogenous chicory STLs lactucin and lactucopicrin and their corresponding oxalates. Indeed, in the same lines, the interruption of biosynthesis resulted in a strong increase of 8-deoxylactucin and its derivatives. The enzyme activity of CYP71DD33 to convert 8-deoxylactucin to lactucin was additionally demonstrated in vitro using yeast microsome assays. The identified chicory lactucin synthase gene is predominantly expressed in the chicory latex, indicating that the late steps in the STL biosynthesis take place in the latex. This study contributes to further elucidation of the STL pathway in chicory and shows that root chicory can be positioned as a crop from which different health products can be extracted.
Collapse
Affiliation(s)
- Katarina Cankar
- Wageningen
Plant Research, Wageningen University &
Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Johanna Christina Hakkert
- Wageningen
Plant Research, Wageningen University &
Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Robert Sevenier
- Keygene
N.V., Agro Business Park
90, 6708PW Wageningen, Netherlands
| | - Christina Papastolopoulou
- Wageningen
Plant Research, Wageningen University &
Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Bert Schipper
- Wageningen
Plant Research, Wageningen University &
Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - João P. Baixinho
- Instituto
de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier,
Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Naiara Fernández
- Instituto
de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
| | - Melanie S. Matos
- Instituto
de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier,
Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- Instituto
de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier,
Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Claudia Nunes Santos
- Instituto
de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- Instituto
de Tecnologia Química e Biológica António Xavier,
Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
- iNOVA4Health,
NOVA Medical School Faculdade de Ciências Médicas, NMS|FCM,
Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Khabat Vahabi
- Department
of Cell and Metabolic Biology, Leibniz Institute
of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Alain Tissier
- Department
of Cell and Metabolic Biology, Leibniz Institute
of Plant Biochemistry, 06120 Halle (Saale), Germany
- Martin-Luther-Universität
Halle-Wittenberg, Institut für Pharmazie, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Paul Bundock
- Keygene
N.V., Agro Business Park
90, 6708PW Wageningen, Netherlands
| | - Dirk Bosch
- Wageningen
Plant Research, Wageningen University &
Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
8
|
Cichorium intybus L. Hairy Roots as a Platform for Antimicrobial Activity. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Industrial chicory is an important crop for its high dietary fibre content. Besides inulin, chicory taproots contain interesting secondary metabolite compounds, which possess bioactive properties. Hairy roots are differentiated plant cell cultures that have shown to be feasible biotechnological hosts for the production of several plant-derived molecules. In this study, hairy roots of industrial chicory cultivars were established, and their potential as a source of antimicrobial ingredients was assessed. It was shown that hot water extracts of hairy roots possessed antimicrobial activity against relevant human microbes, whereas corresponding chicory taproots did not show activity. Remarkably, a significant antimicrobial activity of hot water extracts of chicory hairy roots towards methicillin-resistant Staphylococcus aureus was observed, indicating a high potential of hairy roots as a host for production of antimicrobial agents.
Collapse
|
9
|
Mitra S, Anand U, Ghorai M, Kant N, Kumar M, Radha, Jha NK, Swamy MK, Proćków J, de la Lastra JMP, Dey A. Genome editing technologies, mechanisms and improved production of therapeutic phytochemicals: Opportunities and prospects. Biotechnol Bioeng 2023; 120:82-94. [PMID: 36224758 PMCID: PMC10091730 DOI: 10.1002/bit.28260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/10/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
Plants produce a large number of secondary metabolites, known as phytometabolites that may be employed as medicines, dyes, poisons, and insecticides in the field of medicine, agriculture, and industrial use, respectively. The rise of genome management approaches has promised a factual revolution in genetic engineering. Targeted genome editing in living entities permits the understanding of the biological systems very clearly, and also sanctions to address a wide-ranging objective in the direction of improving features of plant and their yields. The last few years have introduced a number of unique genome editing systems, including transcription activator-like effector nucleases, zinc finger nucleases, and miRNA-regulated clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). Genome editing systems have helped in the transformation of metabolic engineering, allowing researchers to modify biosynthetic pathways of different secondary metabolites. Given the growing relevance of editing genomes in plant research, the exciting novel methods are briefly reviewed in this chapter. Also, this chapter highlights recent discoveries on the CRISPR-based modification of natural products in different medicinal plants.
Collapse
Affiliation(s)
- Sicon Mitra
- Department of Biotechnology, School of Engineering & TechnologySharda UniversityGreater NoidaUttar PradeshIndia
| | | | - Mimosa Ghorai
- Department of Life SciencesPresidency UniversityKolkataWest BengalIndia
| | - Nishi Kant
- Department of Chemical EngineeringIndian Institute of Technology DelhiDelhiNew DelhiIndia
| | - Manoj Kumar
- Chemical and Biochemical Processing DivisionICAR‐Central Institute for Research on Cotton TechnologyMumbaiMaharashtraIndia
| | - Radha
- School of Biological and Environmental SciencesShoolini University of Biotechnology and Management SciencesSolanHimachal PradeshIndia
| | - Niraj K. Jha
- Department of Biotechnology, School of Engineering & TechnologySharda UniversityGreater NoidaUttar PradeshIndia
- Department of Biotechnology Engineering and Food TechnologyChandigarh UniversityMohaliPunjabIndia
- Department of Biotechnology, School of Applied & Life SciencesUttaranchal UniversityDehradunUttarakhandIndia
| | - Mallappa K. Swamy
- Department of BiotechnologyEast West First Grade College of ScienceBengaluruKarnatakaIndia
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental BiologyWrocław University of Environmental and Life SciencesWrocławPoland
| | - José M. Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Department of Life and Earth SciencesInstituto de Productos Naturales y Agrobiología‐Consejo Superior de Investigaciones Científicas, (IPNA‐CSIC)San Cristóbal de La LagunaTenerifeSpain
| | - Abhijit Dey
- Department of Life SciencesPresidency UniversityKolkataWest BengalIndia
| |
Collapse
|
10
|
Salvagnin U, Unkel K, Sprink T, Bundock P, Sevenier R, Bogdanović M, Todorović S, Cankar K, Hakkert JC, Schijlen E, Nieuwenhuis R, Hingsamer M, Kulmer V, Kernitzkyi M, Bosch D, Martens S, Malnoy M. A comparison of three different delivery methods for achieving CRISPR/Cas9 mediated genome editing in Cichorium intybus L. FRONTIERS IN PLANT SCIENCE 2023; 14:1111110. [PMID: 37123849 PMCID: PMC10131283 DOI: 10.3389/fpls.2023.1111110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Root chicory (Cichorium intybus L. var. sativum) is used to extract inulin, a fructose polymer used as a natural sweetener and prebiotic. However, bitter tasting sesquiterpene lactones, giving chicory its known flavour, need to be removed during inulin extraction. To avoid this extraction and associated costs, recently chicory variants with a lower sesquiterpene lactone content were created by inactivating the four copies of the germacrene A synthase gene (CiGAS-S1, -S2, -S3, -L) which encode the enzyme initiating bitter sesquiterpene lactone biosynthesis in chicory. In this study, different delivery methods for CRISPR/Cas9 reagents have been compared regarding their efficiency to induce mutations in the CiGAS genes, the frequency of off-target mutations as well as their environmental and economic impacts. CRISPR/Cas9 reagents were delivered by Agrobacterium-mediated stable transformation or transient delivery by plasmid or preassembled ribonucleic complexes (RNPs) using the same sgRNA. All methods used lead to a high number of INDEL mutations within the CiGAS-S1 and CiGAS-S2 genes, which match the used sgRNA perfectly; additionally, the CiGAS-S3 and CiGAS-L genes, which have a single mismatch with the sgRNA, were mutated but with a lower mutation efficiency. While using both RNPs and plasmids delivery resulted in biallelic, heterozygous or homozygous mutations, plasmid delivery resulted in 30% of unwanted integration of plasmid fragments in the genome. Plants transformed via Agrobacteria often showed chimerism and a mixture of CiGAS genotypes. This genetic mosaic becomes more diverse when plants were grown over a prolonged period. While the genotype of the on-targets varied between the transient and stable delivery methods, no off-target activity in six identified potential off-targets with two to four mismatches was found. The environmental impacts (greenhouse gas (GHG) emissions and primary energy demand) of the methods are highly dependent on their individual electricity demand. From an economic view - like for most research and development activities - employment and value-added multiplier effects are high; particularly when compared to industrial or manufacturing processes. Considering all aspects, we conclude that using RNPs is the most suitable method for genome editing in chicory since it led to a high efficiency of editing, no off-target mutations, non-transgenic plants with no risk of unwanted integration of plasmid DNA and without needed segregation of transgenes.
Collapse
Affiliation(s)
- Umberto Salvagnin
- Fondazione Edmund Mach (FEM), Centro Ricerca e Innovazione, San Michele all’Adige, TN, Italy
- *Correspondence: Umberto Salvagnin, ; Mickael Malnoy,
| | - Katharina Unkel
- Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Quedlinburg, Germany
| | - Thorben Sprink
- Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Quedlinburg, Germany
| | - Paul Bundock
- Keygene N.V., Agro Business Park 90, Wageningen, Netherlands
| | - Robert Sevenier
- Keygene N.V., Agro Business Park 90, Wageningen, Netherlands
| | - Milica Bogdanović
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Slađana Todorović
- Department for Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Cankar
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | | | - Elio Schijlen
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Ronald Nieuwenhuis
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | | | | | | | - Dirk Bosch
- Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Stefan Martens
- Fondazione Edmund Mach (FEM), Centro Ricerca e Innovazione, San Michele all’Adige, TN, Italy
| | - Mickael Malnoy
- Fondazione Edmund Mach (FEM), Centro Ricerca e Innovazione, San Michele all’Adige, TN, Italy
- *Correspondence: Umberto Salvagnin, ; Mickael Malnoy,
| |
Collapse
|
11
|
Enzyme-treated chicory for cosmetics: application assessment and techno-economic analysis. AMB Express 2022; 12:152. [PMID: 36472772 PMCID: PMC9727056 DOI: 10.1186/s13568-022-01494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022] Open
Abstract
Chicory (Cichorium intybus L.) is an important industrial crop that produces large quantities of the dietary fiber inulin in its roots. Following inulin extraction, the bagasse is typically used as animal feed, but it contains numerous bioactive secondary metabolites with potential applications in healthcare and cosmetic products. Here we assessed the antimicrobial properties of chicory biomass pre-treated with various enzymes alone and in combination to release the bioactive compounds and increase their bioavailability. We found that pre-treatment significantly increased the antimicrobial activity of this industrial by-product, yielding an extract that inhibited typical skin pathogens in a cosmetic formula challenge test. We also evaluated the valorization of chicory biomass as a bioactive cosmetic ingredient. Economic feasibility was estimated by combining our experimental results with a conceptual techno-economic analysis. Our results suggest that chicory biomass can be utilized for the sustainable production of efficacious cosmetic ingredients.
Collapse
|
12
|
Scintilla S, Salvagnin U, Giacomelli L, Zeilmaker T, Malnoy MA, Rouppe van der Voort J, Moser C. Regeneration of non-chimeric plants from DNA-free edited grapevine protoplasts. FRONTIERS IN PLANT SCIENCE 2022; 13:1078931. [PMID: 36531381 PMCID: PMC9752144 DOI: 10.3389/fpls.2022.1078931] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 05/19/2023]
Abstract
The application of New Breeding Techniques (NBTs) in Vitis vinifera is highly desirable to introduce valuable traits while preserving the genotype of the elite cultivars. However, a broad application of NBTs through standard DNA-based transformation is poorly accepted by public opinion and law regulations in Europe and other countries due to the stable integration of exogenous DNA, which leads to transgenic plants possibly affected by chimerism. A single-cell based approach, coupled with a DNA-free transfection of the CRISPR/Cas editing machinery, constitutes a powerful tool to overcome these problems and maintain the original genetic make-up in the whole organism. We here describe a successful single-cell based, DNA-free methodology to obtain edited grapevine plants, regenerated from protoplasts isolated from embryogenic callus of two table grapevine varieties (V. vinifera cv. Crimson seedless and Sugraone). The regenerated, non-chimeric plants were edited on the downy- and powdery-mildew susceptibility genes, VviDMR6 and VviMlo6 respectively, either as single or double mutants.
Collapse
Affiliation(s)
- Simone Scintilla
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all’Adige, Trento, Italy
| | - Umberto Salvagnin
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all’Adige, Trento, Italy
- Consorzio Innovazione Vite (CIVIT), Trento, TN, Italy
| | - Lisa Giacomelli
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all’Adige, Trento, Italy
- Scienza Biotechnologies BV., Enkhuizen, Netherlands
| | | | - Mickael A. Malnoy
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all’Adige, Trento, Italy
| | | | - Claudio Moser
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all’Adige, Trento, Italy
| |
Collapse
|
13
|
Hingsamer M, Kulmer V, de Roode M, Kernitzkyi M. Environmental and socio-economic impacts of new plant breeding technologies: A case study of root chicory for inulin production. Front Genome Ed 2022; 4:919392. [PMID: 36275198 PMCID: PMC9582860 DOI: 10.3389/fgeed.2022.919392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022] Open
Abstract
In Europe, root chicory and other plants are cultivated for their prebiotic food fiber, inulin, which boosts the growth of beneficial gut bacteria and stimulates the human immune system. CHIC, a H2020 project, develops new chicory variants which produce more and reported to be healthier inulin as well as medicinal terpenes. This paper presents an environmental and socio-economic assessment of the whole value chain of the new chicory variants and their derived products using a case study based in the Netherlands. Two scenarios based on new chicory variants using new plant breeding technologies (NPBT) are analyzed and impacts thereof are compared to the reference scenario; the current commercial inulin process from conventional chicory. Both scenarios show higher inulin content, but the inulin adsorption process differs. While one aims to optimize inulin yield, the other one explores the potential of a multipurpose use, yielding inulin and health beneficial terpenes. Methodologically, we employ multi-regional input-output (MRIO) analysis to estimate additional economic benefits, added value and job creation, while by means of life cycle assessment (LCA) effects on greenhouse gas (GHG) emissions and primary energy demand are derived. Both methods, MRIO and LCA, are well suited to analyze the raised issues and draw on the same data. Generally, the results highlight the importance of inulin production at a national and EU-level in the reference scenario. In case of the two scenarios, we find that the related socio-economic impacts are much higher than in the reference scenario and thus highlight their ability to boost economic activity and increase competiveness of the EU, i.e. over 80% of the generated value added stays in the EU. In terms of environmental impacts, the two scenarios show lower GHG emissions and primary energy demand due to the higher efficiencies of the process in the scenarios compared to the reference inulin process. Additionally, regarding the goal of climate neutral production, we find that the majority of GHG emissions stem from the electricity mix and natural gas demand. Replacing these sources of energy with more renewable ones will contribute to this goal.
Collapse
Affiliation(s)
- Maria Hingsamer
- Joanneum Research Forschungsgesellschaft mbH, LIFE—Institute for Climate, Energy and Society, Graz, Austria,*Correspondence: Maria Hingsamer,
| | - Veronika Kulmer
- Joanneum Research Forschungsgesellschaft mbH, LIFE—Institute for Climate, Energy and Society, Graz, Austria
| | | | - Michael Kernitzkyi
- Joanneum Research Forschungsgesellschaft mbH, LIFE—Institute for Climate, Energy and Society, Graz, Austria
| |
Collapse
|
14
|
Zhang B, Wang Z, Han X, Liu X, Wang Q, Zhang J, Zhao H, Tang J, Luo K, Zhai Z, Zhou J, Liu P, He W, Luo H, Yu S, Gao Q, Zhang L, Li D. The chromosome-scale assembly of endive (Cichorium endivia) genome provides insights into the sesquiterpenoid biosynthesis. Genomics 2022; 114:110400. [PMID: 35691507 DOI: 10.1016/j.ygeno.2022.110400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/06/2022] [Accepted: 06/04/2022] [Indexed: 11/25/2022]
Abstract
Endive (Cichorium endivia L.) is a leafy vegetable in the Asteraceae family. Sesquiterpene lactones (STLs) in endive leaves bring a bitter taste that varies between varieties. Despite their importance in breeding varieties with unique flavours, sesquiterpenoid biosynthesis pathways in endive are poorly understood. We assembled a chromosome-scale endive genome of 641 Mb with a contig N50 of 5.16 Mb and annotated 46,711 protein-coding genes. Several gene families, especially terpene synthases (TPS) genes, expanded significantly in the C. endivia genome. STLs biosynthesis-related genes and TPS genes in more bitter varieties have shown a higher level of expression, which could be attributed to genomic variations. Our results penetrate the origin and diversity of bitter taste and facilitate the molecular breeding of endive varieties with unique bitter tastes. The high-quality endive assembly would provide a reference genome for studying the evolution and diversity of Asteraceae.
Collapse
Affiliation(s)
- Bin Zhang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Zhiwei Wang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Xiangyang Han
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Xue Liu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Qi Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Jiao Zhang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Hong Zhao
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Kangsheng Luo
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Zhaodong Zhai
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Jun Zhou
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Pangyuan Liu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Weiming He
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Shuancang Yu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Qiang Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China.
| |
Collapse
|
15
|
Cankar K, Hakkert JC, Sevenier R, Campo E, Schipper B, Papastolopoulou C, Vahabi K, Tissier A, Bundock P, Bosch D. CRISPR/Cas9 targeted inactivation of the kauniolide synthase in chicory results in accumulation of costunolide and its conjugates in taproots. FRONTIERS IN PLANT SCIENCE 2022; 13:940003. [PMID: 36105709 PMCID: PMC9465254 DOI: 10.3389/fpls.2022.940003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 05/06/2023]
Abstract
Chicory taproots accumulate sesquiterpene lactones lactucin, lactucopicrin, and 8-deoxylactucin, predominantly in their oxalated forms. The biosynthetic pathway for chicory sesquiterpene lactones has only partly been elucidated; the enzymes that convert farnesyl pyrophosphate to costunolide have been described. The next biosynthetic step of the conversion of costunolide to the tricyclic structure, guaianolide kauniolide, has so far not been elucidated in chicory. In this work three putative kauniolide synthase genes were identified in chicory named CiKLS1, CiKLS2, and CiKLS3. Their activity to convert costunolide to kauniolide was demonstrated in vitro using yeast microsome assays. Next, introduction of CRISPR/Cas9 reagents into chicory protoplasts was used to inactivate multiple chicory KLS genes and several chicory lines were successfully regenerated. The inactivation of the kauniolide synthase genes in chicory by the CRISPR/Cas9 approach resulted in interruption of the sesquiterpene lactone biosynthesis in chicory leaves and taproots. In chicory taproots, but not in leaves, accumulation of costunolide and its conjugates was observed to high levels, namely 1.5 mg/g FW. These results confirmed that all three genes contribute to STL accumulation, albeit to different extent. These observations demonstrate that three genes oriented in tandem on the chicory genome encode kauniolide synthases that initiate the conversion of costunolide toward the sesquiterpene lactones in chicory.
Collapse
Affiliation(s)
- Katarina Cankar
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Katarina Cankar,
| | | | | | - Eva Campo
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | - Bert Schipper
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| | | | - Khabat Vahabi
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | | | - Dirk Bosch
- Wageningen Plant Research, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
16
|
Scintilla S, Salvagnin U, Giacomelli L, Zeilmaker T, Malnoy MA, Rouppe van der Voort J, Moser C. Regeneration of non-chimeric plants from DNA-free edited grapevine protoplasts. FRONTIERS IN PLANT SCIENCE 2022; 13:1078931. [PMID: 36531381 DOI: 10.1101/2021.07.16.452503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 05/20/2023]
Abstract
The application of New Breeding Techniques (NBTs) in Vitis vinifera is highly desirable to introduce valuable traits while preserving the genotype of the elite cultivars. However, a broad application of NBTs through standard DNA-based transformation is poorly accepted by public opinion and law regulations in Europe and other countries due to the stable integration of exogenous DNA, which leads to transgenic plants possibly affected by chimerism. A single-cell based approach, coupled with a DNA-free transfection of the CRISPR/Cas editing machinery, constitutes a powerful tool to overcome these problems and maintain the original genetic make-up in the whole organism. We here describe a successful single-cell based, DNA-free methodology to obtain edited grapevine plants, regenerated from protoplasts isolated from embryogenic callus of two table grapevine varieties (V. vinifera cv. Crimson seedless and Sugraone). The regenerated, non-chimeric plants were edited on the downy- and powdery-mildew susceptibility genes, VviDMR6 and VviMlo6 respectively, either as single or double mutants.
Collapse
Affiliation(s)
- Simone Scintilla
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all'Adige, Trento, Italy
| | - Umberto Salvagnin
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all'Adige, Trento, Italy
- Consorzio Innovazione Vite (CIVIT), Trento, TN, Italy
| | - Lisa Giacomelli
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all'Adige, Trento, Italy
- Scienza Biotechnologies BV., Enkhuizen, Netherlands
| | | | - Mickael A Malnoy
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all'Adige, Trento, Italy
| | | | - Claudio Moser
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all'Adige, Trento, Italy
| |
Collapse
|
17
|
Häkkinen ST, Soković M, Nohynek L, Ćirić A, Ivanov M, Stojković D, Tsitko I, Matos M, Baixinho JP, Ivasiv V, Fernández N, Nunes dos Santos C, Oksman-Caldentey KM. Chicory Extracts and Sesquiterpene Lactones Show Potent Activity against Bacterial and Fungal Pathogens. Pharmaceuticals (Basel) 2021; 14:ph14090941. [PMID: 34577641 PMCID: PMC8469098 DOI: 10.3390/ph14090941] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Chicory (Cichorium intybus L.) is an important industrial crop cultivated mainly to extract the dietary fiber inulin. However, chicory also contains bioactive compounds such as sesquiterpene lactones and certain polyphenols, which are currently discarded as waste. Plants are an important source of active pharmaceutical ingredients, including novel antimicrobials that are urgently needed due to the global spread of drug-resistant bacteria and fungi. Here, we tested different extracts of chicory for a range of bioactivities, including antimicrobial, antifungal and cytotoxicity assays. Antibacterial and antifungal activities were generally more potent in ethyl acetate extracts compared to water extracts, whereas supercritical fluid extracts showed the broadest range of bioactivities in our assays. Remarkably, the chicory supercritical fluid extract and a purified fraction thereof inhibited both methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Pseudomonas aeruginosa IBRS P001. Chicory extracts also showed higher antibiofilm activity against the yeast Candida albicans than standard sesquiterpene lactone compounds. The cytotoxicity of the extracts was generally low. Our results may thus lead to the development of novel antibacterial and antifungal preparations that are both effective and safe for human use.
Collapse
Affiliation(s)
- Suvi T. Häkkinen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, Tietotie 2, FI-02044 VTT Espoo, Finland; (L.N.); (I.T.); (K.-M.O.-C.)
- Correspondence:
| | - Marina Soković
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (A.Ć.); (M.I.); (D.S.)
| | - Liisa Nohynek
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, Tietotie 2, FI-02044 VTT Espoo, Finland; (L.N.); (I.T.); (K.-M.O.-C.)
| | - Ana Ćirić
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (A.Ć.); (M.I.); (D.S.)
| | - Marija Ivanov
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (A.Ć.); (M.I.); (D.S.)
| | - Dejan Stojković
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.S.); (A.Ć.); (M.I.); (D.S.)
| | - Irina Tsitko
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, Tietotie 2, FI-02044 VTT Espoo, Finland; (L.N.); (I.T.); (K.-M.O.-C.)
| | - Melanie Matos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal;
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (V.I.); (N.F.); (C.N.d.S.)
| | - João P. Baixinho
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (V.I.); (N.F.); (C.N.d.S.)
| | - Viktoriya Ivasiv
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (V.I.); (N.F.); (C.N.d.S.)
| | - Naiara Fernández
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (V.I.); (N.F.); (C.N.d.S.)
| | - Claudia Nunes dos Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (V.I.); (N.F.); (C.N.d.S.)
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Kirsi-Marja Oksman-Caldentey
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, Tietotie 2, FI-02044 VTT Espoo, Finland; (L.N.); (I.T.); (K.-M.O.-C.)
| |
Collapse
|