1
|
Jin W, Yang Z, Xu K, Liu Q, Luo Q, Li L, Xiang X. A Comprehensive Review of Plant Volatile Terpenoids, Elucidating Interactions with Surroundings, Systematic Synthesis, Regulation, and Targeted Engineering Production. BIOLOGY 2025; 14:466. [PMID: 40427655 PMCID: PMC12108659 DOI: 10.3390/biology14050466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025]
Abstract
Plants require a flexible avoidance mechanism as they need to cope with external stimuli and challenges through complex specialized metabolites, among which volatile terpenoids make outstanding contributions, acting as key media signal substances in the cooperation between plants and surrounding organisms. In recent decades, the research on the identification and functional characterization of terpenoid synthase and factors regulating metabolic shunts has gained significant attention, leading to substantial progress and notable achievements. However, with the popularization of terpenoids in insect and disease prevention, medical care, cosmetics, and other fields, coupled with increasing resistance to artificially produced chemical products, the demand for natural terpenoids has outpaced supply, prompting the emergence and popularity of targeted engineering for the mass production of terpenoids using microorganisms and plants as platforms. In this paper, we provide a detailed overview of the key knowledge and research progress of volatile terpenoids with regard to multiple functions, complex synthetic pathways, key terpenoid synthase genes, related regulatory factors, and target engineering.
Collapse
Affiliation(s)
- Wei Jin
- College of Life Science and Agriculture, Zhoukou Normal University, Zhoukou 466001, China; (W.J.); (Q.L.); (L.L.)
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou 466001, China
| | - Zhongzhou Yang
- Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou 466001, China; (Z.Y.); (K.X.); (Q.L.)
- Henan International Joint Laboratory of Translational Biology, Zhoukou Normal University, Zhoukou 466001, China
| | - Kedong Xu
- Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou 466001, China; (Z.Y.); (K.X.); (Q.L.)
- Henan International Joint Laboratory of Translational Biology, Zhoukou Normal University, Zhoukou 466001, China
| | - Qiuping Liu
- College of Life Science and Agriculture, Zhoukou Normal University, Zhoukou 466001, China; (W.J.); (Q.L.); (L.L.)
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou 466001, China
| | - Qi Luo
- Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou 466001, China; (Z.Y.); (K.X.); (Q.L.)
| | - Lili Li
- College of Life Science and Agriculture, Zhoukou Normal University, Zhoukou 466001, China; (W.J.); (Q.L.); (L.L.)
- Key Laboratory of Crop Molecular Breeding and Bioreactor, Zhoukou Normal University, Zhoukou 466001, China; (Z.Y.); (K.X.); (Q.L.)
- Henan International Joint Laboratory of Translational Biology, Zhoukou Normal University, Zhoukou 466001, China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| |
Collapse
|
2
|
Bednarczyk D, Skaliter O, Kerzner S, Masci T, Shklarman E, Shor E, Vainstein A. The homeotic gene PhDEF regulates production of volatiles in petunia flowers by activating EOBI and EOBII. THE PLANT CELL 2025; 37:koaf027. [PMID: 39913239 PMCID: PMC11850304 DOI: 10.1093/plcell/koaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025]
Abstract
In petunia (Petunia × hybrida), MADS-box homeotic genes dictate floral organ identity. For instance, DEFICIENS (PhDEF), GLOBOSA1, and GLOBOSA2 (PhGLO1/2) are responsible for petal and stamen identity. However, whether homeotic genes, particularly PhDEF, have a function at the later stages of flower development remains elusive. In petunia flowers, scent production initiates at anthesis, when the flower is ready for pollination, and is triggered by activation of EMISSION OF BENZENOIDS I (EOBI) and EOBII, MYB transcriptional regulators of scent-related genes. Here, we revealed the role of PhDEF in mature flowers, showing that it activates scent production. PhDEF suppression using a transient viral system in petunia flowers led to a significant reduction in volatile emission and pool levels, and in the transcript levels of scent-related transcriptional regulators and enzymes. Promoter activity assays demonstrated that PhDEF activates EOBI, EOBII, and the phenylpropanoid biosynthesis genes L-PHENYLALANINE AMMONIA LYASE and PHENYLACETALDEHYDE SYNTHASE. Our findings underscore the importance of PhDEF in petunia flower development from initiation to maturation and in coordinating petal specification and the establishment of showy pollination-related traits.
Collapse
Affiliation(s)
- Dominika Bednarczyk
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oded Skaliter
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Shane Kerzner
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tania Masci
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elena Shklarman
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ekaterina Shor
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
3
|
Chen Y, Lu X, Gao T, Zhou Y. The Scent of Lily Flowers: Advances in the Identification, Biosynthesis, and Regulation of Fragrance Components. Int J Mol Sci 2025; 26:468. [PMID: 39859184 PMCID: PMC11764710 DOI: 10.3390/ijms26020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/04/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Lilies (Lilium spp.) are renowned for their diverse and captivating floral scents, which are highly valued both commercially and ornamentally. This review provides a comprehensive overview of recent advancements in the identification, biosynthesis, and regulation of fragrance components in lily flowers. Various volatile organic compounds (VOCs) that contribute to the unique scents of different lily species and cultivars, including terpenoids, benzenoids/phenylpropanoids, and fatty acid derivatives, are discussed. The release patterns of these compounds from different floral tissues and at different developmental stages are examined, highlighting the significant role of tepals. Detection methods such as gas chromatography-mass spectrometry (GC-MS) and sensory analysis are evaluated for their effectiveness in fragrance research. Additionally, the biosynthetic pathways of key fragrance compounds are explored, focusing on the terpenoid and benzenoid/phenylpropanoid pathways and the regulatory mechanisms involving transcription factors and environmental factors. This review also addresses the influence of genetic and environmental factors on fragrance production and proposes future research directions to enhance the aromatic qualities of lilies through selective genetic and breeding approaches. Emphasis is placed on the potential applications of these findings in the floral industry to improve the commercial value and consumer appeal of lily flowers.
Collapse
Affiliation(s)
- Yiwei Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.C.)
| | - Xiaoxuan Lu
- Guangdong Provincial Key Laboratory of Ornamental Plant Germulam Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Xinjiang Field Scientific Observation Research Station of Tianshan Wild Fruit Forest Ecosystem, Yili Botanical Garden, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinyuan 835800, China
| | - Ting Gao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.C.)
| | - Yiwei Zhou
- Guangdong Provincial Key Laboratory of Ornamental Plant Germulam Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
4
|
Xu H, Wang Z, Qin Z, Zhang M, Qin Y. Evaluating of effects for the sequence fermentation with M. pulcherrima and I. terricola on mulberry wine fermentation: Physicochemical, flavonoids, and volatiles profiles. Food Chem X 2024; 24:101869. [PMID: 39974707 PMCID: PMC11838122 DOI: 10.1016/j.fochx.2024.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 02/21/2025] Open
Abstract
This study investigates the variation of physicochemical, flavonoids, and volatiles during sequential fermentation which Metschnikowia pulcherrima and Issatchenkia terricola as sequential co-fermenters and a single fermentation by Saccharomyces cerevisiae in mulberry wine. Sequential fermentation shown that β-glucosidase activity greater and fermentation time declined to 144 h. In addition, 11 flavonoids (apigenin-5-O-glucoside, aromadendrin-7-O-glucoside, kaempferol-3,7-O-diglucoside, and so on) were significantly increased. Significant differences were found between types of metabolic products enriched in flavone and flavonol biosynthesis and anthocyanins biosynthesis, with an enrichment ratio of 46.15 % and 23.08 %, respectively. 16 apple-scented compounds (2-Buten-1-one, (E)-1-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-, Butanoic acid, (Z)-3-hexenyl ester, 3-methyl-1-methylethyl-Butanoic acid ester, and so on), 5 rose-scented (e.g. benzyl alcohol, ethyl geranate, hydrocinnamic acid), and 4 balsamic-scented compounds ((-)-myrtenol, benzoic acid 1-methylethyl ester, benzyl alcohol, p-cymen-7-ol) were distinctively present. Interestingly, tryptophan metabolism and indole alkaloid biosynthesis are only enriched in sequential fermentation.
Collapse
Affiliation(s)
| | | | - Zhenyang Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
5
|
Yang K, Li Z, Zhu C, Liu Y, Li H, Di X, Song X, Ren H, Gao Z. A hierarchical ubiquitination-mediated regulatory module controls bamboo lignin biosynthesis. PLANT PHYSIOLOGY 2024; 196:2565-2582. [PMID: 39250763 DOI: 10.1093/plphys/kiae480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
The lignocellulosic feedstock of woody bamboo shows promising potential as an alternative to conventional wood, attributed to its excellent properties. The content and distribution of lignin serve as the foundation of these properties. While the regulation of lignin biosynthesis in bamboo has been extensively studied at the transcriptional level, its posttranslational control has remained poorly understood. This study provides a ubiquitinome dataset for moso bamboo (Phyllostachys edulis), identifying 13,015 ubiquitinated sites in 4,849 unique proteins. We further identified Kelch repeat F-box protein 9 (PeKFB9) that plays a negative role in lignin biosynthesis. Heterologous expression of PeKFB9 resulted in reduced accumulation of lignin and decreased phenylalanine ammonia lyase (PAL) activities. Both in vitro and in vivo assays identified interaction between PeKFB9 and PePAL10. Further examination revealed that SCFPeKFB9 mediated the ubiquitination and degradation of PePAL10 via the 26S proteasome pathway. Moreover, PebZIP28667 could bind to the PePAL10 promoter to significantly inhibit its transcription, and ubiquitination of PebZIP28667 weakened this inhibition. Collectively, our findings reveal a PeKFB9-PePAL10/PebZIP28667-PePAL10 module that acts as a negative regulator of lignin biosynthesis. This study advances our understanding of posttranslational regulation in plant lignification, which will facilitate the improvement of the properties of bamboo wood and the breeding of varieties.
Collapse
Affiliation(s)
- Kebin Yang
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| | - Ziyang Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Chenglei Zhu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yan Liu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Hui Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xiaolin Di
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Xinzhang Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Haiqing Ren
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhimin Gao
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
6
|
Shor E, Vainstein A. Petunia PHYTOCHROME INTERACTING FACTOR 4/5 transcriptionally activates key regulators of floral scent. PLANT MOLECULAR BIOLOGY 2024; 114:66. [PMID: 38816626 PMCID: PMC11139750 DOI: 10.1007/s11103-024-01455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/09/2024] [Indexed: 06/01/2024]
Abstract
Floral scent emission of petunia flowers is regulated by light conditions, circadian rhythms, ambient temperature and the phytohormones GA and ethylene, but the mechanisms underlying sensitivity to these factors remain obscure. PHYTOCHROME INTERACTING FACTORs (PIFs) have been well studied as components of the regulatory machinery for numerous physiological processes. Acting redundantly, they serve as transmitters of light, circadian, metabolic, thermal and hormonal signals. Here we identified and characterized the phylogenetics of petunia PIF family members (PhPIFs). PhPIF4/5 was revealed as a positive regulator of floral scent: TRV-based transient suppression of PhPIF4/5 in petunia petals reduced emission of volatiles, whereas transient overexpression increased scent emission. The mechanism of PhPIF4/5-mediated regulation of volatile production includes activation of the expression of genes encoding biosynthetic enzymes and a key positive regulator of the pathway, EMISSION OF BENZENOIDS II (EOBII). The PIF-binding motif on the EOBII promoter (G-box) was shown to be needed for this activation. As PhPIF4/5 homologues are sensors of dawn and expression of EOBII also peaks at dawn, the prior is proposed to be part of the diurnal control of the volatile biosynthetic machinery. PhPIF4/5 was also found to transcriptionally activate PhDELLAs; a similar positive effect of PIFs on DELLA expression was further confirmed in Arabidopsis seedlings. The PhPIF4/5-PhDELLAs feedback is proposed to fine-tune GA signaling for regulation of floral scent production.
Collapse
Affiliation(s)
- Ekaterina Shor
- Institute of Plant Sciences, ARO, Volcani Institute, Rishon Lezion, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University, Rehovot, Israel.
| |
Collapse
|
7
|
Skaliter O, Bednarczyk D, Shor E, Shklarman E, Manasherova E, Aravena-Calvo J, Kerzner S, Cna’ani A, Jasinska W, Masci T, Dvir G, Edelbaum O, Rimon B, Brotman Y, Cohen H, Vainstein A. The R2R3-MYB transcription factor EVER controls the emission of petunia floral volatiles by regulating epicuticular wax biosynthesis in the petal epidermis. THE PLANT CELL 2023; 36:174-193. [PMID: 37818992 PMCID: PMC10734618 DOI: 10.1093/plcell/koad251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/06/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The epidermal cells of petunia (Petunia × hybrida) flowers are the main site of volatile emission. However, the mechanisms underlying the release of volatiles into the environment are still being explored. Here, using cell-layer-specific transcriptomic analysis, reverse genetics by virus-induced gene silencing and clustered regularly interspaced short palindromic repeat (CRISPR), and metabolomics, we identified EPIDERMIS VOLATILE EMISSION REGULATOR (EVER)-a petal adaxial epidermis-specific MYB activator that affects the emission of volatiles. To generate ever knockout lines, we developed a viral-based CRISPR/Cas9 system for efficient gene editing in plants. These knockout lines, together with transient-suppression assays, revealed EVER's involvement in the repression of low-vapor-pressure volatiles. Internal pools and annotated scent-related genes involved in volatile production and emission were not affected by EVER. RNA-Seq analyses of petals of ever knockout lines and EVER-overexpressing flowers revealed enrichment in wax-related biosynthesis genes. Liquid chromatography/gas chromatography-MS analyses of petal epicuticular waxes revealed substantial reductions in wax loads in ever petals, particularly of monomers of fatty acids and wax esters. These results implicate EVER in the emission of volatiles by fine-tuning the composition of petal epicuticular waxes. We reveal a petunia MYB regulator that interlinks epicuticular wax composition and volatile emission, thus unraveling a regulatory layer in the scent-emission machinery in petunia flowers.
Collapse
Affiliation(s)
- Oded Skaliter
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Dominika Bednarczyk
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ekaterina Shor
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elena Shklarman
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Javiera Aravena-Calvo
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Shane Kerzner
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alon Cna’ani
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Weronika Jasinska
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Tania Masci
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Gony Dvir
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Orit Edelbaum
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ben Rimon
- Department of Ornamental Horticulture and Biotechnology, The Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
8
|
Yue Y, Wang L, Li M, Liu F, Yin J, Huang L, Zhou B, Li X, Yu Y, Chen F, Yu R, Fan Y. A BAHD acyltransferase contributes to the biosynthesis of both ethyl benzoate and methyl benzoate in the flowers of Lilium oriental hybrid 'Siberia'. FRONTIERS IN PLANT SCIENCE 2023; 14:1275960. [PMID: 37841617 PMCID: PMC10570747 DOI: 10.3389/fpls.2023.1275960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Lily is a popular flower worldwide due to its elegant appearance and pleasant fragrance. Floral volatiles of lily are predominated by monoterpenes and benzenoids. While a number of genes for monoterpene biosynthesis have been characterized, the molecular mechanism underlying floral benzenoid formation in lily remains unclear. Here, we report on the identification and characterization of a novel BAHD acyltransferase gene that contributes to the biosynthesis of two related floral scent benzoate esters, ethyl benzoate and methyl benzoate, in the scented Lilium oriental hybrid 'Siberia'. The emission of both methyl benzoate and ethyl benzoate in L. 'Siberia' was found to be tepal-specific, floral development-regulated and rhythmic. Through transcriptome profiling and bioinformatic analysis, a BAHD acyltransferase gene designated LoAAT1 was identified as the top candidate gene for the production of ethyl benzoate. In vitro enzyme assays and substrate feeding assays provide substantial evidence that LoAAT1 is responsible for the biosynthesis of ethyl benzoate. It was interesting to note that in in vitro enzyme assay, LoAAT1 can also catalyze the formation of methyl benzoate, which is typically formed by the action of benzoic acid methyltransferase (BAMT). The lack of an expressed putative BAMT gene in the flower transcriptome of L. 'Siberia', together with biochemical and expression evidence, led us to conclude that LoAAT1 is also responsible for, or at least contributes to, the biosynthesis of the floral scent compound methyl benzoate. This is the first report that a member of the plant BAHD acyltransferase family contributes to the production of both ethyl benzoate and methyl benzoate, presenting a new mechanism for the biosynthesis of benzoate esters.
Collapse
Affiliation(s)
- Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Lan Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Manyi Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Fang Liu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Junle Yin
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Lijun Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Bin Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Shor E, Skaliter O, Sharon E, Kitsberg Y, Bednarczyk D, Kerzner S, Vainstein D, Tabach Y, Vainstein A. Developmental and temporal changes in petunia petal transcriptome reveal scent-repressing plant-specific RING-kinase-WD40 protein. FRONTIERS IN PLANT SCIENCE 2023; 14:1180899. [PMID: 37360732 PMCID: PMC10286513 DOI: 10.3389/fpls.2023.1180899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/05/2023] [Indexed: 06/28/2023]
Abstract
In moth-pollinated petunias, production of floral volatiles initiates when the flower opens and occurs rhythmically during the day, for optimal flower-pollinator interaction. To characterize the developmental transcriptomic response to time of day, we generated RNA-Seq databases for corollas of floral buds and mature flowers in the morning and in the evening. Around 70% of transcripts accumulating in petals demonstrated significant changes in expression levels in response to the flowers' transition from a 4.5-cm bud to a flower 1 day postanthesis (1DPA). Overall, 44% of the petal transcripts were differentially expressed in the morning vs. evening. Morning/evening changes were affected by flower developmental stage, with a 2.5-fold larger transcriptomic response to daytime in 1DPA flowers compared to buds. Analyzed genes known to encode enzymes in volatile organic compound biosynthesis were upregulated in 1DPA flowers vs. buds-in parallel with the activation of scent production. Based on analysis of global changes in the petal transcriptome, PhWD2 was identified as a putative scent-related factor. PhWD2 is a protein that is uniquely present in plants and has a three-domain structure: RING-kinase-WD40. Suppression of PhWD2 (termed UPPER - Unique Plant PhEnylpropanoid Regulator) resulted in a significant increase in the levels of volatiles emitted from and accumulated in internal pools, suggesting that it is a negative regulator of petunia floral scent production.
Collapse
Affiliation(s)
- Ekaterina Shor
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oded Skaliter
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elad Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaarit Kitsberg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dominika Bednarczyk
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shane Kerzner
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Danny Vainstein
- School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Tabach
- The Institute for Medical Research, Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
10
|
Shor E, Ravid J, Sharon E, Skaliter O, Masci T, Vainstein A. SCARECROW-like GRAS protein PES positively regulates petunia floral scent production. PLANT PHYSIOLOGY 2023; 192:409-425. [PMID: 36760164 PMCID: PMC10152688 DOI: 10.1093/plphys/kiad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 05/03/2023]
Abstract
Emission of scent volatiles by flowers is important for successful pollination and consequently, reproduction. Petunia (Petunia hybrida) floral scent is formed mainly by volatile products of the phenylpropanoid pathway. We identified and characterized a regulator of petunia scent production: the GRAS protein PHENYLPROPANOID EMISSION-REGULATING SCARECROW-LIKE (PES). Its expression increased in petals during bud development and was highest in open flowers. Overexpression of PES increased the production of floral volatiles, while its suppression resulted in scent reduction. We showed that PES upregulates the expression of genes encoding enzymes of the phenylpropanoid and shikimate pathways in petals, and of the core regulator of volatile biosynthesis ODORANT1 by activating its promoter. PES is an ortholog of Arabidopsis (Arabidopsis thaliana) PHYTOCHROME A SIGNAL TRANSDUCTION 1, involved in physiological responses to far-red (FR) light. Analyses of the effect of nonphotosynthetic irradiation (low-intensity FR light) on petunia floral volatiles revealed FR light as a scent-activating factor. While PHYTOCHROME A regulated scent-related gene expression and floral scent production under FR light, the influence of PES on volatile production was not limited by FR light conditions.
Collapse
Affiliation(s)
- Ekaterina Shor
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Jasmin Ravid
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elad Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oded Skaliter
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tania Masci
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|