1
|
Sahab S, Hayden MJ, Mason J, Spangenberg G. An Efficient Fluorescence-Activated Protoplast Sorting (FAPS) and Regeneration Protocol for Canola (Brassica napus). Curr Protoc 2024; 4:e70008. [PMID: 39264225 DOI: 10.1002/cpz1.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Protoplast sorting and purification methods are powerful tools enabling the enrichment of cellular subpopulations for basic and applied studies in plant sciences. Fluorescence-activated protoplast sorting (FAPS) is an efficient method to isolate specific protoplast populations based on innate features (size and autofluorescence) or expression of fluorescent proteins. FAPS-based methods have recently been deployed in single-cell purification for single-cell RNA sequencing-based transcriptional profiling studies. Protoplast sorting methods integrated with the ability to culture and recover whole plants add value to functional genomics and gene editing applications. Enriching cells expressing nucleases linked to fluorescent proteins can maximize knockout or knockin editing efficiencies and minimize toxic and off-target effects. Here, we report the protocol for protoplast preparation, sterile cell sorting, culture, and downstream regeneration of plants from canola protoplasts. This protocol can be successfully applied to all totipotent protoplast methods that can regenerate into whole plants. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Preparation of transfected canola protoplasts for sorting Basic Protocol 2: Fluorescence-activated protoplast sorting Basic Protocol 3: Bead culture of sorted protoplasts and recovery of plantlets.
Collapse
Affiliation(s)
- Sareena Sahab
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Matthew J Hayden
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - John Mason
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - German Spangenberg
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
- Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
2
|
Li T, Xu H, Teng S, Suo M, Bahitwa R, Xu M, Qian Y, Ramstein GP, Song B, Buckler ES, Wang H. Modeling 0.6 million genes for the rational design of functional cis-regulatory variants and de novo design of cis-regulatory sequences. Proc Natl Acad Sci U S A 2024; 121:e2319811121. [PMID: 38889146 PMCID: PMC11214048 DOI: 10.1073/pnas.2319811121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Rational design of plant cis-regulatory DNA sequences without expert intervention or prior domain knowledge is still a daunting task. Here, we developed PhytoExpr, a deep learning framework capable of predicting both mRNA abundance and plant species using the proximal regulatory sequence as the sole input. PhytoExpr was trained over 17 species representative of major clades of the plant kingdom to enhance its generalizability. Via input perturbation, quantitative functional annotation of the input sequence was achieved at single-nucleotide resolution, revealing an abundance of predicted high-impact nucleotides in conserved noncoding sequences and transcription factor binding sites. Evaluation of maize HapMap3 single-nucleotide polymorphisms (SNPs) by PhytoExpr demonstrates an enrichment of predicted high-impact SNPs in cis-eQTL. Additionally, we provided two algorithms that harnessed the power of PhytoExpr in designing functional cis-regulatory variants, and de novo creation of species-specific cis-regulatory sequences through in silico evolution of random DNA sequences. Our model represents a general and robust approach for functional variant discovery in population genetics and rational design of regulatory sequences for genome editing and synthetic biology.
Collapse
Affiliation(s)
- Tianyi Li
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing100193, People’s Republic of China
| | - Hui Xu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing100193, People’s Republic of China
| | - Shouzhen Teng
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing100193, People’s Republic of China
| | - Mingrui Suo
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing100193, People’s Republic of China
| | - Revocatus Bahitwa
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing100193, People’s Republic of China
- Legumes Research Program, Research and Innovation Division, Tanzania Agricultural Research Institute, Ilonga, Kilosa, Morogoro67410, Tanzania
| | - Mingchi Xu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing100193, People’s Republic of China
| | - Yiheng Qian
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing100193, People’s Republic of China
| | - Guillaume P. Ramstein
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus8000, Denmark
| | - Baoxing Song
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong261325, People’s Republic of China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Edward S. Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY14853
- Agricultural Research Service, United States Department of Agriculture, Ithaca, NY14853
| | - Hai Wang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing100193, People’s Republic of China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing100193, People’s Republic of China
- Sanya Institute of China Agricultural University, Sanya572025, People’s Republic of China
| |
Collapse
|
3
|
Sahab S, Tibbits J, Spangenberg G, Mason J, Hayden M. Fluorescence-activated protoplast sorting for crop improvement. TRENDS IN PLANT SCIENCE 2024; 29:605-606. [PMID: 38199831 DOI: 10.1016/j.tplants.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Affiliation(s)
- Sareena Sahab
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia.
| | - Josquin Tibbits
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - German Spangenberg
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia; Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - John Mason
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Matthew Hayden
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
4
|
Shao J, Peng B, Zhang Y, Yan X, Yao X, Hu X, Li L, Fu X, Zheng H, Tang K. A high-efficient protoplast transient system for screening gene editing elements in Salvia miltiorrhiza. PLANT CELL REPORTS 2024; 43:45. [PMID: 38261110 DOI: 10.1007/s00299-023-03134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024]
Abstract
KEY MESSAGE A high-efficiency protoplast transient system was devised to screen genome editing elements in Salvia miltiorrhiza. Medicinal plants with high-value pharmaceutical ingredients have attracted research attention due to their beneficial effects on human health. Cell wall-free protoplasts of plants can be used to evaluate the efficiency of genome editing mutagenesis. The capabilities of gene editing in medicinal plants remain to be fully explored owing to their complex genetic background and shortfall of suitable transformation. Here, we took the Salvia miltiorrhiza as a representative example for developing a method to screen favorable gene editing elements with high editing efficiency in medical plants by a PEG-mediated protoplast transformation. Results indicated that using the endogenous SmU6.1 of S. miltiorrhiza to drive sgRNA and the plant codon-optimized Cas9 driven by the promoter SlEF1α can enhance the efficiency of editing. In summary, we uncover an efficacious transient method for screening editing elements and shed new light on increasing gene editing efficiency in medicinal plants.
Collapse
Affiliation(s)
- Jin Shao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaojie Zhang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinghao Yao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyi Hu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Han Zheng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Dao-Di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Wen C, Yuan Z, Zhang X, Chen H, Luo L, Li W, Li T, Ma N, Mao F, Lin D, Lin Z, Lin C, Xu T, Lü P, Lin J, Zhu F. Sea-ATI unravels novel vocabularies of plant active cistrome. Nucleic Acids Res 2023; 51:11568-11583. [PMID: 37850650 PMCID: PMC10681729 DOI: 10.1093/nar/gkad853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/11/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
The cistrome consists of all cis-acting regulatory elements recognized by transcription factors (TFs). However, only a portion of the cistrome is active for TF binding in a specific tissue. Resolving the active cistrome in plants remains challenging. In this study, we report the assay sequential extraction assisted-active TF identification (sea-ATI), a low-input method that profiles the DNA sequences recognized by TFs in a target tissue. We applied sea-ATI to seven plant tissues to survey their active cistrome and generated 41 motif models, including 15 new models that represent previously unidentified cis-regulatory vocabularies. ATAC-seq and RNA-seq analyses confirmed the functionality of the cis-elements from the new models, in that they are actively bound in vivo, located near the transcription start site, and influence chromatin accessibility and transcription. Furthermore, comparing dimeric WRKY CREs between sea-ATI and DAP-seq libraries revealed that thermodynamics and genetic drifts cooperatively shaped their evolution. Notably, sea-ATI can identify not only positive but also negative regulatory cis-elements, thereby providing unique insights into the functional non-coding genome of plants.
Collapse
Affiliation(s)
- Chenjin Wen
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhen Yuan
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaotian Zhang
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hao Chen
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Lin Luo
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wanying Li
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Tian Li
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Nana Ma
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Fei Mao
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Dongmei Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhanxi Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Chentao Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Tongda Xu
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Peitao Lü
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Juncheng Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Fangjie Zhu
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
6
|
Wang Q, Zhang J, Liu Z, Duan Y, Li C. Integrative approaches based on genomic techniques in the functional studies on enhancers. Brief Bioinform 2023; 25:bbad442. [PMID: 38048082 PMCID: PMC10694556 DOI: 10.1093/bib/bbad442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
With the development of sequencing technology and the dramatic drop in sequencing cost, the functions of noncoding genes are being characterized in a wide variety of fields (e.g. biomedicine). Enhancers are noncoding DNA elements with vital transcription regulation functions. Tens of thousands of enhancers have been identified in the human genome; however, the location, function, target genes and regulatory mechanisms of most enhancers have not been elucidated thus far. As high-throughput sequencing techniques have leapt forwards, omics approaches have been extensively employed in enhancer research. Multidimensional genomic data integration enables the full exploration of the data and provides novel perspectives for screening, identification and characterization of the function and regulatory mechanisms of unknown enhancers. However, multidimensional genomic data are still difficult to integrate genome wide due to complex varieties, massive amounts, high rarity, etc. To facilitate the appropriate methods for studying enhancers with high efficacy, we delineate the principles, data processing modes and progress of various omics approaches to study enhancers and summarize the applications of traditional machine learning and deep learning in multi-omics integration in the enhancer field. In addition, the challenges encountered during the integration of multiple omics data are addressed. Overall, this review provides a comprehensive foundation for enhancer analysis.
Collapse
Affiliation(s)
- Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
7
|
Laspisa D, Illa-Berenguer E, Bang S, Schmitz RJ, Parrott W, Wallace J. Mining the Utricularia gibba genome for insulator-like elements for genetic engineering. FRONTIERS IN PLANT SCIENCE 2023; 14:1279231. [PMID: 38023853 PMCID: PMC10663240 DOI: 10.3389/fpls.2023.1279231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Introduction Gene expression is often controlled via cis-regulatory elements (CREs) that modulate the production of transcripts. For multi-gene genetic engineering and synthetic biology, precise control of transcription is crucial, both to insulate the transgenes from unwanted native regulation and to prevent readthrough or cross-regulation of transgenes within a multi-gene cassette. To prevent this activity, insulator-like elements, more properly referred to as transcriptional blockers, could be inserted to separate the transgenes so that they are independently regulated. However, only a few validated insulator-like elements are available for plants, and they tend to be larger than ideal. Methods To identify additional potential insulator-like sequences, we conducted a genome-wide analysis of Utricularia gibba (humped bladderwort), one of the smallest known plant genomes, with genes that are naturally close together. The 10 best insulator-like candidates were evaluated in vivo for insulator-like activity. Results We identified a total of 4,656 intergenic regions with expression profiles suggesting insulator-like activity. Comparisons of these regions across 45 other plant species (representing Monocots, Asterids, and Rosids) show low levels of syntenic conservation of these regions. Genome-wide analysis of unmethylated regions (UMRs) indicates ~87% of the targeted regions are unmethylated; however, interpretation of this is complicated because U. gibba has remarkably low levels of methylation across the genome, so that large UMRs frequently extend over multiple genes and intergenic spaces. We also could not identify any conserved motifs among our selected intergenic regions or shared with existing insulator-like elements for plants. Despite this lack of conservation, however, testing of 10 selected intergenic regions for insulator-like activity found two elements on par with a previously published element (EXOB) while being significantly smaller. Discussion Given the small number of insulator-like elements currently available for plants, our results make a significant addition to available tools. The high hit rate (2 out of 10) also implies that more useful sequences are likely present in our selected intergenic regions; additional validation work will be required to identify which will be most useful for plant genetic engineering.
Collapse
Affiliation(s)
- Daniel Laspisa
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Eudald Illa-Berenguer
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Sohyun Bang
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Wayne Parrott
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Department of Crop & Soil Science & Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Jason Wallace
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
- Department of Crop & Soil Science & Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Cui Y, Cao Q, Li Y, He M, Liu X. Advances in cis-element- and natural variation-mediated transcriptional regulation and applications in gene editing of major crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5441-5457. [PMID: 37402253 DOI: 10.1093/jxb/erad248] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
Transcriptional regulation is crucial to control of gene expression. Both spatio-temporal expression patterns and expression levels of genes are determined by the interaction between cis-acting elements and trans-acting factors. Numerous studies have focused on the trans-acting factors that mediate transcriptional regulatory networks. However, cis-acting elements, such as enhancers, silencers, transposons, and natural variations in the genome, are also vital for gene expression regulation and could be utilized by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated gene editing to improve crop quality and yield. In this review, we discuss current understanding of cis-element-mediated transcriptional regulation in major crops, including rice (Oryza sativa), wheat (Triticum aestivum), and maize (Zea mays), as well as the latest advancements in gene editing techniques and their applications in crops to highlight prospective strategies for crop breeding.
Collapse
Affiliation(s)
- Yue Cui
- College of Teacher Education, Molecular and Cellular Postdoctoral Research Station, Hebei Normal University, Shijiazhuang 050024, China
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Research Center of the Basic Discipline Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiao Cao
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei Province 050041, China
| | - Yongpeng Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Research Center of the Basic Discipline Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Mingqi He
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei Province 050041, China
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Research Center of the Basic Discipline Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
9
|
Stuer N, Van Damme P, Goormachtig S, Van Dingenen J. Seeking the interspecies crosswalk for filamentous microbe effectors. TRENDS IN PLANT SCIENCE 2023; 28:1045-1059. [PMID: 37062674 DOI: 10.1016/j.tplants.2023.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Both pathogenic and symbiotic microorganisms modulate the immune response and physiology of their host to establish a suitable niche. Key players in mediating colonization outcome are microbial effector proteins that act either inside (cytoplasmic) or outside (apoplastic) the plant cells and modify the abundance or activity of host macromolecules. We compile novel insights into the much-disputed processes of effector secretion and translocation of filamentous organisms, namely fungi and oomycetes. We report how recent studies that focus on unconventional secretion and effector structure challenge the long-standing image of effectors as conventionally secreted proteins that are translocated with the aid of primary amino acid sequence motifs. Furthermore, we emphasize the potential of diverse, unbiased, state-of-the-art proteomics approaches in the holistic characterization of fungal and oomycete effectomes.
Collapse
Affiliation(s)
- Naomi Stuer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Karel Lodewijk Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium.
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium.
| |
Collapse
|
10
|
Liu YL, Guo YH, Song XQ, Hu MX, Zhao ST. A method for analyzing programmed cell death in xylem development by flow cytometry. FRONTIERS IN PLANT SCIENCE 2023; 14:1196618. [PMID: 37360718 PMCID: PMC10288846 DOI: 10.3389/fpls.2023.1196618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Programmed cell death (PCD) is a genetically regulated developmental process leading to the death of specific types of plant cells, which plays important roles in plant development and growth such as wood formation. However, an efficient method needs to be established to study PCD in woody plants. Flow cytometry is widely utilized to evaluate apoptosis in mammalian cells, while it is rarely used to detect PCD in plants, especially in woody plants. Here, we reported that the xylem cell protoplasts from poplar stem were stained with a combination of fluorescein annexin V-FITC and propidium iodide (PI) and then sorted by flow cytometry. As expected, living cells (annexin V-FITC negative/PI negative), early PCD cells (annexin V-FITC positive/PI negative), and late PCD cells (annexin V-FITC positive/PI positive) could be finely distinguished through this method and then subjected for quantitative analysis. The expression of cell-type- and developmental stages-specific marker genes was consistent with the cell morphological observation. Therefore, the newly developed fluorescence-activated cell sorting (FACS) method can be used to study PCD in woody plants, which will be beneficial for studying the molecular mechanisms of wood formation.
Collapse
Affiliation(s)
- Ying-Li Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Ying-Hua Guo
- National Center for Protein Sciences at Peking University, Beijing, China
| | - Xue-Qin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Meng-Xuan Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|