1
|
Peng X, Li Y, Xu J, Zeng Y, Li K, Guo X, Zhang Z, Tang X, Wang M. Overexpression of the lectin receptor-like kinase gene OsLecRK-S.7 inhibits plant growth and enhances disease resistance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025:112517. [PMID: 40274195 DOI: 10.1016/j.plantsci.2025.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Lectin receptor-like kinases (LecRKs) are a critical class of plant proteins that play essential roles in plant development as well as in responses to both biotic and abiotic stresses. In this study, we found that overexpression of the L-type Lectin receptor kinase gene OsLecRK-S.7 severely inhibits plant growth and triggers spontaneous cell death. Meanwhile, immune responses, including pathogenesis-related (PR) gene expression and reactive oxygen species (ROS) accumulation, were elevated in OsLecRK-S.7 overexpressing plants. Kinase inactivation experiments demonstrated that kinase activity was essential for OsLecRK-S.7-mediated constitutive immunity. Infection assays further demonstrated that overexpression of OsLecRK-S.7 enhances rice resistance to bacterial blight. Additionally, bimolecular fluorescence complementation (BiFC) and pull-down experiments identified interactions between OsLecRK-S.7 and receptor-like cytoplsmic kinases (RLCKs) OsRLCK118, OsRLCK185, and OsRLCK107 that are involved in immune signaling. These findings suggest that OsLecRK-S.7 is a significant regulator of plant immunity, likely promoting cell death and immune responses through its interactions with OsRLCK118, OsRLCK185, and OsRLCK107.
Collapse
Affiliation(s)
- Xiaoqun Peng
- School of Life Sciences, Huizhou University, Huizhou 516007, China; Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yilin Li
- School of Life Sciences, Huizhou University, Huizhou 516007, China
| | - Jingmei Xu
- School of Life Sciences, Huizhou University, Huizhou 516007, China
| | - Ying Zeng
- School of Life Sciences, Huizhou University, Huizhou 516007, China
| | - Kun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiangyi Guo
- School of Life Sciences, Huizhou University, Huizhou 516007, China
| | - Zikang Zhang
- School of Life Sciences, Huizhou University, Huizhou 516007, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China.
| | - Menglong Wang
- School of Life Sciences, Huizhou University, Huizhou 516007, China; Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
2
|
Xing YH, Lu H, Zhu X, Deng Y, Xie Y, Luo Q, Yu J. How Rice Responds to Temperature Changes and Defeats Heat Stress. RICE (NEW YORK, N.Y.) 2024; 17:73. [PMID: 39611857 DOI: 10.1186/s12284-024-00748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
With the intensification of the greenhouse effect, a series of natural phenomena, such as global warming, are gradually recognized; when the ambient temperature increases to the extent that it causes heat stress in plants, agricultural production will inevitably be affected. Therefore, several issues associated with heat stress in crops urgently need to be solved. Rice is one of the momentous food crops for humans, widely planted in tropical and subtropical monsoon regions. It is prone to high temperature stress in summer, leading to a decrease in yield and quality. Understanding how rice can tolerate heat stress through genetic effects is particularly vital. This article reviews how rice respond to rising temperature by integrating the molecular regulatory pathways and introduce its physiological mechanisms of tolerance to heat stress from the perspective of molecular biology. In addition, genome selection and genetic engineering for rice heat tolerance were emphasized to provide a theoretical basis for the sustainability and stability of crop yield-quality structures under high temperatures from the point of view of molecular breeding.
Collapse
Affiliation(s)
- Yuan-Hang Xing
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Hongyu Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Xinfeng Zhu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yufei Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yujun Xie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Qiuhong Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| | - Jinsheng Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
3
|
Yu X, Niu H, Liu C, Wang H, Yin W, Xia X. PTI-ETI synergistic signal mechanisms in plant immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2113-2128. [PMID: 38470397 PMCID: PMC11258992 DOI: 10.1111/pbi.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Plants face a relentless onslaught from a diverse array of pathogens in their natural environment, to which they have evolved a myriad of strategies that unfold across various temporal scales. Cell surface pattern recognition receptors (PRRs) detect conserved elicitors from pathogens or endogenous molecules released during pathogen invasion, initiating the first line of defence in plants, known as pattern-triggered immunity (PTI), which imparts a baseline level of disease resistance. Inside host cells, pathogen effectors are sensed by the nucleotide-binding/leucine-rich repeat (NLR) receptors, which then activate the second line of defence: effector-triggered immunity (ETI), offering a more potent and enduring defence mechanism. Moreover, PTI and ETI collaborate synergistically to bolster disease resistance and collectively trigger a cascade of downstream defence responses. This article provides a comprehensive review of plant defence responses, offering an overview of the stepwise activation of plant immunity and the interactions between PTI-ETI synergistic signal transduction.
Collapse
Affiliation(s)
- Xiao‐Qian Yu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Hao‐Qiang Niu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Chao Liu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Hou‐Ling Wang
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Weilun Yin
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| |
Collapse
|
4
|
Zhao C, Li Q, Ge Q, Chen R, Yu H, Wu J, Liu X, Lu Z. Lectin Receptor-Like Protein Kinase OsNRFG6 is Required for Embryo Sac Development and Fertilization in Neo-Tetraploid Rice. RICE (NEW YORK, N.Y.) 2024; 17:41. [PMID: 38916708 PMCID: PMC11199475 DOI: 10.1186/s12284-024-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Great yield-enhancing prospects of autotetraploid rice was restricted by various polyploidy-induced reproductive dysfunction. To surmount these challenges, our group has generated a series of valuable fertile tetraploid lines (denoted as neo-tetraploid rice) through 20-year efforts. With this context, a G-type lectin receptor-like kinase, OsNRFG6, was identified as a pivotal factor associated with reproductive regulation in neo-tetraploid rice. Nevertheless, it is still elusive about a comprehensive understanding of its precise functional roles and underlying molecular mechanisms during reproduction of neo-tetraploid rice. Here, we demonstrated that OsNRFG6 executed a constitutive expression pattern and encoded proteins localizing in perinucleus and endoplasmic reticulum. Subsequently, four independent mutant lines of OsNRFG6 within neo-tetraploid rice background were further identified, all displaying low seed-setting rate due to abortive embryo sacs and defective double fertilization. RNA-seq and RT-qPCR revealed a significant down-regulation of OsNRFG6 and female reproductive genes such as OsMEL1 and LOG in ovaries prior to and post-fertilization, attributing this effect to OsNRFG6 mutation. Furthermore, through yeast-two hybrids, bimolecular fluorescence complementation assays, and luciferase complementation imaging assays, it was determined that OsNRFG6 could interact with itself and two female reproductive proteins (LOG and OsDES1) to form protein complexes. These results elucidate the reproductive functions and molecular pathway governed by OsNRFG6 in regulating fertility of neo-tetraploid rice, offering insights into molecular understanding of fertility improvement in polyploid rice.
Collapse
Affiliation(s)
- Chongchong Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qihang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qi Ge
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Rou Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Hang Yu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Lei Y, Gao J, Li Y, Song C, Guo Q, Guo L, Hou X. Functional Characterization of PoEP1 in Regulating the Flowering Stage of Tree Peony. PLANTS (BASEL, SWITZERLAND) 2024; 13:1642. [PMID: 38931074 PMCID: PMC11207526 DOI: 10.3390/plants13121642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
The tree peony, a traditional flower in China, has a short and concentrated flowering period, restricting the development of the tree peony industry. To explore the molecular mechanism of tree peony flowering-stage regulation, PoEP1, which regulated the flowering period, was identified and cloned based on the transcriptome and degradome data of the early-flowering mutant Paeonia ostii 'Fengdan' (MU) and Paeonia ostii 'Fengdan' (FD). Through bioinformatics analysis, expression pattern analysis, and transgene function verification, the role of PoEP1 in the regulation of tree peony flowering was explored. The open-reading frame of PoEP1 is 1161 bp, encoding 386 amino acids, containing two conserved domains. PoEP1 was homologous to the EP1 of other species. Subcellular localization results showed that the protein was localized in the cell wall and that PoEP1 expression was highest in the initial decay stage of the tree peony. The overexpression of PoEP1 in transgenic plants advanced and shortened the flowering time, indicating that PoEP1 overexpression promotes flowering and senescence and shorten the flowering time of plants. The results of this study provide a theoretical basis for exploring the role of PoEP1 in the regulation of tree peony flowering.
Collapse
Affiliation(s)
| | | | | | | | | | - Lili Guo
- College of Agronomy/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.G.); (Y.L.); (C.S.); (Q.G.)
| | - Xiaogai Hou
- College of Agronomy/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China; (Y.L.); (J.G.); (Y.L.); (C.S.); (Q.G.)
| |
Collapse
|
6
|
Zhen X, Liu C, Guo Y, Yu Z, Han Y, Zhang B, Liang Y. Leaf Senescence Regulation Mechanism Based on Comparative Transcriptome Analysis in Foxtail Millet. Int J Mol Sci 2024; 25:3905. [PMID: 38612713 PMCID: PMC11011800 DOI: 10.3390/ijms25073905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Leaf senescence, a pivotal process in plants, directly influences both crop yield and nutritional quality. Foxtail millet (Setaria italica) is a C4 model crop renowned for its exceptional nutritional value and stress tolerance characteristics. However, there is a lack of research on the identification of senescence-associated genes (SAGs) and the underlying molecular regulatory mechanisms governing this process. In this study, a dark-induced senescence (DIS) experimental system was applied to investigate the extensive physiological and transcriptomic changes in two foxtail millet varieties with different degrees of leaf senescence. The physiological and biochemical indices revealed that the light senescence (LS) variety exhibited a delayed senescence phenotype, whereas the severe senescence (SS) variety exhibited an accelerated senescence phenotype. The most evident differences in gene expression profiles between these two varieties during DIS included photosynthesis, chlorophyll, and lipid metabolism. Comparative transcriptome analysis further revealed a significant up-regulation of genes related to polysaccharide and calcium ion binding, nitrogen utilization, defense response, and malate metabolism in LS. In contrast, the expression of genes associated with redox homeostasis, carbohydrate metabolism, lipid homeostasis, and hormone signaling was significantly altered in SS. Through WGCNA and RT-qPCR analyses, we identified three SAGs that exhibit potential negative regulation towards dark-induced leaf senescence in foxtail millet. This study establishes the foundation for a further comprehensive examination of the regulatory network governing leaf senescence and provides potential genetic resources for manipulating senescence in foxtail millet.
Collapse
Affiliation(s)
| | | | | | | | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (X.Z.); (C.L.); (Y.G.); (Z.Y.); (B.Z.)
| | | | - Yinpei Liang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (X.Z.); (C.L.); (Y.G.); (Z.Y.); (B.Z.)
| |
Collapse
|
7
|
Xie Z, Zhang Q, Xia C, Dong C, Li D, Liu X, Kong X, Zhang L. Identification of the early leaf senescence gene ELS3 in bread wheat (Triticum aestivum L.). PLANTA 2023; 259:5. [PMID: 37994951 DOI: 10.1007/s00425-023-04278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
MAIN CONCLUSION Characterization of the early leaf senescence mutant els3 and identification of its causal gene ELS3, which encodes an LRR-RLK protein in wheat. Leaf senescence is an important agronomic trait that affects both crop yield and quality. However, few senescence-related genes in wheat have been cloned and functionally analyzed. Here, we report the characterization of the early leaf senescence mutant els3 and fine mapping of its causal gene ELS3 in wheat. Compared with wild-type Yanzhan4110 (YZ4110), the els3 mutant had a decreased chlorophyll content and a degraded chloroplast structure after the flowering stage. Further biochemical assays in flag leaves showed that the superoxide anion and hydrogen peroxide contents increased, while the activities of antioxidant enzymes, including catalase, superoxide dismutase and glutathione reductase, decreased gradually after the flowering stage in the els3 mutant. To clone the causal gene underlying the phenotype of leaf senescence, a genetic map was constructed using 10,133 individuals of F2:3 populations, and ELS3 was located in a 2.52 Mb region on chromosome 2DL containing 16 putative genes. Subsequent sequence analysis and gene annotation identified only one SNP (C to T) in the first exon of TraesCS2D02G332700, resulting in an amino acid substitution (Pro329Ser), and TraesCS2D02G332700 was preliminarily considered as the candidate gene of ELS3. ELS3 encodes a leucine-rich repeat receptor-like kinase (LRR-RLK) protein that is localized on the cell membrane. We also found that the transient expression of mutant TraesCS2D02G332700 can induce leaf senescence in N. benthamiana. Taken together, TraesCS2D02G332700 is likely to be the candidate gene of ELS3 and may have a function in regulating leaf senescence.
Collapse
Affiliation(s)
- Zhencheng Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunhao Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|