1
|
Zhang C, Xu Y, Li L, Wu M, Fang Z, Tan J, Rollins JA, Lin H, Huang X, Mansfield SD, Li X, Zhang Y. A GDP-mannose-1-phosphate guanylyltransferase as a potential HIGS target against Sclerotinia sclerotiorum. PLoS Pathog 2025; 21:e1013129. [PMID: 40315235 PMCID: PMC12068732 DOI: 10.1371/journal.ppat.1013129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 05/12/2025] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
Sclerotinia stem rot is a devastating disease affecting vegetables and oil crops worldwide. It is caused by the necrotrophic ascomycete Sclerotinia (S.) sclerotiorum. Host-induced gene silencing (HIGS) has shown promise in disease control against insects and fungal pathogens, but effective HIGS target genes against S. sclerotiorum remain limited. In this study, we identified a GDP-mannose pyrophosphorylase (GMPP) SsMPG2 through forward genetic analysis. Ssmpg2 mutants exhibit abnormal sclerotia and compound appressoria, along with defective cell wall integrity and attenuated virulence. Meanwhile, knocking out SsMPG2 reduced the GMPP activity and glycosylation of proteins. In addition, SsMPG2 interacts with SsMPG1, which is essential in S. sclerotiorum. Downstream of the SsMPG1-SsMPG2 complex, SsPMT4, which encodes an O-mannosyltransferase, is also critical for compound appressoria formation and virulence. Notably, MPG2 is essential for the virulence of several other fungal pathogens such as Botrytis cinerea, Magnaporthe oryzae, and Fusarium graminearum. Furthermore, expressing hairpin RNAs against SsMPG1 and SsMPG2 in Nicotiana benthamiana and Arabidopsis thaliana significantly reduced disease symptoms caused by S. sclerotiorum. Collectively, our findings demonstrate the critical roles of GMPP in the virulence of phytopathogenic fungi and suggest that MPGs are promising HlGS targets for controlling S. sclerotiorum.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yan Xu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lin Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mingsong Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zheyi Fang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinyi Tan
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jeffrey A. Rollins
- Depertment of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Honghui Lin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xinyi Huang
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Yuelin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Ouyang Y, Xia Y, Tang X, Qin L, Xia S. Trans-Kingdom sRNA Silencing in Sclerotinia sclerotiorum for Crop Fungal Disease Management. Pathogens 2025; 14:398. [PMID: 40333207 PMCID: PMC12030631 DOI: 10.3390/pathogens14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/19/2025] [Accepted: 04/19/2025] [Indexed: 05/09/2025] Open
Abstract
Sclerotinia sclerotiorum is a globally widespread and vast destructive plant pathogenic fungus that causes significant yield losses in crops. Due to the lack of effective resistant germplasm resources, the control of diseases caused by S. sclerotiorum largely relies on chemical fungicides. However, excessive use of these chemicals not only causes environmental concerns but also leads to the increased development of resistance in S. sclerotiorum. In contrast, trans-kingdom sRNA silencing-based technologies, such as host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS), offer novel, effective, and environmentally friendly methods for the management of S. sclerotiorum infection. This review summarizes recent advances in the identification of S. sclerotiorum pathogenic genes, target gene selection, categories, and application of trans-kingdom RNA interference (RNAi) technologies targeting this pathogen. Although some challenges, including off-target effects and the efficiency of external sRNA uptake, exist, recent findings have proposed solutions for further improvement. Combined with the latest developments in CRISPR/Cas gene editing and other technologies, trans-kingdom RNAi has significant potential to become a crucial tool in the control of sclerotinia stem rot (SSR), mitigating the impact of S. sclerotiorum on crop production.
Collapse
Affiliation(s)
- Yuqing Ouyang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| | - Yunong Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| | - Lei Qin
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| |
Collapse
|
3
|
Han L, Li Y, Yuan Z, Wang J, Tian B, Fang A, Yang Y, Bi C, Yu Y. RNA interference-mediated targeting of monooxygenase SsMNO1 for controlling Sclerotinia stem rot caused by Sclerotinia sclerotiorum. PEST MANAGEMENT SCIENCE 2025; 81:1457-1468. [PMID: 39555684 DOI: 10.1002/ps.8546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/26/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Sclerotinia sclerotiorum is a devastating fungal pathogen that poses a threat to a variety of economically important crops. Owing to the lack of highly resistant cultivars and the prolonged survival of sclerotia, effective control of Sclerotinia diseases remains challenging. RNA interference (RNAi) agents targeting essential active transcripts of genes associated with the development and virulence of pathogens are a valuable and promising disease control method. RESULTS Our finding suggested that a flavin adenine dinucleotide (FAD)-dependent monooxygenase gene SsMNO1 plays pivotal roles in the hyphal growth, sclerotial development, and virulence of S. sclerotiorum, rendering it a potential target for RNAi-mediated management of S. sclerotiorum. The external application of double-stranded RNA (dsRNA) targeting SsMNO1 inhibited sclerotial development in artificial media and plant tissues. Furthermore, dsRNA significantly reduced the hyphal virulence of S. sclerotiorum in host plants by interfering with SsMNO1 expression. The inhibitory activity persisted for over 1 week on the surface of Brassica napus. Artificial small interfering RNA (siRNA) targeting SsMNO1 also exhibited inhibitory effects. Transgenic Arabidopsis thaliana plants expressing SsMNO1 hairpin RNAi constructs showed increased resistance to S. sclerotiorum infection. Notably, the total RNA extracts from SsMNO1-RNAi plants also reduced the hyphal virulence in Brassica napus. CONCLUSIONS Therefore, RNAi agents targeting SsMNO1 have dual effects on sclerotial development and hyphal virulence, rendering it an ideal target for controlling diseases caused by S. sclerotiorum. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lili Han
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Yali Li
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Zihong Yuan
- College of Plant Protection, Southwest University, Chongqing City, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing City, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing City, China
| |
Collapse
|
4
|
De Rose S, Sillo F, Ghirardo A, Perotto S, Schnitzler JP, Balestrini R. Integration of fungal transcriptomics and metabolomics provides insights into the early interaction between the ORM fungus Tulasnella sp. and the orchid Serapias vomeracea seeds. IMA Fungus 2024; 15:31. [PMID: 39456087 PMCID: PMC11503967 DOI: 10.1186/s43008-024-00165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
In nature, germination of orchid seeds and early plant development rely on a symbiotic association with orchid mycorrhizal (ORM) fungi. These fungi provide the host with the necessary nutrients and facilitate the transition from embryos to protocorms. Despite recent advances in omics technologies, our understanding of this symbiosis remains limited, particularly during the initial stages of the interaction. To address this gap, we employed transcriptomics and metabolomics to investigate the early responses occurring in the mycorrhizal fungus Tulasnella sp. isolate SV6 when co-cultivated with orchid seeds of Serapias vomeracea. The integration of data from gene expression and metabolite profiling revealed the activation of some fungal signalling pathways before the establishment of the symbiosis. Prior to seed contact, an indole-related metabolite was produced by the fungus, and significant changes in the fungal lipid profile occurred throughout the symbiotic process. Additionally, the expression of plant cell wall-degrading enzymes (PCWDEs) was observed during the pre-symbiotic stage, as the fungus approached the seeds, along with changes in amino acid metabolism. Thus, the dual-omics approach employed in this study yielded novel insights into the symbiotic relationship between orchids and ORM fungi and suggest that the ORM fungus responds to the presence of the orchid seeds prior to contact.
Collapse
Affiliation(s)
- Silvia De Rose
- Institute for Sustainable Plant Protection, National Research Council, Strada Delle Cacce 73, 10135, Turin, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Fabiano Sillo
- Institute for Sustainable Plant Protection, National Research Council, Strada Delle Cacce 73, 10135, Turin, Italy
| | - Andrea Ghirardo
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation (EUS), Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
5
|
Zhu Y, Wu C, Deng Y, Yuan W, Zhang T, Lu J. Recent advances in virulence of a broad host range plant pathogen Sclerotinia sclerotiorum: a mini-review. Front Microbiol 2024; 15:1424130. [PMID: 38962122 PMCID: PMC11220166 DOI: 10.3389/fmicb.2024.1424130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Sclerotinia sclerotiorum is a typical necrotrophic plant pathogenic fungus, which has a wide host range and can cause a variety of diseases, leading to serious loss of agricultural production around the world. It is difficult to control and completely eliminate the characteristics, chemical control methods is not ideal. Therefore, it is very important to know the pathogenic mechanism of S. sclerotiorum for improving host living environment, relieving agricultural pressure and promoting economic development. In this paper, the life cycle of S. sclerotiorum is introduced to understand the whole process of S. sclerotiorum infection. Through the analysis of the pathogenic mechanism, this paper summarized the reported content, mainly focused on the oxalic acid, cell wall degrading enzyme and effector protein in the process of infection and its mechanism. Besides, recent studies reported virulence-related genes in S. sclerotiorum have been summarized in the paper. According to analysis, those genes were related to the growth and development of the hypha and appressorium, the signaling and regulatory factors of S. sclerotiorum and so on, to further influence the ability to infect the host critically. The application of host-induced gene silencing (HIGS)is considered as a potential effective tool to control various fungi in crops, which provides an important reference for the study of pathogenesis and green control of S. sclerotiorum.
Collapse
Affiliation(s)
| | | | | | | | | | - Junxing Lu
- Chongqing Key Laboratory of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| |
Collapse
|
6
|
Tian L, Li J, Xu Y, Qiu Y, Zhang Y, Li X. A MAP kinase cascade broadly regulates the lifestyle of Sclerotinia sclerotiorum and can be targeted by HIGS for disease control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:324-344. [PMID: 38149487 DOI: 10.1111/tpj.16606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/15/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Sclerotinia sclerotiorum causes white mold or stem rot in a wide range of economically important plants, bringing significant yield losses worldwide. Control of this pathogen is difficult as its resting structure sclerotia can survive in soil for years, and no Resistance genes have been identified in S. sclerotiorum hosts. Host-induced gene silencing (HIGS) has shown promising effects in controlling many fungal pathogens, including S. sclerotiorum. However, better molecular genetic understanding of signaling pathways involved in its development and pathogenicity is needed to provide effective HIGS gene targets. Here, by employing a forward genetic screen, we characterized an evolutionarily conserved mitogen-activated protein kinase (MAPK) cascade in S. sclerotiorum, consisting of SsSte50-SsSte11-SsSte7-Smk1, which controls mycelial growth, sclerotia development, compound appressoria formation, virulence, and hyphal fusion. Moreover, disruption of the putative downstream transcription factor SsSte12 led to normal sclerotia but deformed appressoria and attenuated host penetration, as well as impaired apothecia formation, suggestive of diverged regulation downstream of the MAPK cascade. Most importantly, targeting SsSte50 using host-expressed double-stranded RNA resulted in largely reduced virulence of S. sclerotiorum on both Nicotiana benthamiana leaves and transgenic Arabidopsis thaliana plants. Therefore, this MAPK signaling cascade is generally needed for its growth, development, and pathogenesis and can serve as ideal HIGS targets for mitigating economic damages caused by S. sclerotiorum infection.
Collapse
Affiliation(s)
- Lei Tian
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Josh Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Yan Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Yilan Qiu
- Department of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yuelin Zhang
- College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
7
|
Shang Q, Jiang D, Xie J, Cheng J, Xiao X. The schizotrophic lifestyle of Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2024; 25:e13423. [PMID: 38407560 PMCID: PMC10895550 DOI: 10.1111/mpp.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024]
Abstract
Sclerotinia sclerotiorum is a cosmopolitan and typical necrotrophic phytopathogenic fungus that infects hundreds of plant species. Because no cultivars highly resistant to S. sclerotiorum are available, managing Sclerotinia disease caused by S. sclerotiorum is still challenging. However, recent studies have demonstrated that S. sclerotiorum has a beneficial effect and can live mutualistically as an endophyte in graminaceous plants, protecting the plants against major fungal diseases. An in-depth understanding of the schizotrophic lifestyle of S. sclerotiorum during interactions with plants under different environmental conditions will provide new strategies for controlling fungal disease. In this review, we summarize the pathogenesis mechanisms of S. sclerotiorum during its attack of host plants as a destructive pathogen and discuss its lifestyle as a beneficial endophytic fungus.
Collapse
Affiliation(s)
- Qingna Shang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Daohong Jiang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jiatao Xie
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jiasen Cheng
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xueqiong Xiao
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|