1
|
Dominguez PG, Niittylä T. Mobile forms of carbon in trees: metabolism and transport. TREE PHYSIOLOGY 2022; 42:458-487. [PMID: 34542151 PMCID: PMC8919412 DOI: 10.1093/treephys/tpab123] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/16/2021] [Accepted: 09/12/2021] [Indexed: 05/26/2023]
Abstract
Plants constitute 80% of the biomass on earth, and almost two-thirds of this biomass is found in wood. Wood formation is a carbon (C)-demanding process and relies on C transport from photosynthetic tissues. Thus, understanding the transport process is of major interest for understanding terrestrial biomass formation. Here, we review the molecules and mechanisms used to transport and allocate C in trees. Sucrose is the major form in which C is transported in plants, and it is found in the phloem sap of all tree species investigated so far. However, in several tree species, sucrose is accompanied by other molecules, notably polyols and the raffinose family of oligosaccharides. We describe the molecules that constitute each of these transport groups, and their distribution across different tree species. Furthermore, we detail the metabolic reactions for their synthesis, the mechanisms by which trees load and unload these compounds in and out of the vascular system, and how they are radially transported in the trunk and finally catabolized during wood formation. We also address a particular C recirculation process between phloem and xylem that occurs in trees during the annual cycle of growth and dormancy. A search of possible evolutionary drivers behind the diversity of C-carrying molecules in trees reveals no consistent differences in C transport mechanisms between angiosperm and gymnosperm trees. Furthermore, the distribution of C forms across species suggests that climate-related environmental factors will not explain the diversity of C transport forms. However, the consideration of C-transport mechanisms in relation to tree-rhizosphere coevolution deserves further attention. To conclude the review, we identify possible future lines of research in this field.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires B1686IGC, Argentina
| | - Totte Niittylä
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| |
Collapse
|
2
|
Liu J, Gu L, Yu Y, Huang P, Wu Z, Zhang Q, Qian Y, Wan X, Sun Z. Corticular photosynthesis drives bark water uptake to refill embolized vessels in dehydrated branches of Salix matsudana. PLANT, CELL & ENVIRONMENT 2019; 42:2584-2596. [PMID: 31083779 DOI: 10.1111/pce.13578] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
It is well known that xylem embolism can be repaired by bark water uptake and that the sugar required for embolism refilling can be provided by corticular photosynthesis. However, the relationship between corticular photosynthesis and embolism repair by bark water uptake is still poorly understood. In this study, the role of corticular photosynthesis in embolism repair was assessed using Salix matsudana branch segments dehydrated to -1.9 MPa (P50 , water potential at 50% loss of conductivity). The results indicated that corticular photosynthesis significantly promoted water uptake and nonstructural carbohydrate (NSC) accumulation in the bark and xylem during soaking, thereby effectively enhancing the refilling of the embolized vessels and the recovery of hydraulic conductivity. Furthermore, the influence of the extent of dehydration on the embolism refilling enhanced by corticular photosynthesis was investigated. The enhanced refilling effects were much higher in the mildly dehydrated (-1.5 MPa) and moderately dehydrated (-1.9 MPa) branch segments than in the severely dehydrated (-2.2 MPa) branch segments. This study provides evidence that corticular photosynthesis plays a crucial role in xylem embolism repair by bark water uptake for mildly and moderately dehydrated branches.
Collapse
Affiliation(s)
- Junxiang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lin Gu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yongchang Yu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ping Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhigang Wu
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Qian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yongqiang Qian
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhenyuan Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| |
Collapse
|
3
|
Aubry E, Dinant S, Vilaine F, Bellini C, Le Hir R. Lateral Transport of Organic and Inorganic Solutes. PLANTS (BASEL, SWITZERLAND) 2019; 8:E20. [PMID: 30650538 PMCID: PMC6358943 DOI: 10.3390/plants8010020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
Abstract
Organic (e.g., sugars and amino acids) and inorganic (e.g., K⁺, Na⁺, PO₄2-, and SO₄2-) solutes are transported long-distance throughout plants. Lateral movement of these compounds between the xylem and the phloem, and vice versa, has also been reported in several plant species since the 1930s, and is believed to be important in the overall resource allocation. Studies of Arabidopsis thaliana have provided us with a better knowledge of the anatomical framework in which the lateral transport takes place, and have highlighted the role of specialized vascular and perivascular cells as an interface for solute exchanges. Important breakthroughs have also been made, mainly in Arabidopsis, in identifying some of the proteins involved in the cell-to-cell translocation of solutes, most notably a range of plasma membrane transporters that act in different cell types. Finally, in the future, state-of-art imaging techniques should help to better characterize the lateral transport of these compounds on a cellular level. This review brings the lateral transport of sugars and inorganic solutes back into focus and highlights its importance in terms of our overall understanding of plant resource allocation.
Collapse
Affiliation(s)
- Emilie Aubry
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Françoise Vilaine
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| | - Catherine Bellini
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90183 Umeå, Sweden.
| | - Rozenn Le Hir
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France.
| |
Collapse
|
4
|
Netzer F, Mueller CW, Scheerer U, Grüner J, Kögel-Knabner I, Herschbach C, Rennenberg H. Phosphorus nutrition of Populus × canescens reflects adaptation to high P-availability in the soil. TREE PHYSIOLOGY 2018; 38:6-24. [PMID: 29077948 DOI: 10.1093/treephys/tpx126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/13/2017] [Indexed: 05/04/2023]
Abstract
Phosphorus (P) constitutes one of five macronutrients essential for plant growth and development due to the central function of phosphate in energy metabolism, inheritance and metabolic control. In many ecosystems, plant available soil-P gets limited by soil aging. Hence, plants have developed adaptation strategies to cope with such limitation by an efficient plant and ecosystem internal P-cycling during annual growth. The natural floodplain habitat of fast-growing Populus × canescens is characterized by high soil-P availability. It was thus expected that the P-nutrition of P. × canescens had adapted to this conditions. Therefore, different P-fractions in different twig tissues were investigated during two annual growth cycles. The P-nutrition of P. × canescens markedly differs from that of European beech grown at low soil-P availability (Netzer F, Schmid C, Herschbach C, Rennenberg H (2017) Phosphorus-nutrition of European beech (Fagus sylvatica L.) during annual growth depends on tree age and P-availability in the soil. Environ Exp Bot 137:194-207). This was mainly due to a lack of tree internal P-cycling during annual growth indicated by the absence of P-storage and remobilization in twig bark and wood. Hence, strategies to economize P-nutrition and to prevent P-losses had not developed. This fits with the fast-growth strategy of P. × canescens at unrestricted P-availability. Hence, the P-nutrition strategy of P. × canescens can be seen as an evolutionary adaptation to its natural growth habitat.
Collapse
Affiliation(s)
- Florian Netzer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| | - Carsten W Mueller
- Chair of Soil Science, Department of Ecology and Ecosystem Management, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Straße 2, 85354 Freising, Germany
| | - Ursula Scheerer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| | - Jörg Grüner
- Chair of Forest Botany, Albert-Ludwigs-University Freiburg, Bertoldstraße 17, 79085 Freiburg, Germany
| | - Ingrid Kögel-Knabner
- Chair of Soil Science, Department of Ecology and Ecosystem Management, Wissenschaftszentrum Weihenstephan, Emil-Ramann-Straße 2, 85354 Freising, Germany
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | - Cornelia Herschbach
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
- King Saud University, College of Science, PO Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Responses of Contrasting Tree Functional Types to Air Warming and Drought. FORESTS 2017. [DOI: 10.3390/f8110450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|