1
|
Hernandez JS, Dziubek D, Schröder L, Seydel C, Kitashova A, Brodsky V, Nägele T. Natural variation of temperature acclimation of Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2023; 175:e14106. [PMID: 38148233 DOI: 10.1111/ppl.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023]
Abstract
Acclimation is a multigenic trait by which plants adjust photosynthesis and metabolism to cope with a changing environment. Here, natural variations of photosynthetic efficiency and acclimation of the central carbohydrate metabolism were analyzed in response to low and elevated temperatures. For this, 18 natural accessions of Arabidopsis thaliana, originating from Cape Verde Islands and Europe, were grown at 22°C before being exposed to 4°C and 34°C for cold and heat acclimation, respectively. Absolute amounts of carbohydrates were quantified together with their subcellular distribution across plastids, cytosol and vacuole. Linear electron transport rates (ETRs) were determined together with the maximum quantum efficiency of photosystem II (Fv/Fm) for all growth conditions and under temperature fluctuation. Under elevated temperature, ETR residuals under increasing photosynthetic photon flux densities significantly correlated with the degree of temperature fluctuation at the original habitat of accessions, indicating a geographical east/west gradient of photosynthetic acclimation capacities. Plastidial sucrose concentrations positively correlated with maximal ETRs under fluctuating temperature, indicating a stabilizing role within the chloroplast. Our findings revealed specific subcellular carbohydrate distributions that contribute differentially to the photosynthetic efficiency of natural Arabidopsis thaliana accessions across a longitudinal gradient. This sheds light on the relevance of subcellular metabolic regulation for photosynthetic performance in a fluctuating environment and supports the physiological interpretation of naturally occurring genetic variation of temperature tolerance and acclimation.
Collapse
Affiliation(s)
- Jakob Sebastian Hernandez
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg
| | - Dejan Dziubek
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg
| | - Laura Schröder
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg
| | - Charlotte Seydel
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg
- Faculty of Biology, Plant Development, Ludwig-Maximilians-Universität München, Planegg
| | - Anastasia Kitashova
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg
| | - Vladimir Brodsky
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg
| | - Thomas Nägele
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg
| |
Collapse
|
2
|
Kitashova A, Brodsky V, Chaturvedi P, Pierides I, Ghatak A, Weckwerth W, Nägele T. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154116. [PMID: 37839392 DOI: 10.1016/j.jplph.2023.154116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
Collapse
Affiliation(s)
- Anastasia Kitashova
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Vladimir Brodsky
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Palak Chaturvedi
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Iro Pierides
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Arindam Ghatak
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Wolfram Weckwerth
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| |
Collapse
|
3
|
Weiszmann J, Walther D, Clauw P, Back G, Gunis J, Reichardt I, Koemeda S, Jez J, Nordborg M, Schwarzerova J, Pierides I, Nägele T, Weckwerth W. Metabolome plasticity in 241 Arabidopsis thaliana accessions reveals evolutionary cold adaptation processes. PLANT PHYSIOLOGY 2023; 193:980-1000. [PMID: 37220420 PMCID: PMC10517190 DOI: 10.1093/plphys/kiad298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Acclimation and adaptation of metabolism to a changing environment are key processes for plant survival and reproductive success. In the present study, 241 natural accessions of Arabidopsis (Arabidopsis thaliana) were grown under two different temperature regimes, 16 °C and 6 °C, and growth parameters were recorded, together with metabolite profiles, to investigate the natural genome × environment effects on metabolome variation. The plasticity of metabolism, which was captured by metabolic distance measures, varied considerably between accessions. Both relative growth rates and metabolic distances were predictable by the underlying natural genetic variation of accessions. Applying machine learning methods, climatic variables of the original growth habitats were tested for their predictive power of natural metabolic variation among accessions. We found specifically habitat temperature during the first quarter of the year to be the best predictor of the plasticity of primary metabolism, indicating habitat temperature as the causal driver of evolutionary cold adaptation processes. Analyses of epigenome- and genome-wide associations revealed accession-specific differential DNA-methylation levels as potentially linked to the metabolome and identified FUMARASE2 as strongly associated with cold adaptation in Arabidopsis accessions. These findings were supported by calculations of the biochemical Jacobian matrix based on variance and covariance of metabolomics data, which revealed that growth under low temperatures most substantially affects the accession-specific plasticity of fumarate and sugar metabolism. Our findings indicate that the plasticity of metabolic regulation is predictable from the genome and epigenome and driven evolutionarily by Arabidopsis growth habitats.
Collapse
Affiliation(s)
- Jakob Weiszmann
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, 1030 Vienna, Austria
| | - Dirk Walther
- Bioinformatics, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Pieter Clauw
- Austrian Academy of Sciences, Gregor Mendel Institute (GMI), 1030 Vienna, Austria
| | - Georg Back
- Bioinformatics, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Joanna Gunis
- Austrian Academy of Sciences, Gregor Mendel Institute (GMI), 1030 Vienna, Austria
| | - Ilka Reichardt
- Genome Engineering Facility, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Stefanie Koemeda
- Plant Sciences Facility, Vienna BioCenter Core Facilities GmbH (VBCF), 1030 Vienna, Austria
| | - Jakub Jez
- Plant Sciences Facility, Vienna BioCenter Core Facilities GmbH (VBCF), 1030 Vienna, Austria
| | - Magnus Nordborg
- Austrian Academy of Sciences, Gregor Mendel Institute (GMI), 1030 Vienna, Austria
| | - Jana Schwarzerova
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
- Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Technická 12, 616 00 Brno, Czech Republic
| | - Iro Pierides
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg, Germany
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
4
|
Venzhik Y, Deryabin A, Moshkov I. Adaptive strategy of plant cells during chilling: Aspect of ultrastructural reorganization. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111722. [PMID: 37120035 DOI: 10.1016/j.plantsci.2023.111722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
The review is focused on a comparative analysis of the literature data on the ultrastructural reorganization of leaf cells of higher plants, which differ in their response to low sub-damaging temperatures. The importance of adaptive structural reorganization of cells as a special feature contributing to the surviving strategy of plants existing under changed conditions is emphasized. The adaptive strategy of cold-tolerant plants combines the structural, functional, metabolic, physiological and biochemical reorganization of cells and tissues. These changes constitute a unified program directed to protecting against dehydration and oxidative stress, as well as maintaining basic physiological processes, and above all, photosynthesis. The ultrastructural markers of cold-tolerant plants adaptation to low sub-damaging temperatures include some particular changes in cell morphology. Namely: the following: an increase in the volume of the cytoplasm; the formation of new membrane elements in it; an increase in the size and number of chloroplasts and mitochondria; concentration of mitochondria and peroxisomes near chloroplasts; polymorphism of mitochondria; an increase in the number of cristae in them; the appearance of outgrowths and invaginations in chloroplasts; lumen expansion in the thylakoids; the formation in chloroplasts "sun type" membrane system with reduction in the number and size of grana and domination of non-appressed thylakoids membranes. Due to this adaptive structural reorganization cold-tolerant plants are able to function actively during chilling. On the contrary, structural reorganization of leaf cells of cold-sensitive plants under chilling is aimed at maintaining the basic functions at a minimum level. Cold-sensitive plants "wait out" low temperature stress, and with prolonged exposure to cold, they die from dehydration and intensification of oxidative stress.
Collapse
Affiliation(s)
- Yuliya Venzhik
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | - Alexander Deryabin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Igor Moshkov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Ivanov AG, Krol M, Savitch LV, Szyszka-Mroz B, Roche J, Sprott DP, Selstam E, Wilson KW, Gardiner R, Öquist G, Hurry VM, Hüner NPA. The decreased PG content of pgp1 inhibits PSI photochemistry and limits reaction center and light-harvesting polypeptide accumulation in response to cold acclimation. PLANTA 2022; 255:36. [PMID: 35015152 DOI: 10.1007/s00425-022-03819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Decreased PG constrains PSI activity due to inhibition of transcript and polypeptide abundance of light-harvesting and reaction center polypeptides generating a reversible, yellow phenotype during cold acclimation of pgp1. Cold acclimation of the Arabidopsis pgp1 mutant at 5 °C resulted in a pale-yellow phenotype with abnormal chloroplast ultrastructure compared to its green phenotype upon growth at 20 °C despite a normal cold-acclimation response at the transcript level. In contrast, wild type maintained its normal green phenotype and chloroplast ultrastructure irrespective of growth temperature. In contrast to cold acclimation of WT, growth of pgp1 at 5 °C limited the accumulation of Lhcbs and Lhcas assessed by immunoblotting. However, a novel 43 kD polypeptide of Lhcb1 as well as a 29 kD polypeptide of Lhcb3 accumulated in the soluble fraction which was absent in the thylakoid membrane fraction of cold-acclimated pgp1 which was not observed in WT. Cold acclimation of pgp1 destabilized the Chl-protein complexes associated with PSI and predisposed energy distribution in favor of PSII rather than PSI compared to the WT. Functionally, in vivo PSI versus PSII photochemistry was inhibited in cold-acclimated pgp1 to a greater extent than in WT relative to controls. Greening of the pale-yellow pgp1 was induced when cold-acclimated pgp1 was shifted from 5 to 20 °C which resulted in a marked decrease in excitation pressure to a level comparable to WT. Concomitantly, Lhcbs and Lhcas accumulated with a simultaneous decrease in the novel 43 and 29kD polypeptides. We conclude that the reduced levels of phosphatidyldiacylglycerol in the pgp1 limit the capacity of the mutant to maintain the structure and function of its photosynthetic apparatus during cold acclimation. Thus, maintenance of normal thylakoid phosphatidyldiacylglycerol levels is essential to stabilize the photosynthetic apparatus during cold acclimation.
Collapse
Affiliation(s)
- Alexander G Ivanov
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 21, 1113, Sofia, Bulgaria
| | - Marianna Krol
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Leonid V Savitch
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A OC6, Canada
| | - Beth Szyszka-Mroz
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Jessica Roche
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
- , 6/136 Austin St, Mt. Victoria, Wellington, 6011, New Zealand
| | - D P Sprott
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, K1A OC6, Canada
| | - Eva Selstam
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 90187, Umeå, Sweden
| | - Kenneth W Wilson
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Richard Gardiner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gunnar Öquist
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 90187, Umeå, Sweden
| | - Vaughan M Hurry
- Department of Plant Physiology, Umeå Plant Science Centre, University of Umeå, 90187, Umeå, Sweden
| | - Norman P A Hüner
- Department of Biology and the Biotron Centre for Experimental Climate Change Research, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
6
|
Fürtauer L, Weiszmann J, Weckwerth W, Nägele T. Dynamics of Plant Metabolism during Cold Acclimation. Int J Mol Sci 2019; 20:E5411. [PMID: 31671650 PMCID: PMC6862541 DOI: 10.3390/ijms20215411] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
Plants have evolved strategies to tightly regulate metabolism during acclimation to a changing environment. Low temperature significantly constrains distribution, growth and yield of many temperate plant species. Exposing plants to low but non-freezing temperature induces a multigenic processes termed cold acclimation, which eventually results in an increased freezing tolerance. Cold acclimation comprises reprogramming of the transcriptome, proteome and metabolome and affects communication and signaling between subcellular organelles. Carbohydrates play a central role in this metabolic reprogramming. This review summarizes current knowledge about the role of carbohydrate metabolism in plant cold acclimation with a focus on subcellular metabolic reprogramming, its thermodynamic constraints under low temperature and mathematical modelling of metabolism.
Collapse
Affiliation(s)
- Lisa Fürtauer
- Plant Evolutionary Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Bavaria, Germany.
| | - Jakob Weiszmann
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria.
- Vienna Metabolomics Center, University of Vienna, Vienna 1090, Austria.
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria.
- Vienna Metabolomics Center, University of Vienna, Vienna 1090, Austria.
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Bavaria, Germany.
| |
Collapse
|
7
|
Fürtauer L, Weiszmann J, Weckwerth W, Nägele T. Mathematical Modeling Approaches in Plant Metabolomics. Methods Mol Biol 2018; 1778:329-347. [PMID: 29761450 DOI: 10.1007/978-1-4939-7819-9_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The experimental analysis of a plant metabolome typically results in a comprehensive and multidimensional data set. To interpret metabolomics data in the context of biochemical regulation and environmental fluctuation, various approaches of mathematical modeling have been developed and have proven useful. In this chapter, a general introduction to mathematical modeling is presented and discussed in context of plant metabolism. A particular focus is laid on the suitability of mathematical approaches to functionally integrate plant metabolomics data in a metabolic network and combine it with other biochemical or physiological parameters.
Collapse
Affiliation(s)
- Lisa Fürtauer
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Jakob Weiszmann
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Thomas Nägele
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria.
- Department Biology I, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Austria.
| |
Collapse
|