1
|
Zhang J, Sohail H, Xu X, Zhang Y, Zhang Y, Chen Y. Unveiling tolerance mechanisms in pepper to combined low-temperature and low-light stress: a physiological and transcriptomic approach. BMC PLANT BIOLOGY 2025; 25:171. [PMID: 39924505 PMCID: PMC11808994 DOI: 10.1186/s12870-025-06169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Pepper (Capsicum annuum L.) is a vegetable crop of significant economic importance, but its yield and quality are severely affected by the combined stress of low temperature and low light (LL), particularly in greenhouse environments. Despite this, the physiological and molecular mechanisms underlying pepper's response to LL stress remain poorly understood. In this study, we conducted physiological and transcriptomic analyses on two pepper genotypes: Y2, a LL-sensitive genotype, and Y425, a LL-tolerant genotype. These genotypes were subjected to LL stress conditions (10 °C/5°C, 100 µmol m⁻²s⁻¹) and control (CK) conditions (28 °C/18°C, 300 µmol m⁻²s⁻¹). RESULTS Three days after treatment, the phenotypes of the two pepper genotypes began to show clear distinctions, with Y425 seedlings exhibiting greater root length, shoot fresh weight, and root fresh weight compared to Y2. Additionally, comparative transcriptome analysis of leaf samples from both genotypes identified a total of 13,190 differentially expressed genes (DEGs). Gene Ontology (GO) enrichment analysis revealed that genes associated with photosynthesis, osmotic stress response, reactive oxygen species response, and other GO terms potentially contribute to LL tolerance. Moreover, three key pathways involved in the response to LL stress were identified: photosynthesis-antenna proteins, zeatin biosynthesis, and circadian rhythm pathways. The key DEGs in these pathways were expressed at higher levels in Y425 as compared with Y2. Furthermore, physiological indicators such as chlorophyll fluorescence parameters, chlorophyll content, osmoregulatory substances, and antioxidant enzyme activities decreased under LL stress; however, the reduction was significantly greater in Y2 compared to Y425, further validating the molecular findings from the transcriptome analysis. CONCLUSION This study identified significant physiological and transcriptomic differences in two pepper genotypes under LL stress. It highlighted key pathways and provide novel insights into the molecular and physiological mechanisms of pepper's LL tolerance. These results emphasize the importance of optimizing greenhouse conditions for better crop productivity.
Collapse
Affiliation(s)
- Jie Zhang
- Cash Crop Research Laboratory, Lixiahe Institute of Agricultural Sciences, Yangzhou, Jiangsu, 225007, China
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yongtai Zhang
- Cash Crop Research Laboratory, Lixiahe Institute of Agricultural Sciences, Yangzhou, Jiangsu, 225007, China
| | - Yongji Zhang
- Cash Crop Research Laboratory, Lixiahe Institute of Agricultural Sciences, Yangzhou, Jiangsu, 225007, China.
| | - Yibo Chen
- Cash Crop Research Laboratory, Lixiahe Institute of Agricultural Sciences, Yangzhou, Jiangsu, 225007, China.
| |
Collapse
|
2
|
Petersen J, Rredhi A, Szyttenholm J, Mittag M. Evolution of circadian clocks along the green lineage. PLANT PHYSIOLOGY 2022; 190:924-937. [PMID: 35325228 PMCID: PMC9516769 DOI: 10.1093/plphys/kiac141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Circadian clocks govern temporal programs in the green lineage (Chloroplastida) as they do in other photosynthetic pro- and eukaryotes, bacteria, fungi, animals, and humans. Their physiological properties, including entrainment, phase responses, and temperature compensation, are well conserved. The involvement of transcriptional/translational feedback loops in the oscillatory machinery and reversible phosphorylation events are also maintained. Circadian clocks control a large variety of output rhythms in green algae and terrestrial plants, adjusting their metabolism and behavior to the day-night cycle. The angiosperm Arabidopsis (Arabidopsis thaliana) represents a well-studied circadian clock model. Several molecular components of its oscillatory machinery are conserved in other Chloroplastida, but their functions may differ. Conserved clock components include at least one member of the CIRCADIAN CLOCK ASSOCIATED1/REVEILLE and one of the PSEUDO RESPONSE REGULATOR family. The Arabidopsis evening complex members EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO are found in the moss Physcomitrium patens and in the liverwort Marchantia polymorpha. In the flagellate chlorophyte alga Chlamydomonas reinhardtii, only homologs of ELF4 and LUX (named RHYTHM OF CHLOROPLAST ROC75) are present. Temporal ROC75 expression in C. reinhardtii is opposite to that of the angiosperm LUX, suggesting different clock mechanisms. In the picoalga Ostreococcus tauri, both ELF genes are missing, suggesting that it has a progenitor circadian "green" clock. Clock-relevant photoreceptors and thermosensors vary within the green lineage, except for the CRYPTOCHROMEs, whose variety and functions may differ. More genetically tractable models of Chloroplastida are needed to draw final conclusions about the gradual evolution of circadian clocks within the green lineage.
Collapse
Affiliation(s)
- Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julie Szyttenholm
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
3
|
Sorrentino M, Panzarová K, Spyroglou I, Spíchal L, Buffagni V, Ganugi P, Rouphael Y, Colla G, Lucini L, De Diego N. Integration of Phenomics and Metabolomics Datasets Reveals Different Mode of Action of Biostimulants Based on Protein Hydrolysates in Lactuca sativa L. and Solanum lycopersicum L. Under Salinity. FRONTIERS IN PLANT SCIENCE 2022; 12:808711. [PMID: 35185959 PMCID: PMC8851396 DOI: 10.3389/fpls.2021.808711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/21/2021] [Indexed: 05/27/2023]
Abstract
Plant phenomics is becoming a common tool employed to characterize the mode of action of biostimulants. A combination of this technique with other omics such as metabolomics can offer a deeper understanding of a biostimulant effect in planta. However, the most challenging part then is the data analysis and the interpretation of the omics datasets. In this work, we present an example of how different tools, based on multivariate statistical analysis, can help to simplify the omics data and extract the relevant information. We demonstrate this by studying the effect of protein hydrolysate (PH)-based biostimulants derived from different natural sources in lettuce and tomato plants grown in controlled conditions and under salinity. The biostimulants induced different phenotypic and metabolomic responses in both crops. In general, they improved growth and photosynthesis performance under control and salt stress conditions, with better performance in lettuce. To identify the most significant traits for each treatment, a random forest classifier was used. Using this approach, we found out that, in lettuce, biomass-related parameters were the most relevant traits to evaluate the biostimulant mode of action, with a better response mainly connected to plant hormone regulation. However, in tomatoes, the relevant traits were related to chlorophyll fluorescence parameters in combination with certain antistress metabolites that benefit the electron transport chain, such as 4-hydroxycoumarin and vitamin K1 (phylloquinone). Altogether, we show that to go further in the understanding of the use of biostimulants as plant growth promotors and/or stress alleviators, it is highly beneficial to integrate more advanced statistical tools to deal with the huge datasets obtained from the -omics to extract the relevant information.
Collapse
Affiliation(s)
- Mirella Sorrentino
- Photon Systems Instruments (PSI), spol. S.r.o., Drásov, Czechia
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Klára Panzarová
- Photon Systems Instruments (PSI), spol. S.r.o., Drásov, Czechia
| | - Ioannis Spyroglou
- Plant Sciences Core Facility, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Lukáš Spíchal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - Valentina Buffagni
- Department for Sustainable Food Process, DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paola Ganugi
- Department for Sustainable Food Process, DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Nuria De Diego
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| |
Collapse
|
4
|
Wungrampha S, Joshi R, Rathore RS, Singla-Pareek SL, Pareek A. CO 2 uptake and chlorophyll a fluorescence of Suaeda fruticosa grown under diurnal rhythm and after transfer to continuous dark. PHOTOSYNTHESIS RESEARCH 2019; 142:211-227. [PMID: 31317383 DOI: 10.1007/s11120-019-00659-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/04/2019] [Indexed: 05/15/2023]
Abstract
Although only 2-4% of absorbed light is emitted as chlorophyll (Chl) a fluorescence, its measurement provides valuable information on photosynthesis of the plant, particularly of Photosystem II (PSII) and Photosystem I (PSI). In this paper, we have examined photosynthetic parameters of Suaeda fruticosa L. (family: Amaranthaceae), surviving under extreme xerohalophytic conditions, as influenced by diurnal rhythm or continuous dark condition. We report here CO2 gas exchange and the kinetics of Chl a fluorescence of S. fruticosa, made every 3 hours (hrs) for 3 days, using a portable infra-red gas analyzer and a Handy PEA fluorimeter. Our measurements on CO2 gas exchange show the maximum rate of photosynthesis to be at 08:00 hrs under diurnal condition and at 05:00 hrs under continuous dark. From the OJIP phase of Chl a fluorescence transient, we have inferred that the maximum quantum yield of PSII photochemistry must have increased during the night under diurnal rhythm, and between 11:00 and 17:00 hrs under constant dark. Overall, our study has revealed novel insights into how photosynthetic reactions are affected by the photoperiodic cycles in S. fruticosa under high salinity. This study has further revealed a unique strategy operating in this xero-halophyte where the repair mechanism for damaged PSII operates during the dark, which, we suggest, contributes to its ecological adaptation and ability to survive and reproduce under extreme saline, high light, and drought conditions. We expect these investigations to help in identifying key genes and pathways for raising crops for saline and dry areas.
Collapse
Affiliation(s)
- Silas Wungrampha
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ray S Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
5
|
Srivastava D, Shamim M, Kumar M, Mishra A, Maurya R, Sharma D, Pandey P, Singh K. Role of circadian rhythm in plant system: An update from development to stress response. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2019; 162:256-271. [DOI: 10.1016/j.envexpbot.2019.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|