1
|
Maxwell MWH, Causier BE, Chippendale J, Ault JR, Bell CA. Diet-regulated transcriptional plasticity of plant parasites in plant-mutualist environments. Proc Natl Acad Sci U S A 2025; 122:e2421367122. [PMID: 40244681 PMCID: PMC12037023 DOI: 10.1073/pnas.2421367122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Crop pathogens often lack exclusive access to their host and must interact with plants concurrently engaged with numerous other symbionts. Here, we demonstrate that the colonization of hosts by plant-mutualistic mycorrhizal fungi can indirectly induce transcriptional responses of a major plant parasite, the nematode Globodera pallida, via a modified host resource profile. A shift in the resource profile of the root, where the parasite feeds, is perceived and responded to by the parasite through transcriptional changes, potentially to optimize resource intake. Specifically, G. pallida react to reduced host-photosynthate influx due to concurrent mycorrhizal-host symbiosis by upregulating the expression of a sugar transporter (SWEET3) in the nematode intestine. We identify this gene's role in parasite growth and development, regulated by the putative diet-responsive transcription factor Gp-HBL1. Overall, our data unveil a mechanism by which a parasitic animal responds to fluctuations in host plant quality that is induced by a plant-mutualistic fungus, to enhance parasitism and reproduction.
Collapse
Affiliation(s)
- M. Willow H. Maxwell
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Barry E. Causier
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Jasper Chippendale
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - James R. Ault
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Chris A. Bell
- School of Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|
2
|
Mazumdar S, Augstein F, Zhang A, Musseau C, Anjam MS, Marhavy P, Melnyk CW. Damage activates EXG1 and RLP44 to suppress vascular differentiation during regeneration in Arabidopsis. PLANT COMMUNICATIONS 2025; 6:101256. [PMID: 39818623 PMCID: PMC12010363 DOI: 10.1016/j.xplc.2025.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/19/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Plants possess remarkable regenerative abilities to form de novo vasculature after damage and in response to pathogens that invade and withdraw nutrients. To identify common factors that affect vascular formation upon stress, we searched for Arabidopsis thaliana genes differentially expressed upon Agrobacterium infection, nematode infection, and plant grafting. One such gene is cell wall-related and highly induced by all three stresses, which we named ENHANCED XYLEM AND GRAFTING1 (EXG1), since its mutations promote ectopic xylem formation in a vascular cell induction system and enhance graft formation. Further observations revealed that exg1 mutants show inhibited cambium development and callus formation but enhanced tissue attachment, syncytium size, phloem reconnection, and xylem formation. Given that brassinosteroids also promote xylem differentiation, we analyzed brassinosteroid-related genes and found that mutations in RLP44 encoding a receptor-like protein cause similar regeneration-related phenotypes as mutations in EXG1. Like EXG1, RLP44 expression is also induced by grafting and wounding. Mutations in EXG1 and RLP44 affect the expression of many genes in common, including those related to cell walls and genes important for vascular regeneration. Our results suggest that EXG1 integrates information from wounding or pathogen stress and functions with RLP44 to suppress vascular differentiation during regeneration and healing.
Collapse
Affiliation(s)
- Shamik Mazumdar
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas Allé 5, 756 51 Uppsala, Sweden
| | - Frauke Augstein
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas Allé 5, 756 51 Uppsala, Sweden
| | - Ai Zhang
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas Allé 5, 756 51 Uppsala, Sweden
| | - Constance Musseau
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas Allé 5, 756 51 Uppsala, Sweden
| | - Muhammad Shahzad Anjam
- Umea Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 901 83 Umea, Sweden
| | - Peter Marhavy
- Umea Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 901 83 Umea, Sweden
| | - Charles W Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas Allé 5, 756 51 Uppsala, Sweden.
| |
Collapse
|
3
|
Jain A, Li T, Huston DC, Kaur J, Trollip C, Wainer J, Hodda M, Linsell K, Riley IT, Toktay H, Olowu EA, Edwards J, Rodoni B, Sawbridge T. Insights from draft genomes of Heterodera species isolated from field soil samples. BMC Genomics 2025; 26:158. [PMID: 39966714 PMCID: PMC11834393 DOI: 10.1186/s12864-025-11351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The nematode phylum includes many species key to soil food webs with trophic behaviours extending from feeding on microbes to macrofauna and plant roots. Among these, the plant parasitic cyst nematodes retain their eggs in protective cysts prolonging their survival under harsh conditions. These nematodes, including those from the genus Heterodera, cause significant economic losses in agricultural systems. Understanding of nematode diversity and ecology has expanded through application of genomic research, however, for Heterodera species there are very few available whole genome sequences. Sequencing and assembling Heterodera genomes is challenging due to various technical limitations imposed by the biology of Heterodera. Overcoming these limitations is essential for comprehensive insights into Heterodera parasitic interactions with plants, population studies, and for Australian biosecurity implications. RESULTS We hereby present draft genomes of six species of which Heterodera australis, H. humuli, H. mani and H. trifolii are presently recorded in Australia and two species, H. avenae and H. filipjevi, currently absent from Australia. The draft genomes were sequenced from genomic DNA isolated from 50 cysts each using an Illumina NovaSeq short read sequencing platform. The data revealed disparity in sequencing yield between species. What was previously identified as H. avenae in Australia using morphological traits is now confirmed as H. australis and may have consequences for wheat breeding programs in Australia that are breeding for resistance to H. avenae. A multigene phylogeny placed the sequenced species into taxonomic phylogenetic perspective. Genomic comparisons within the Avenae species group revealed orthologous gene clusters within the species, emphasising the shared and unique features of the group. The data also revealed the presence of a Wolbachia species, a putative bacterial endosymbiont from Heterodera humuli short read sequencing data. CONCLUSION Genomic research holds immense significance for agriculture, for understanding pest species diversity and the development of effective management strategies. This study provides insight into Heterodera, cyst nematode genomics and the associated symbionts and this work will serve as a baseline for further genomic analyses in this economically important nematode group.
Collapse
Affiliation(s)
- Akshita Jain
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia.
| | - Tongda Li
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| | - Daniel C Huston
- Australian National Insect Collection, National Research Collection Australia, CSIRO, PO Box 1700, Canberra, ACT, 2601, Australia
| | - Jatinder Kaur
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| | - Conrad Trollip
- Forest Science, NSW Department of Primary Industries, Parramatta, NSW, 2150, Australia
| | - John Wainer
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| | - Mike Hodda
- Australian National Insect Collection, National Research Collection Australia, CSIRO, PO Box 1700, Canberra, ACT, 2601, Australia
| | - Katherine Linsell
- South Australian Research and Development Institute, Adelaide, SA, 5064, Australia
| | - Ian T Riley
- School of Agriculture, Food and Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Halil Toktay
- Department of Plant Production and Technologies, Faculty of Agricultural Science and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Eniola Ajibola Olowu
- Department of Plant Production and Technologies, Faculty of Agricultural Science and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Jacqueline Edwards
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| | - Brendan Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| | - Timothy Sawbridge
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Centre for AgriBioscience, Agriculture Victoria Research, Department of Energy, Environment and Climate Action (DEECA), Bundoora, VIC, 3083, Australia
| |
Collapse
|
4
|
Liu X, Mitchum MG. A major role of class III HD-ZIPs in promoting sugar beet cyst nematode parasitism in Arabidopsis. PLoS Pathog 2024; 20:e1012610. [PMID: 39509386 PMCID: PMC11542791 DOI: 10.1371/journal.ppat.1012610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/21/2024] [Indexed: 11/15/2024] Open
Abstract
Cyst nematodes use a stylet to secrete CLE-like peptide effector mimics into selected root cells of their host plants to hijack endogenous plant CLE signaling pathways for feeding site (syncytium) formation. Here, we identified ATHB8, encoding a HD-ZIP III family transcription factor, as a downstream component of the CLE signaling pathway in syncytium formation. ATHB8 is expressed in the early stages of syncytium initiation, and then transitions to neighboring cells of the syncytium as it expands; an expression pattern coincident with auxin response at the infection site. Conversely, MIR165a, which expresses in endodermal cells and moves into the vasculature to suppress HD-ZIP III TFs, is down-regulated near the infection site. Knocking down HD-ZIP III TFs by inducible over-expression of MIR165a in Arabidopsis dramatically reduced female development of the sugar beet cyst nematode (Heterodera schachtii). HD-ZIP III TFs are known to function downstream of auxin to promote cellular quiescence and define stem cell organizer cells in vascular patterning. Taken together, our results suggest that HD-ZIP III TFs function together with a CLE and auxin signaling network to promote syncytium formation, possibly by inducing root cells into a quiescent status and priming them for initial syncytial cell establishment and/or subsequent cellular incorporation.
Collapse
Affiliation(s)
- Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Georgia, United States of America
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Georgia, United States of America
| |
Collapse
|
5
|
Huang L, Yuan Y, Ramirez C, Xia C, Zhang C, Kud J, Kuhl JC, Caplan A, Dandurand LM, Xiao F. The potato RNA metabolism machinery is targeted by the cyst nematode effector RHA1B for successful parasitism. THE PLANT CELL 2024; 36:koae264. [PMID: 39325717 PMCID: PMC11638110 DOI: 10.1093/plcell/koae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
The potato (Solanum tuberosum) cyst nematode Globodera pallida induces a multinucleate feeding site (syncytium) in potato roots as its sole source of nutrition. Here, we demonstrate that the G. pallida effector RING-H2 finger A1b (RHA1B), which is a functional ubiquitin ligase, interferes with the carbon catabolite repression 4 (CCR4)-negative on TATA-less (NOT) deadenylase-based RNA metabolism machinery that regulates syncytium development in G. pallida-infected potato. Specifically, RHA1B targets the CCR4-associated factor 1 (CAF1) and StNOT10 subunits of the CCR4-NOT complex for proteasome-mediated degradation, leading to upregulation of the cyclin gene StCycA2 involved in syncytium formation. The StCAF1 subunit of CCR4-NOT recruits the RNA binding protein StPUM5 to deadenylate StCycA2 mRNA, resulting in shortened poly-A tails of StCycA2 mRNA and subsequently reduced transcript levels. Knockdown of either subunit (StCAF1 or StNOT10) of the CCR4-NOT complex or StPUM5 in transgenic potato plants resulted in enlarged syncytia and enhanced susceptibility to G. pallida infection, which resembles the phenotypes of StCycA2 overexpression transgenic potato plants. Genetic analyses indicate that transgenic potato plants overexpressing RHA1B exhibit similar phenotypes as transgenic potato plants with knockdown of StNOT10, StCAF1, or StPUM5. Thus, our data suggest that G. pallida utilizes the RHA1B effector to manipulate RNA metabolism in host plants, thereby promoting syncytium development for parasitic success.
Collapse
Affiliation(s)
- Li Huang
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Yulin Yuan
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Chloe Ramirez
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Chao Xia
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Cankui Zhang
- Department of Agronomy, Purdue Center for Plant Biology, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN 47907, USA
| | - Joanna Kud
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Joseph C Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Allan Caplan
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Louise-Marie Dandurand
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
6
|
Matuszkiewicz M, Sobczak M. Syncytium Induced by Plant-Parasitic Nematodes. Results Probl Cell Differ 2024; 71:371-403. [PMID: 37996687 DOI: 10.1007/978-3-031-37936-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Plant-parasitic nematodes from the genera Globodera, Heterodera (cyst-forming nematodes), and Meloidogyne (root-knot nematodes) are notorious and serious pests of crops. They cause tremendous economic losses between US $80 and 358 billion a year. Nematodes infect the roots of plants and induce the formation of specialised feeding structures (syncytium and giant cells, respectively) that nourish juveniles and adults of the nematodes. The specialised secretory glands enable nematodes to synthesise and secrete effectors that facilitate migration through root tissues and alter the morphogenetic programme of host cells. The formation of feeding sites is associated with the suppression of plant defence responses and deep reprogramming of the development and metabolism of plant cells.In this chapter, we focus on syncytia induced by the sedentary cyst-forming nematodes and provide an overview of ultrastructural changes that occur in the host roots during syncytium formation in conjunction with the most important molecular changes during compatible and incompatible plant responses to infection with nematodes.
Collapse
Affiliation(s)
- Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland.
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), Warsaw, Poland
| |
Collapse
|
7
|
Molloy B, Baum T, Eves-van den Akker S. Unlocking the development- and physiology-altering 'effector toolbox' of plant-parasitic nematodes. Trends Parasitol 2023; 39:732-738. [PMID: 37438213 DOI: 10.1016/j.pt.2023.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Plant parasites take advantage of host developmental plasticity to elicit profound developmental and physiological changes. In the case of plant-parasitic nematodes (PPNs), these changes can result in the development of new plant organs. Despite the importance of the development- and physiology-altering abilities of these parasites in pathology, research has historically focused on their abilities to suppress immunity. We argue that, given the dramatic changes involved in feeding site establishment, it is entirely possible that development- and physiology-altering abilities of PPNs may, in fact, dominate effector repertoires - highlighting the need for novel high-throughput screens for development- and physiology-altering 'tools'. Uncovering this portion of the nematode 'toolbox' can enable biotechnology, enhance crop protection, and shed light on fundamental host biology itself.
Collapse
Affiliation(s)
- Beth Molloy
- Department of Plant Sciences - Crop Science Centre, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Thomas Baum
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
8
|
Wojszko K, Różańska E, Sobczak M, Kuczerski K, Krępski T, Wiśniewska A. The role of AtPP2-A3 and AtPP2-A8 genes encoding Nictaba-related lectin domains in the defense response of Arabidopsis thaliana to Heterodera schachtii. PLANTA 2023; 258:40. [PMID: 37420105 PMCID: PMC10329053 DOI: 10.1007/s00425-023-04196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
MAIN CONCLUSION Expression levels of AtPP2-A3 and AtPP2-A8 are reduced in syncytia induced by Heterodera schachtii and decline of their expression levels decreases host susceptibility, whereas their overexpression promotes susceptibility to parasite. Plant-parasitic nematodes cause huge crop losses worldwide. Heterodera schachtii is a sedentary cyst-forming nematode that induces a feeding site called a syncytium via the delivery of secreted chemical substances (effectors) to host cells, which modulate host genes expression and phytohormone regulation patterns. Genes encoding the Nictaba-related lectin domain have been found among the plant genes with downregulated expression during the development of syncytia induced by H. schachtii in Arabidopsis thaliana roots. To investigate the role of two selected Nictaba-related genes in the plant response to beet cyst nematode parasitism, mutants and plants overexpressing AtPP2-A3 or AtPP2-A8 were infected, and promoter activity and protein localization were analyzed. In wild-type plants, AtPP2-A3 and AtPP2-A8 were expressed only in roots, especially in the cortex and rhizodermis. After nematode infection, their expression was switched off in regions surrounding a developing syncytium. Astonishingly, plants overexpressing AtPP2-A3 or AtPP2-A8 were more susceptible to nematode infection than wild-type plants, whereas mutants were less susceptible. Based on these results and changes in AtPP2-A3 and AtPP2-A8 expression patterns after treatments with different stress phytohormones, we postulate that the AtPP2-A3 and AtPP2-A8 genes play important roles in the defense response to beet cyst nematode infection.
Collapse
Affiliation(s)
- Kamila Wojszko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Elżbieta Różańska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Karol Kuczerski
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Tomasz Krępski
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Anita Wiśniewska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
9
|
Kranse OP, Ko I, Healey R, Sonawala U, Wei S, Senatori B, De Batté F, Zhou J, Eves-van den Akker S. A low-cost and open-source solution to automate imaging and analysis of cyst nematode infection assays for Arabidopsis thaliana. PLANT METHODS 2022; 18:134. [PMID: 36503537 PMCID: PMC9743603 DOI: 10.1186/s13007-022-00963-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cyst nematodes are one of the major groups of plant-parasitic nematode, responsible for considerable crop losses worldwide. Improving genetic resources, and therefore resistant cultivars, is an ongoing focus of many pest management strategies. One of the major bottlenecks in identifying the plant genes that impact the infection, and thus the yield, is phenotyping. The current available screening method is slow, has unidimensional quantification of infection limiting the range of scorable parameters, and does not account for phenotypic variation of the host. The ever-evolving field of computer vision may be the solution for both the above-mentioned issues. To utilise these tools, a specialised imaging platform is required to take consistent images of nematode infection in quick succession. RESULTS Here, we describe an open-source, easy to adopt, imaging hardware and trait analysis software method based on a pre-existing nematode infection screening method in axenic culture. A cost-effective, easy-to-build and -use, 3D-printed imaging device was developed to acquire images of the root system of Arabidopsis thaliana infected with the cyst nematode Heterodera schachtii, replacing costly microscopy equipment. Coupling the output of this device to simple analysis scripts allowed the measurement of some key traits such as nematode number and size from collected images, in a semi-automated manner. Additionally, we used this combined solution to quantify an additional trait, root area before infection, and showed both the confounding relationship of this trait on nematode infection and a method to account for it. CONCLUSION Taken together, this manuscript provides a low-cost and open-source method for nematode phenotyping that includes the biologically relevant nematode size as a scorable parameter, and a method to account for phenotypic variation of the host. Together these tools highlight great potential in aiding our understanding of nematode parasitism.
Collapse
Affiliation(s)
- Olaf Prosper Kranse
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Itsuhiro Ko
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
- Plant Pathology Department, Washington State University, Pullman, WA, 99164, USA
| | - Roberta Healey
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Unnati Sonawala
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Siyuan Wei
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Beatrice Senatori
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Francesco De Batté
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Ji Zhou
- Jiangsu Collaborative Innovation Center for Modern Crop Production Co-Sponsored By Province and Ministry, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
- Cambridge Crop Research, National Institute of Agricultural Botany (NIAB), Cambridge, CB3 0LE, UK
| | | |
Collapse
|
10
|
Siddique S, Radakovic ZS, Hiltl C, Pellegrin C, Baum TJ, Beasley H, Bent AF, Chitambo O, Chopra D, Danchin EGJ, Grenier E, Habash SS, Hasan MS, Helder J, Hewezi T, Holbein J, Holterman M, Janakowski S, Koutsovoulos GD, Kranse OP, Lozano-Torres JL, Maier TR, Masonbrink RE, Mendy B, Riemer E, Sobczak M, Sonawala U, Sterken MG, Thorpe P, van Steenbrugge JJM, Zahid N, Grundler F, Eves-van den Akker S. The genome and lifestage-specific transcriptomes of a plant-parasitic nematode and its host reveal susceptibility genes involved in trans-kingdom synthesis of vitamin B5. Nat Commun 2022; 13:6190. [PMID: 36261416 PMCID: PMC9582021 DOI: 10.1038/s41467-022-33769-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Plant-parasitic nematodes are a major threat to crop production in all agricultural systems. The scarcity of classical resistance genes highlights a pressing need to find new ways to develop nematode-resistant germplasm. Here, we sequence and assemble a high-quality phased genome of the model cyst nematode Heterodera schachtii to provide a platform for the first system-wide dual analysis of host and parasite gene expression over time, covering all major parasitism stages. Analysis of the hologenome of the plant-nematode infection site identified metabolic pathways that were incomplete in the parasite but complemented by the host. Using a combination of bioinformatic, genetic, and biochemical approaches, we show that a highly atypical completion of vitamin B5 biosynthesis by the parasitic animal, putatively enabled by a horizontal gene transfer from a bacterium, is required for full pathogenicity. Knockout of either plant-encoded or now nematode-encoded steps in the pathway significantly reduces parasitic success. Our experiments establish a reference for cyst nematodes, further our understanding of the evolution of plant-parasitism by nematodes, and show that congruent differential expression of metabolic pathways in the infection hologenome represents a new way to find nematode susceptibility genes. The approach identifies genome-editing-amenable targets for future development of nematode-resistant crops.
Collapse
Affiliation(s)
- Shahid Siddique
- Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Zoran S Radakovic
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
- P.H. Petersen Saatzucht Lundsgaard GmbH, D-24977, Grundhof, Germany
| | - Clarissa Hiltl
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Clement Pellegrin
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Helen Beasley
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Oliver Chitambo
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Divykriti Chopra
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Etienne G J Danchin
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Eric Grenier
- IGEPP, INRAE, Institut Agro, Université Rennes, 35650, Le Rheu, France
| | - Samer S Habash
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
- BASF Vegetable Seeds, Napoleonsweg 152, 6083, AB, Nunhem, The Netherlands
| | - M Shamim Hasan
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Julia Holbein
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Martijn Holterman
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
- Solynta, Dreijenlaan 2, 6703, HA, Wageningen, The Netherlands
| | - Sławomir Janakowski
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | | | - Olaf P Kranse
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Jose L Lozano-Torres
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Rick E Masonbrink
- Genome Informatics Facility, Iowa State University, Ames, IA, 50010, USA
| | - Badou Mendy
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Esther Riemer
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Unnati Sonawala
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Peter Thorpe
- Mackenzie Institute for Early Diagnosis, School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - Joris J M van Steenbrugge
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Nageena Zahid
- Institute for Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-University of Bonn, Meckenheimer Allee 168, D-53115, Bonn, Germany
| | - Florian Grundler
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany.
| | | |
Collapse
|
11
|
Possible stochastic sex determination in Bursaphelenchus nematodes. Nat Commun 2022; 13:2574. [PMID: 35546147 PMCID: PMC9095866 DOI: 10.1038/s41467-022-30173-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/19/2022] [Indexed: 12/13/2022] Open
Abstract
Sex determination mechanisms evolve surprisingly rapidly, yet little is known in the large nematode phylum other than for Caenorhabditis elegans, which relies on chromosomal XX-XO sex determination and a dosage compensation mechanism. Here we analyze by sex-specific genome sequencing and genetic analysis sex determination in two fungal feeding/plant-parasitic Bursaphelenchus nematodes and find that their sex differentiation is more likely triggered by random, epigenetic regulation than by more well-known mechanisms of chromosomal or environmental sex determination. There is no detectable difference in male and female chromosomes, nor any linkage to sexual phenotype. Moreover, the protein sets of these nematodes lack genes involved in X chromosome dosage counting or compensation. By contrast, our genetic screen for sex differentiation mutants identifies a Bursaphelenchus ortholog of tra-1, the major output of the C. elegans sex determination cascade. Nematode sex determination pathways might have evolved by “bottom-up” accretion from the most downstream regulator, tra-1. In most species, sex is determined by genetic or environmental factors. Here, the authors present evidence that sex determination in Bursaphelenchus nematodes is instead likely to be regulated by a random, epigenetic mechanism.
Collapse
|
12
|
Anjam MS, Siddique S, Marhavy P. RNA Isolation from Nematode-Induced Feeding Sites in Arabidopsis Roots Using Laser Capture Microdissection. Methods Mol Biol 2022; 2494:313-324. [PMID: 35467217 DOI: 10.1007/978-1-0716-2297-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nematodes are diverse multicellular organisms that are most abundantly found in the soil. Most nematodes are free-living and feed on a range of organisms. Based on their feeding habits, soil nematodes can be classified into four groups: bacterial, omnivorous, fungal, and plant-feeding. Plant-parasitic nematodes (PPNs) are a serious threat to global food security, causing substantial losses to the agricultural sector. Root-knot and cyst nematodes are the most important of PPNs, significantly limiting the yield of commercial crops such as sugar beet, mustard, and cauliflower. The life cycle of these nematodes consists of four molting stages (J1-J4) that precede adulthood. Nonetheless, only second-stage juveniles (J2), which hatch from eggs, are infective worms that can parasitize the host's roots. The freshly hatched juveniles (J2) of beet cyst nematode, Heterodera schachtii, establish a permanent feeding site inside the roots of the host plant. A cocktail of proteinaceous secretions is injected into a selected cell which later develops into a syncytium via local cell wall dissolution of several hundred neighboring cells. The formation of syncytium is accompanied by massive transcriptional, metabolic, and proteomic changes inside the host tissues. It creates a metabolic sink in which solutes are translocated to feed the nematodes throughout their life cycle. Deciphering the molecular signaling cascades during syncytium establishment is thus essential in studying the plant-nematode interactions and ensuring sustainability in agricultural practices. However, isolating RNA, protein, and metabolites from syncytial cells remains challenging. Extensive use of laser capture microdissection (LCM) in animal and human tissues has shown this approach to be a powerful technique for isolating a single cell from complex tissues. Here, we describe a simplified protocol for Arabidopsis-Heterodera schachtii infection assays, which is routinely applied in several plant-nematode laboratories. Next, we provide a detailed protocol for isolating high-quality RNA from syncytial cells induced by Heterodera schachtii in the roots of Arabidopsis thaliana plants.
Collapse
Affiliation(s)
- Muhammad Shahzad Anjam
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
- Institute of Molecular Biology and Biotechnology (IMBB), Bahauddin Zakariya University, Multan, Pakistan
| | - Shahid Siddique
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Peter Marhavy
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden.
| |
Collapse
|
13
|
Lisei-de-Sá ME, Rodrigues-Silva PL, Morgante CV, de Melo BP, Lourenço-Tessutti IT, Arraes FBM, Sousa JPA, Galbieri R, Amorim RMS, de Lins CBJ, Macedo LLP, Moreira VJ, Ferreira GF, Ribeiro TP, Fragoso RR, Silva MCM, de Almeida-Engler J, Grossi-de-Sa MF. Pyramiding dsRNAs increases phytonematode tolerance in cotton plants. PLANTA 2021; 254:121. [PMID: 34779907 DOI: 10.1007/s00425-021-03776-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Host-derived suppression of nematode essential genes decreases reproduction of Meloidogyne incognita in cotton. Root-knot nematodes (RKN) represent one of the most damaging plant-parasitic nematode genera worldwide. RNAi-mediated suppression of essential nematode genes provides a novel biotechnological strategy for the development of sustainable pest-control methods. Here, we used a Host Induced Gene Silencing (HIGS) approach by stacking dsRNA sequences into a T-DNA construct to target three essential RKN genes: cysteine protease (Mi-cpl), isocitrate lyase (Mi-icl), and splicing factor (Mi-sf), called dsMinc1, driven by the pUceS8.3 constitutive soybean promoter. Transgenic dsMinc1-T4 plants infected with Meloidogyne incognita showed a significant reduction in gall formation (57-64%) and egg masses production (58-67%), as well as in the estimated reproduction factor (60-78%), compared with the susceptible non-transgenic cultivar. Galls of the RNAi lines are smaller than the wild-type (WT) plants, whose root systems exhibited multiple well-developed root swellings. Transcript levels of the three RKN-targeted genes decreased 13- to 40-fold in nematodes from transgenic cotton galls, compared with those from control WT galls. Finally, the development of non-feeding males in transgenic plants was 2-6 times higher than in WT plants, indicating a stressful environment for nematode development after RKN gene silencing. Data strongly support that HIGS of essential RKN genes is an effective strategy to improve cotton plant tolerance. This study presents the first application of dsRNA sequences to target multiple genes to promote M. incognita tolerance in cotton without phenotypic penalty in transgenic plants.
Collapse
Affiliation(s)
- Maria E Lisei-de-Sá
- Empresa de Pesquisa Agropecuária de Minas Gerais, Uberaba, MG, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Paolo L Rodrigues-Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Embrapa Semi-Árido, Pretrolina, PE, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Bruno Paes de Melo
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - João P A Sousa
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - Rafael Galbieri
- Instituto Matogrossense Do Algodão, Rondonopolis, MT, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | | | | | - Leonardo L P Macedo
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Valdeir J Moreira
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Departamento de Biologia Molecular, Universidade de Brasília, Brasilia, DF, Brazil
| | | | - Thuanne P Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Rodrigo R Fragoso
- Embrapa Cerrados, Planaltina, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Maria C M Silva
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Janice de Almeida-Engler
- UMR Institut Sophia Agrobiotech INRA/CNRS/UNS, Sophia Antipolis, France
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasilia, DF, Brazil.
- Universidade Católica de Brasília, Brasilia, DF, Brazil.
- Instituto de Ciência E Tecnologia-INCT PlantStress Biotech-EMBRAPA, Brasilia, Brazil.
| |
Collapse
|
14
|
Van Goor J, Shakes DC, Haag ES. Fisher vs. the Worms: Extraordinary Sex Ratios in Nematodes and the Mechanisms that Produce Them. Cells 2021; 10:1793. [PMID: 34359962 PMCID: PMC8303164 DOI: 10.3390/cells10071793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023] Open
Abstract
Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two "seminal" contributions of G. A. Parker.
Collapse
Affiliation(s)
- Justin Van Goor
- Department of Biology, University of Maryland, College Park, MD 20742, USA;
| | - Diane C. Shakes
- Department of Biology, William and Mary, Williamsburg, VA 23187, USA;
| | - Eric S. Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
15
|
Matera C, Grundler FM, Schleker ASS. Sublethal fluazaindolizine doses inhibit development of the cyst nematode Heterodera schachtii during sedentary parasitism. PEST MANAGEMENT SCIENCE 2021; 77:3571-3580. [PMID: 33840151 DOI: 10.1002/ps.6411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/05/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fluazaindolizine is a new compound for the control of plant-parasitic nematodes (PPNs) with an unknown and novel mode-of-action. This compound is very effective against important PPNs. However, investigations elucidating the impact of sublethal fluazaindolizine doses on early nematode virulence and plant-nematode interaction parameters are lacking. RESULTS The effect of direct exposure of Heterodera schachtii juveniles to 50 ppm fluazaindolizine was negligible. Infection assays revealed a 57% reduction in adult females at 1.25 ppm and a 46% reduction in offspring at 40 ppm when juveniles were soaked in the compound for 48 h and subsequently inoculated onto Arabidopsis thaliana. Pre-incubation of A. thaliana roots with fluazaindolizine was not effective against H. schachtii. Conversely, supplementing the plant growth medium with fluazaindolizine led to a significant reduction of adults (-35%), females (-75%) and female size at 1.25 ppm and nearly completely inhibited nematode parasitism at 5 ppm. The impact of fluazaindolizine on A. thaliana was dependent on plant age, compound concentration and duration of contact. Very low sublethal fluazaindolizine concentrations, 5 or 10 ppm, did not interfere with nematode mobility, host finding, penetration, and induction of the feeding site, but specifically inhibited sedentary nematode development inside the root in a concentration-dependent manner. CONCLUSION Fluazaindolizine does not have direct toxicity against PPN infective juveniles, but has a clear effect on nematodes during sedentary development. The formation of females and the development of offspring are strongly reduced. It will be interesting to identify the underlying mechanism in the future. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Christiane Matera
- INRES-Department of Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Florian Mw Grundler
- INRES-Department of Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - A Sylvia S Schleker
- INRES-Department of Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Ochola J, Coyne D, Cortada L, Haukeland S, Ng'ang'a M, Hassanali A, Opperman C, Torto B. Cyst nematode bio-communication with plants: implications for novel management approaches. PEST MANAGEMENT SCIENCE 2021; 77:1150-1159. [PMID: 32985781 PMCID: PMC7894489 DOI: 10.1002/ps.6105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 05/03/2023]
Abstract
Bio-communication occurs when living organisms interact with each other, facilitated by the exchange of signals including visual, auditory, tactile and chemical. The most common form of bio-communication between organisms is mediated by chemical signals, commonly referred to as 'semiochemicals', and it involves an emitter releasing the chemical signal that is detected by a receiver leading to a phenotypic response in the latter organism. The quality and quantity of the chemical signal released may be influenced by abiotic and biotic factors. Bio-communication has been reported to occur in both above- and below-ground interactions and it can be exploited for the management of pests, such as cyst nematodes, which are pervasive soil-borne pests that cause significant crop production losses worldwide. Cyst nematode hatching and successful infection of hosts are biological processes that are largely influenced by semiochemicals including hatching stimulators, hatching inhibitors, attractants and repellents. These semiochemicals can be used to disrupt interactions between host plants and cyst nematodes. Advances in RNAi techniques such as host-induced gene silencing to interfere with cyst nematode hatching and host location can also be exploited for development of synthetic resistant host cultivars. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Juliet Ochola
- International Centre of Insect Physiology and EcologyNairobiKenya
- Chemistry DepartmentKenyatta UniversityNairobiKenya
| | - Danny Coyne
- East Africa, International Institute of Tropical AgricultureNairobiKenya
- Department of Biology, Section NematologyGhent UniversityGhentBelgium
| | - Laura Cortada
- East Africa, International Institute of Tropical AgricultureNairobiKenya
- Department of Biology, Section NematologyGhent UniversityGhentBelgium
| | - Solveig Haukeland
- International Centre of Insect Physiology and EcologyNairobiKenya
- Norwegian Institute of Bioeconomy ResearchÅsNorway
| | | | | | - Charles Opperman
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Baldwyn Torto
- International Centre of Insect Physiology and EcologyNairobiKenya
| |
Collapse
|
17
|
Singh RR, Nobleza N, Demeestere K, Kyndt T. Ascorbate Oxidase Induces Systemic Resistance in Sugar Beet Against Cyst Nematode Heterodera schachtii. FRONTIERS IN PLANT SCIENCE 2020; 11:591715. [PMID: 33193547 PMCID: PMC7641898 DOI: 10.3389/fpls.2020.591715] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/28/2020] [Indexed: 05/07/2023]
Abstract
Ascorbate oxidase (AO) is an enzyme involved in catalyzing the oxidation of apoplastic ascorbic acid (AA) to dehydroascorbic acid (DHA). In this research, the potential of AO spraying to induce systemic resistance was demonstrated in the interaction between sugar beet root and cyst nematode Heterodera schachtii and the mechanism was elucidated. Plant bioassays showed that roots of AO-sprayed plants were infested by a significantly lower number of females and cysts when compared with mock-sprayed control plants. Hormone measurements showed an elevated level of jasmonic acid (JA) salicylic acid (SA) and ethylene (ET) in the roots of AO-sprayed plants, with a dynamic temporal pattern of activation. Experiments with chemical inhibitors showed that AO-induced systemic resistance is partially dependent on the JA, ET and SA pathways. Biochemical analyses revealed a primed accumulation of hydrogen peroxide (H2O2), and phenylalanine ammonia lyase (PAL) activity in the roots of AO-sprayed plants upon infection by cyst nematodes. In conclusion, our data shows that AO works as an effective systemic defense priming agent in sugar beet against cyst nematode infection, through activation of multiple basal plant defense pathways.
Collapse
Affiliation(s)
- Richard R. Singh
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Neriza Nobleza
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof Demeestere
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- *Correspondence: Tina Kyndt,
| |
Collapse
|