1
|
Zhang B, Zhang H, Liu Y, Wei H, Han C, Erbilgin N. Feeding Preferences Shift from Protein to Carbohydrates Across Life Stages in a Phloeophagus Bark Beetle Species. J Chem Ecol 2025; 51:56. [PMID: 40392432 DOI: 10.1007/s10886-025-01608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/04/2025] [Accepted: 05/05/2025] [Indexed: 05/22/2025]
Abstract
Understanding stage-specific nutritional requirements is essential for determining insect feeding strategies and developing targeted pest management approaches. We examined the feeding preferences, developmental duration, survival rates, and digestive efficiency of the mountain pine beetle across different life stages under different nutritional conditions. We tested three artificial diets with varying protein-to-carbohydrate ratios, including high-protein-low-carbohydrate (HP-LC), medium-protein-medium-carbohydrate (MP-MC), and low-protein-high-carbohydrate (LP-HC). The results showed stage-specific differences in feeding preference among beetle larvae. Early-instar larvae preferred HP-LC and MP-MC diets, whereas late-instar larvae preferred LP-HC diets. Adults of both sexes strongly favoured LP-HC diets. Larvae on MP-MC diets exhibited the fastest development and highest digestive efficiency, indicating optimal protein-carbohydrate balance for growth. Survival was highest on the HP-LC and MP-MC diets but was lower on the LP-HC diets, especially in early instars. Poor digestive efficiency in LP-HC diets suggests that excessive carbohydrates hinder nutrient assimilation. These findings show that mountain pine beetle developmental stages have distinct nutritional needs, with early instar larvae requiring higher protein for survival and development. The observed dietary shifts may be linked to seasonal changes in the nutrient composition of host trees and fungal symbionts of the mountain pine beetles. These stage-specific nutritional preferences further suggest opportunities to disrupt beetle growth through targeted, nutrition-based pest management strategies.
Collapse
Affiliation(s)
- Bin Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Joint Institute of Agricultural and Environmental Health, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, Canada
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Hongzhi Zhang
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Yanzhuo Liu
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Haolin Wei
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Chengke Han
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2E3, Canada.
| |
Collapse
|
2
|
Nawaz AF, Gargiulo S, Pichierri A, Casolo V. Exploring the Role of Non-Structural Carbohydrates (NSCs) Under Abiotic Stresses on Woody Plants: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:328. [PMID: 39942890 PMCID: PMC11820143 DOI: 10.3390/plants14030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025]
Abstract
Global climate change has increased the severity and frequency of abiotic stresses, posing significant challenges to the survival and growth of woody plants. Non-structural carbohydrates (NSCs), including starch and sugars, play a vital role in enabling plants to withstand these stresses, helping to stabilize cellular functions by buffering plant energy demands and facilitating recovery on the alleviation of stress. Despite the recognized multiple functions of NSCs, the contrasting effects of multiple abiotic stresses on NSCs dynamics in woody plants remain poorly understood. This review aims to explore the current knowledge of the contrasting effects of abiotic stress conditions including drought, salinity, heat, water logging, and cold on NSCs dynamics. The roles of NSCs in regulating stress-resilience responses in woody plants are also discussed, along with the challenges in NSC measurement, and options for future research directions are explored. This review is based on comprehensive literature research across different search engines like Scopus, Web of Science, and Google Scholar (2000-2024) using targeted keywords. This study compiles the current research on NSCs functions and provides insights into the adaptive strategies of woody plants in response to changing climate conditions, providing groundwork for future research to improve stress tolerance in woody plants.
Collapse
Affiliation(s)
- Ayesha Fazal Nawaz
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy; (A.F.N.); (A.P.)
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| | - Sara Gargiulo
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| | - Alessandro Pichierri
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy; (A.F.N.); (A.P.)
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| | - Valentino Casolo
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| |
Collapse
|
3
|
Malone SC, Thompson RA, Chow PS, de Oliveira CR, Landhäusser SM, Six DL, McCulloh KA, Adams HD, Trowbridge AM. Water, not carbon, drives drought-constraints on stem terpene defense against simulated bark beetle attack in Pinus edulis. THE NEW PHYTOLOGIST 2025; 245:318-331. [PMID: 39462783 PMCID: PMC11617656 DOI: 10.1111/nph.20218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
Drought predisposes forest trees to bark beetle-induced mortality, but the physiological mechanisms remain unclear. While drought-induced water and carbon limitations have been implicated in defensive failure and tree susceptibility, evidence demonstrating how these factors interact is scarce. We withheld water from mature, potted Pinus edulis and subsequently applied a double-stem girdle to inhibit carbohydrate transport from the crown and roots. Within this isolated segment we then elicited a defense response by inoculating trees with a bark beetle-fungal symbiont (Ophiostoma sp.). We quantified local mono- and sesquiterpenes (MST), nonstructural carbohydrates (NSC), and pressure potential of the inner bark. Both drought-stressed and watered trees had similar NSC concentrations just before inoculation and depleted NSC similarly following inoculation, yet MST induction (i.e. increased concentration and altered composition) was constrained only in drought-stressed trees. Thus, NSC consumption was largely unrelated to de novo MST synthesis. Instead, stoichiometric calculations show that induction originated largely from stored resin. Watered trees experiencing higher pressure potentials consistently induced higher MST concentrations. We demonstrate the importance of preformed resin toward an induced MST response in a semi-arid conifer where drought-constraints on defense occurred through biophysical limitations (i.e. reduced turgor hindering resin transport) rather than through substrate limitation.
Collapse
Affiliation(s)
- Shealyn C. Malone
- Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - R. Alex Thompson
- Department of Life and Environmental SciencesUniversity of California‐MercedMercedCA95343USA
| | - Pak S. Chow
- Department of Renewable ResourcesUniversity of AlbertaEdmontonABT6G 2E3Canada
| | - Celso R. de Oliveira
- Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | | | - Diana L. Six
- Department of Ecosystem and Conservation SciencesUniversity of MontanaMissoulaMT59812USA
| | | | - Henry D. Adams
- School of the EnvironmentWashington State UniversityPullmanWA99164USA
| | - Amy M. Trowbridge
- Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| |
Collapse
|
4
|
Naseer A, Singh VV, Sellamuthu G, Synek J, Mogilicherla K, Kokoska L, Roy A. Insights into the Detoxification of Spruce Monoterpenes by the Eurasian Spruce Bark Beetle. Int J Mol Sci 2024; 25:10209. [PMID: 39337695 PMCID: PMC11432361 DOI: 10.3390/ijms251810209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Plant defence mechanisms, including physical barriers like toughened bark and chemical defences like allelochemicals, are essential for protecting them against pests. Trees allocate non-structural carbohydrates (NSCs) to produce secondary metabolites like monoterpenes, which increase during biotic stress to fend off pests like the Eurasian spruce bark beetle, ESBB (Ips typographus). Despite these defences, the ESBB infests Norway spruce, causing significant ecological damage by exploiting weakened trees and using pheromones for aggregation. However, the mechanism of sensing and resistance towards host allelochemicals in ESBB is poorly understood. We hypothesised that the exposure of ESBB to spruce allelochemicals, especially monoterpenes, leads to an upsurge in the important detoxification genes like P450s, GSTs, UGTs, and transporters, and at the same time, genes responsible for development must be compromised. The current study demonstrates that exposure to monoterpenes like R-limonene and sabiene effectively elevated detoxification enzyme activities. The differential gene expression (DGE) analysis revealed 294 differentially expressed (DE) detoxification genes in response to R-limonene and 426 DE detoxification genes in response to sabiene treatments, with 209 common genes between the treatments. Amongst these, genes from the cytochrome P450 family 4 and 6 genes (CP4 and CP6), esterases, glutathione S-transferases family 1 (GSTT1), UDP-glucuronosyltransferase 2B genes (UDB), and glucose synthesis-related dehydrogenases were highly upregulated. We further validated 19 genes using RT-qPCR. Additionally, we observed similar high expression levels of detoxification genes across different monoterpene treatments, including myrcene and α-pinene, suggesting a conserved detoxification mechanism in ESBB, which demands further investigation. These findings highlight the potential for molecular target-based beetle management strategies targeting these key detoxification genes.
Collapse
Affiliation(s)
- Aisha Naseer
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Vivek Vikram Singh
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
- Institute of Forest Ecology, Slovak Academy of Sciences, Štúrova 2, 960 53 Zvolen, Slovakia
| | - Gothandapani Sellamuthu
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Jiří Synek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad 500030, Telangana, India
| | - Ladislav Kokoska
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| |
Collapse
|
5
|
Baker G, Zhao S, Klutsch JG, Ishangulyyeva G, Erbilgin N. The Legacy Effect of Mountain Pine Beetle Outbreaks on the Chemical and Anatomical Defences of Surviving Lodgepole Pine Trees. Metabolites 2024; 14:472. [PMID: 39330479 PMCID: PMC11434468 DOI: 10.3390/metabo14090472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
The recent mountain pine beetle outbreaks have caused widespread mortality among lodgepole pine trees in western North America, resulting in a reduced population of surviving trees. While previous studies have focused on the cascading impacts of these outbreaks on the physiology and growth of the surviving trees, there remains a need for a comprehensive study into the interactions among various physiological traits and the growth in post-outbreak stands. Specifically, the relationship between chemical (primarily terpenes) and anatomical (mainly resin ducts) defences, as well as the allocation of non-structural carbohydrates (NSCs) to support these defence modalities, is poorly understood. To address these gaps, we conducted a field survey of surviving lodgepole pine trees in post-mountain pine beetle outbreak stands in western Canada. Our retrospective analysis aimed at determining correlations between the post-outbreak concentrations of monoterpenes, diterpenes, and NSCs in the phloem and the historical resin duct characteristics and growth traits before and after the outbreak. We detected strong correlations between the post-outbreak concentrations of monoterpenes and historical resin duct characteristics, suggesting a possible link between these two defence modalities. Additionally, we found a positive relationship between the NSCs and the total concentrations of monoterpenes and diterpenes, suggesting that NSCs likely influence the production of these terpenes in lodgepole pine. Furthermore, historical tree growth patterns showed strong positive correlations with many individual monoterpenes and diterpenes. Interestingly, while surviving trees had enhanced anatomical defences after the outbreak, their growth patterns did not vary before and after the outbreak conditions. The complexity of these relationships emphasizes the dynamics of post-outbreak stand dynamics and resource allocations in lodgepole pine forests, highlighting the need for further research. These findings contribute to a broader understanding of conifer defences and their coordinated responses to forest insect outbreaks, with implications for forest management and conservation strategies.
Collapse
Affiliation(s)
- Gigi Baker
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada (J.G.K.)
| | - Shiyang Zhao
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada (J.G.K.)
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB T6G 2E3, Canada
| | - Jennifer G. Klutsch
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada (J.G.K.)
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB T6G 2E3, Canada
| | - Guncha Ishangulyyeva
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada (J.G.K.)
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2E3, Canada (J.G.K.)
| |
Collapse
|
6
|
Fernández-de-Uña L, Martínez-Vilalta J, Poyatos R, Mencuccini M, McDowell NG. The role of height-driven constraints and compensations on tree vulnerability to drought. THE NEW PHYTOLOGIST 2023; 239:2083-2098. [PMID: 37485545 DOI: 10.1111/nph.19130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/07/2023] [Indexed: 07/25/2023]
Abstract
Frequent observations of higher mortality in larger trees than in smaller ones during droughts have sparked an increasing interest in size-dependent drought-induced mortality. However, the underlying physiological mechanisms are not well understood, with height-associated hydraulic constraints often being implied as the potential mechanism driving increased drought vulnerability. We performed a quantitative synthesis on how key traits that drive plant water and carbon economy change with tree height within species and assessed the implications that the different constraints and compensations may have on the interacting mechanisms (hydraulic failure, carbon starvation and/or biotic-agent attacks) affecting tree vulnerability to drought. While xylem tension increases with tree height, taller trees present a range of structural and functional adjustments, including more efficient water use and transport and greater water uptake and storage capacity, that mitigate the path-length-associated drop in water potential. These adaptations allow taller trees to withstand episodic water stress. Conclusive evidence for height-dependent increased vulnerability to hydraulic failure and carbon starvation, and their coupling to defence mechanisms and pest and pathogen dynamics, is still lacking. Further research is needed, particularly at the intraspecific level, to ascertain the specific conditions and thresholds above which height hinders tree survival under drought.
Collapse
Affiliation(s)
- Laura Fernández-de-Uña
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
| | - Rafael Poyatos
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
| | - Maurizio Mencuccini
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, 08193, Spain
- ICREA, Barcelona, 08010, Spain
| | - Nate G McDowell
- Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
7
|
Malone SC, Simonpietri A, Knighton WB, Trowbridge AM. Drought impairs herbivore-induced volatile terpene emissions by ponderosa pine but not through constraints on newly assimilated carbon. TREE PHYSIOLOGY 2023; 43:938-951. [PMID: 36762917 DOI: 10.1093/treephys/tpad016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/02/2023] [Indexed: 06/11/2023]
Abstract
Volatile terpenes serve multiple biological roles including tree resistance against herbivores. The increased frequency and severity of drought stress observed in forests across the globe may hinder trees from producing defense-related volatiles in response to biotic stress. To assess how drought-induced physiological stress alters volatile emissions alone and in combination with a biotic challenge, we monitored pre-dawn water potential, gas-exchange, needle terpene concentrations and terpene volatile emissions of ponderosa pine (Pinus ponderosa) saplings during three periods of drought and in response to simulated herbivory via methyl jasmonate application. Although 3-, 6- and 7-week drought treatments reduced net photosynthetic rates by 20, 89 and 105%, respectively, the magnitude of volatile fluxes remained generally resistant to drought. Herbivore-induced emissions, however, exhibited threshold-like behavior; saplings were unable to induce emissions above constitutive levels when pre-dawn water potentials were below the approximate zero-assimilation point. By comparing compositional shifts in emissions to needle terpene concentrations, we found evidence that drought effects on constitutive and herbivore-induced volatile flux and composition are primarily via constraints on the de novo fraction, suggesting that reduced photosynthesis during drought limits the carbon substrate available for de novo volatile synthesis. However, results from a subsequent 13CO2 pulse-chase labeling experiment then confirmed that both constitutive (<3% labeled) and herbivore-induced (<8% labeled) de novo emissions from ponderosa pine are synthesized predominantly from older carbon sources with little contribution from new photosynthates. Taken together, we provide evidence that in ponderosa pine, drought does not constrain herbivore-induced de novo emissions through substrate limitation via reduced photosynthesis, but rather through more sophisticated molecular and/or biophysical mechanisms that manifest as saplings reach the zero-assimilation point. These results highlight the importance of considering drought severity when assessing impacts on the herbivore-induced response and suggest that drought-altered volatile metabolism constrains induced emissions once a physiological threshold is surpassed.
Collapse
Affiliation(s)
- Shealyn C Malone
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53711, USA
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Austin Simonpietri
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Walter B Knighton
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Amy M Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI 53711, USA
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
8
|
Liu Y, Erbilgin N, Ratcliffe B, Klutsch JG, Wei X, Ullah A, Cappa EP, Chen C, Thomas BR, El-Kassaby YA. Pest defences under weak selection exert a limited influence on the evolution of height growth and drought avoidance in marginal pine populations. Proc Biol Sci 2022; 289:20221034. [PMID: 36069017 PMCID: PMC9449467 DOI: 10.1098/rspb.2022.1034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While droughts, intensified by climate change, have been affecting forests worldwide, pest epidemics are a major source of uncertainty for assessing drought impacts on forest trees. Thus far, little information has documented the adaptability and evolvability of traits related to drought and pests simultaneously. We conducted common-garden experiments to investigate how several phenotypic traits (i.e. height growth, drought avoidance based on water-use efficiency inferred from δ13C and pest resistance based on defence traits) interact in five mature lodgepole pine populations established in four progeny trials in western Canada. The relevance of interpopulation variation in climate sensitivity highlighted that seed-source warm populations had greater adaptive capability than cold populations. In test sites, warming generated taller trees with higher δ13C and increased the evolutionary potential of height growth and δ13C across populations. We found, however, no pronounced gradient in defences and their evolutionary potential along populations or test sites. Response to selection was weak in defences across test sites, but high for height growth particularly at warm test sites. Response to the selection of δ13C varied depending on its selective strength relative to height growth. We conclude that warming could promote the adaptability and evolvability of growth response and drought avoidance with a limited evolutionary influence from pest (biotic) pressures.
Collapse
Affiliation(s)
- Yang Liu
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.,McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3DZ, UK.,Wolfson College, University of Cambridge, Barton Road, Cambridge CB3 9BB, UK
| | - Nadir Erbilgin
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Blaise Ratcliffe
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jennifer G Klutsch
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Xiaojing Wei
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Aziz Ullah
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Eduardo Pablo Cappa
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Recursos Biológicos, Centro de Investigación en Recursos Naturales, De Los Reseros y Doctor Nicolás Repetto s/n, 1686, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Charles Chen
- Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Barb R Thomas
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, Alberta T6G 2E3, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
9
|
Korolyova N, Buechling A, Lieutier F, Yart A, Cudlín P, Turčáni M, Jakuš R. Primary and secondary host selection by Ips typographus depends on Norway spruce crown characteristics and phenolic-based defenses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111319. [PMID: 35696919 DOI: 10.1016/j.plantsci.2022.111319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Climate change is expected to intensify bark beetle population outbreaks in forests globally, affecting biodiversity and trajectories of change. Aspects of individual tree resistance remain poorly quantified, particularly with regard to the role of phenolic compounds, hindering robust predictions of forest response to future conditions. In 2003, we conducted a mechanical wounding experiment in a Norway spruce forest that coincided with an outbreak of the bark beetle, Ips typographus. We collected phloem samples from 97 trees and monitored tree survival for 5 months. Using high-performance liquid chromatography, we quantified induced changes in the concentrations of phenolics. Classification and regression tools were used to evaluate relationships between phenolic production and bark beetle resistance, in the context of other survival factors. The proximity of beetle source populations was a principal determinant of survival. Proxy measures of tree vigor, such as crown defoliation, mediated tree resistance. Controlling for these factors, synthesis of catechin was found to exponentially increase tree survival probability. However, even resistant trees were susceptible in late season due to high insect population growth. Our results show that incorporating trait-mediated effects improves predictions of survival. Using an integrated analytical approach, we demonstrate that phenolics play a direct role in tree defense to herbivory.
Collapse
Affiliation(s)
- Nataliya Korolyova
- Fac. of Forestry and Wood Sciences, Czech Univ. of Life Sciences, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic.
| | - Arne Buechling
- Fac. of Forestry and Wood Sciences, Czech Univ. of Life Sciences, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic.
| | - François Lieutier
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d'Orléans, B.P. 6749, F-45067 Orléans, France.
| | - Annie Yart
- Institut National de la Recherche Agronomique, Zoologie Forestiere, Ardon, 45160 Olivet, France.
| | - Pavel Cudlín
- Global Change Research Institute of the Czech Academy of Sciences, Department of Carbon Storage in the Landscape, Bělidla 986/4a, 603 00 Brno, Czech Republic.
| | - Marek Turčáni
- Fac. of Forestry and Wood Sciences, Czech Univ. of Life Sciences, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic.
| | - Rastislav Jakuš
- Fac. of Forestry and Wood Sciences, Czech Univ. of Life Sciences, Kamýcká 129, 165 00 Praha-Suchdol, Czech Republic; Inst. of Forest Ecology, Slovak Acad. of Sciences, Ľ. Štúra 2, 960 53 Zvolen, Slovak Republic.
| |
Collapse
|
10
|
Outbreaks of Douglas-Fir Beetle Follow Western Spruce Budworm Defoliation in the Southern Rocky Mountains, USA. FORESTS 2022. [DOI: 10.3390/f13030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Changes in climate are altering disturbance regimes in forests of western North America, leading to increases in the potential for disturbance events to overlap in time and space. Though interactions between abiotic and biotic disturbance (e.g., the effect of bark beetle outbreak on subsequent wildfire) have been widely studied, interactions between multiple biotic disturbances are poorly understood. Defoliating insects, such as the western spruce budworm (WSB; Choristoneura freemanni), have been widely suggested to predispose trees to secondary colonization by bark beetles, such as the Douglas-fir beetle (DFB; Dendroctonus pseudotsugae). However, there is little quantitative research that supports this observation. Here, we asked: Does previous WSB damage increase the likelihood of subsequent DFB outbreak in Douglas-fir (Pseudotsuga menziesii) forests of the Southern Rocky Mountains, USA? To quantify areas affected by WSB and then DFB, we analyzed Aerial Detection Survey data from 1999–2019. We found that a DFB presence followed WSB defoliation more often than expected under a null model (i.e., random distribution). With climate change expected to intensify some biotic disturbances, an understanding of the interactions between insect outbreaks is important for forest management planning, as well as for improving our understanding of forest change.
Collapse
|