1
|
Fang W, Chen S, Wan D, Peng Y, Yang X. Identification and Validation of an Invasion-Related Disease-Free Survival Prognostic Model for Tongue Squamous Cell Carcinoma. Oncology 2024; 103:237-252. [PMID: 39307124 DOI: 10.1159/000540977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/14/2024] [Indexed: 03/08/2025]
Abstract
INTRODUCTION Tongue squamous cell carcinoma (TSCC) is a common malignant tumour type with aggressive invasion and a poor prognosis. To date, invasion-related gene expression signatures for the prognostic stratification of TSCC patients are unavailable in clinical practice. This study aimed to assess the impact of invasion-related genes on the prognosis of TSCC patients. METHODS We obtained mRNA profiles and clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases (TCGA-TSCC and GSE41116, respectively). The TSCC samples from the TCGA-TSCC cohort were randomly divided into TCGA training and TCGA test datasets at a 7:3 ratio. Next, a disease-free survival (DFS) prognostic risk model was established on the basis of univariate and stepwise multivariate Cox regression analyses of the TCGA training cohort. Moreover, prognostic genes were screened. The model was subsequently evaluated and validated using the TCGA test and GSE41116 datasets. In addition, the prognostic genes were validated in the human TSCC cell line UM1 and the human oral keratinocyte (HOK) cell line using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. RESULTS A total of 70 candidate genes related to invasion were identified in the TCGA-TSCC cohort. DFS data were subsequently constructed, and 6 prognostic genes, HMGN2, MYL12B, ACTB, PPP1CA, PSMB9, and IFITM3, were identified. The TSCC samples were divided into high- and low-risk groups in the TCGA training, TCGA test, and GSE41116 cohorts, respectively. In particular, patients with TSCC in the low-risk group had longer DFS than those in the high-risk group. Furthermore, qRT-PCR analysis confirmed that the expression levels of the 6 prognostic genes were significantly greater in the TSCC cell line UM1 than in the HOK cell line. CONCLUSION This study identified new invasion-related target genes related to poor prognosis in TSCC patients, providing new insights into the underlying mechanisms of TSCC invasion.
Collapse
Affiliation(s)
- Wei Fang
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Shan Chen
- Department of Stomatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Di Wan
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yanhui Peng
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqin Yang
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Yuan J, Wang T, Wang L, Li P, Shen H, Mo Y, Zhang Q, Ni C. Transcriptome-wide association study identifies PSMB9 as a susceptibility gene for coal workers' pneumoconiosis. ENVIRONMENTAL TOXICOLOGY 2022; 37:2103-2114. [PMID: 35506645 DOI: 10.1002/tox.23554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Coal workers' pneumoconiosis (CWP) is a type of typical occupational lung disease caused by prolonged inhalation of coal mine dust. The individuals' different genetic background may underlie their different susceptibility to develop pneumoconiosis, even under the same exposure level. This study aimed to identify susceptibility genes associated with CWP. Based on our previous genome-wide association study (GWAS, 202 CWP cases vs. 198 controls) and gene expression data obtained by analyzing human lungs and whole blood from the Genotype-Tissue Expression (GTEx) Portal, a transcriptome-wide association study (TWAS) was applied to identify CWP risk-related genes. Luciferase report gene assay, qRT-PCR, Western blot, immunofluorescence assay, and TUNEL assay were conducted to explore the potential role of the candidate gene in CWP. Proteasome 20S subunit beta 9 (PSMB9) was identified as a strong risk-related gene of CWP in both lungs and whole blood (Lungs: PTWAS = 4.22 × 10-4 ; Whole blood: PTWAS = 2.11 × 10-4 ). Single nucleotide polymorphisms (SNPs) rs2071480 and rs1351383, which locate in the promoter region and the first intron of the PSMB9 gene, were in high linkage disequilibrium (LD, r2 = 0.98) with the best GWAS SNP rs4713600 (G>T, OR = 0.55, 95% CI: 0.42-0.74, P = 6.86 × 10-5 ). Both rs2071480 and rs1351383 significantly enhanced the transcriptional activity of PSMB9. Functional experiments revealed that silica exposure remarkably reduced the PSMB9 expression and caused cell apoptosis, while overexpression of PSMB9 markedly abolished silica-induced cell apoptosis. We here identified PSMB9 as a novel susceptibility gene for CWP and provided important insights into the further exploration of the CWP pathogenesis.
Collapse
Affiliation(s)
- Jiali Yuan
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Pathology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lijuan Wang
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ping Li
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Chunhui Ni
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Contribution of Antigen-Processing Machinery Genetic Polymorphisms to Atopic Dermatitis. Life (Basel) 2021; 11:life11040333. [PMID: 33920176 PMCID: PMC8070454 DOI: 10.3390/life11040333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/12/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic and recurrent inflammatory dermatosis. We recently described an association of the C allele of the single nucleotide polymorphism (SNP) rs26618 in the ERAP1 gene and a synergism of ERAP1 and ERAP2 effects on AD risk. Here, we examined whether polymorphisms of other antigen-presenting machinery genes encoding immunoproteasome components LMP2 and LMP7 and peptide transporter components TAP1 and TAP2 may also affect susceptibility to AD or its outcome. We found that the LMP7 rs2071543*T allele decreased disease risk by about 1.5-fold (odds ratio 0.66, 95% confidence interval 0.44–0.99). On the other hand, the LMP2 rs1351383*C allele reduced the mean age at diagnosis from 23 to 15 years (p < 0.001). Similarly, the TAP1 rs1135216*C allele decreased the mean age at diagnosis from almost 20 to 14 years (p = 0.033). The results are discussed in light of other reports on the role of these polymorphisms in human disease.
Collapse
|
4
|
Genetic polymorphisms of proteasome subunit genes of the MHC-I antigen-presenting system are associated with cervical cancer in a Chinese Han population. Hum Immunol 2020; 81:445-451. [PMID: 32684411 DOI: 10.1016/j.humimm.2020.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/17/2020] [Accepted: 07/05/2020] [Indexed: 01/10/2023]
Abstract
Proteasome subunit beta types 8 and 9 (PSMB8, PSMB9) play critical roles in the human leukocyte antigen class I (HLA I)-presenting system. Studies have suggested that polymorphisms in the PSMB8 and PSMB9 genes may influence the immune functions of PSMB8 and PSMB9, and thus be associated with various human cancers. We investigated associations involving single nucleotide polymorphisms (SNPs) rs2071543 in PSMB8, rs1351383, rs17587 and rs2127675 in PSMB9 and risk of cervical intraepithelial neoplasia (CIN) and cervical cancer in a Chinese Han population. A total of 543 patients with CIN, 1008 patients with cervical cancer, and 1120 healthy individuals were enrolled. Agena MassArray was used for SNP genotyping of PSMB8 and PSMB9. Associations involving these SNPs and risk of CIN and cervical cancer were analysed. Our results showed that the PSMB8 T/T and T/G genotypes of rs2071543 may be associated with a higher risk of CIN (P = 0.011, OR = 1.35,95% CI: 1.07-1.70) and cervical cancer (P = 0.006, OR = 1.31, 95% CI: 1.08-1.59). For rs17587, the A allele (P = 0.001, OR = 1.303, 95% CI: 1.115-1.522), and the A/A and A/G genotypes (P = 0.001, OR = 1.36, 95% CI: 1.13-1.63) may be risk factors for cervical cancer. These results indicated that PSMB8 rs2071543 might influence susceptibility to CIN and cervical cancer, and PSMB9 rs17587 might influence cervical cancer susceptibility in a Chinese Han population.
Collapse
|
5
|
Andreotti V, Bisio A, Bressac-de Paillerets B, Harland M, Cabaret O, Newton-Bishop J, Pastorino L, Bruno W, Bertorelli R, De Sanctis V, Provenzani A, Menin C, Fronza G, Queirolo P, Spitale RC, Bianchi-Scarrà G, Inga A, Ghiorzo P. The CDKN2A/p16(INK) (4a) 5'UTR sequence and translational regulation: impact of novel variants predisposing to melanoma. Pigment Cell Melanoma Res 2016; 29:210-221. [PMID: 26581427 DOI: 10.1111/pcmr.12444] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/13/2015] [Indexed: 12/20/2022]
Abstract
Many variants of uncertain functional significance in cancer susceptibility genes lie in regulatory regions, and clarifying their association with disease risk poses significant challenges. We studied 17 germline variants (nine of which were novel) in the CDKN2A 5'UTR with independent approaches, which included mono and bicistronic reporter assays, Western blot of endogenous protein, and allelic representation after polysomal profiling to investigate their impact on CDKN2A mRNA translation regulation. Two of the novel variants (c.-27del23, c.-93-91delAGG) were classified as causal mutations (score ≥3), along with the c.-21C>T, c.-34G>T, and c.-56G>T, which had already been studied by a subset of assays. The novel c.-42T>A as well as the previously described c.-67G>C were classified as potential mutations (score 1 or 2). The remaining variants (c.-14C>T, c.-20A>G, c.-25C>T+c.-180G>A, c.-30G>A, c.-40C>T, c.-45G>A, c.-59C>G, c.-87T>A, c.-252A>T) were classified as neutral (score 0). In conclusion, we found evidence that nearly half of the variants found in this region had a negative impact on CDKN2A mRNA translation, supporting the hypothesis that 5'UTR can act as a cellular Internal Ribosome Entry Site (IRES) to modulate p16(INK) (4a) translation.
Collapse
Affiliation(s)
- Virginia Andreotti
- Department of Internal Medicine and Medical Specialties, DiMI, University of Genoa, Genoa, Italy
- Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Alessandra Bisio
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | | | - Mark Harland
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Odile Cabaret
- Department of Biopathology and INSERM U1186, Gustave Roussy, Villejuif, France
| | - Julia Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Lorenza Pastorino
- Department of Internal Medicine and Medical Specialties, DiMI, University of Genoa, Genoa, Italy
- Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | - William Bruno
- Department of Internal Medicine and Medical Specialties, DiMI, University of Genoa, Genoa, Italy
- Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Roberto Bertorelli
- NGS Core Facility, Centre for Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Veronica De Sanctis
- NGS Core Facility, Centre for Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Alessandro Provenzani
- Laboratory of Genomic Screening, Centre for Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Paola Queirolo
- Medical Oncology Unit, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Giovanna Bianchi-Scarrà
- Department of Internal Medicine and Medical Specialties, DiMI, University of Genoa, Genoa, Italy
- Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Paola Ghiorzo
- Department of Internal Medicine and Medical Specialties, DiMI, University of Genoa, Genoa, Italy
- Genetics of Rare Cancers, IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
6
|
Mitochondrial DNA copy number in peripheral blood and melanoma risk. PLoS One 2015; 10:e0131649. [PMID: 26110424 PMCID: PMC4482392 DOI: 10.1371/journal.pone.0131649] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/05/2015] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) copy number in peripheral blood has been suggested as risk modifier in various types of cancer. However, its influence on melanoma risk is unclear. We evaluated the association between mtDNA copy number in peripheral blood and melanoma risk in 500 melanoma cases and 500 healthy controls from an ongoing melanoma study. The mtDNA copy number was measured using real-time polymerase chain reaction. Overall, mean mtDNA copy number was significantly higher in cases than in controls (1.15 vs 0.99, P<0.001). Increased mtDNA copy number was associated with a 1.45-fold increased risk of melanoma (95% confidence interval: 1.12-1.97). Significant joint effects between mtDNA copy number and variables related to pigmentation and history of sunlight exposure were observed. This study supports an association between increased mtDNA copy number and melanoma risk that is independent on the known melanoma risk factors (pigmentation and history of sunlight exposure).
Collapse
|