1
|
Adav SS, Ng KW. Recent omics advances in hair aging biology and hair biomarkers analysis. Ageing Res Rev 2023; 91:102041. [PMID: 37634889 DOI: 10.1016/j.arr.2023.102041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex natural process that leads to a decline in physiological functions, which is visible in signs such as hair graying, thinning, and loss. Although hair graying is characterized by a loss of pigment in the hair shaft, the underlying mechanism of age-associated hair graying is not fully understood. Hair graying and loss can have a significant impact on an individual's self-esteem and self-confidence, potentially leading to mental health problems such as depression and anxiety. Omics technologies, which have applications beyond clinical medicine, have led to the discovery of candidate hair biomarkers and may provide insight into the complex biology of hair aging and identify targets for effective therapies. This review provides an up-to-date overview of recent omics discoveries, including age-associated alterations of proteins and metabolites in the hair shaft and follicle, and highlights the significance of hair aging and graying biomarker discoveries. The decline in hair follicle stem cell activity with aging decreased the regeneration capacity of hair follicles. Cellular senescence, oxidative damage and altered extracellular matrix of hair follicle constituents characterized hair follicle and hair shaft aging and graying. The review attempts to correlate the impact of endogenous and exogenous factors on hair aging. We close by discussing the main challenges and limitations of the field, defining major open questions and offering an outlook for future research.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
2
|
Li C, Chen Q, Wu J, Ren J, Zhang M, Wang H, Li J, Tang Y. Identification and characterization of two novel noncoding tyrosinase (TYR) gene variants leading to oculocutaneous albinism type 1. J Biol Chem 2022; 298:101922. [PMID: 35413289 PMCID: PMC9108984 DOI: 10.1016/j.jbc.2022.101922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022] Open
Abstract
Oculocutaneous albinism type 1 (OCA1), resulting from pathogenic variants in the tyrosinase (TYR) gene, refers to a group of phenotypically heterogeneous autosomal recessive disorders characterized by a partial or a complete absence of pigment in the skin/hair and is also associated with common developmental eye defects. In this study, we identified two novel compound heterozygous TYR variants from a Chinese hypopigmentary patient by whole-exome sequencing. Specifically, the two variants were c.-89T>G, located at the core of the initiator E-box (Inr E-box) of the TYR promoter, and p.S16Y (c.47C>A), located within the signal sequence. We performed both in silico analysis and experimental validation and verified these mutations as OCA1 variants that caused either impaired or complete loss of function of TYR. Mechanistically, the Inr E-box variant dampened TYR binding to microphthalmia-associated transcription factor, a master transcriptional regulator of the melanocyte development, whereas the S16Y variant contributed to endoplasmic reticulum retention, a common and principal cause of impaired TYR activity. Interestingly, we found that the Inr E-box variant creates novel protospacer adjacent motif sites, recognized by nucleases SpCas9 and SaCas9-KKH, respectively, without compromising the functional TYR coding sequence. We further used allele-specific genomic editing by CRISPR activation to specifically target the variant promoter and successfully activated its downstream gene expression, which could lead to potential therapeutic benefits. In conclusion, this study expands the spectrum of TYR variants, especially those within the promoter and noncoding regions, which can facilitate genetic counseling and clinical diagnosis of OCA1.
Collapse
Affiliation(s)
- Chaoyi Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ren
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengfei Zhang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huakun Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinchen Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China; Aging Research Center, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; The Biobank of Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Loftus SK, Lundh L, Watkins-Chow DE, Baxter LL, Pairo-Castineira E, Nisc Comparative Sequencing Program, Jackson IJ, Oetting WS, Pavan WJ, Adams DR. A custom capture sequence approach for oculocutaneous albinism identifies structural variant alleles at the OCA2 locus. Hum Mutat 2021; 42:1239-1253. [PMID: 34246199 DOI: 10.1002/humu.24257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Oculocutaneous albinism (OCA) is a heritable disorder of pigment production that manifests as hypopigmentation and altered eye development. Exon sequencing of known OCA genes is unsuccessful in producing a complete molecular diagnosis for a significant number of affected individuals. We sequenced the DNA of individuals with OCA using short-read custom capture sequencing that targeted coding, intronic, and noncoding regulatory regions of known OCA genes, and genome-wide association study-associated pigmentation loci. We identified an OCA2 complex structural variant (CxSV), defined by a 143 kb inverted segment reintroduced in intron 1, upstream of the native location. The corresponding CxSV junctions were observed in 11/390 probands screened. The 143 kb CxSV presents in one family as a copy number variant duplication for the 143 kb region. In the remaining 10/11 families, the 143 kb CxSV acquired an additional 184 kb deletion across the same region, restoring exons 3-19 of OCA2 to a copy-number neutral state. Allele-associated haplotype analysis found rare SNVs rs374519281 and rs139696407 are linked with the 143 kb CxSV in both OCA2 alleles. For individuals in which customary molecular evaluation does not reveal a biallelic OCA diagnosis, we recommend preliminary screening for these haplotype-associated rare variants, followed by junction-specific validation for the OCA2 143 kb CxSV.
Collapse
Affiliation(s)
- Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Linnea Lundh
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Erola Pairo-Castineira
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | | | - Ian J Jackson
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David R Adams
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Moreno-Artero E, Morice-Picard F, Bremond-Gignac D, Drumare-Bouvet I, Duncombe-Poulet C, Leclerc-Mercier S, Dufresne H, Kaplan J, Jouanne B, Arveiler B, Taieb A, Hadj-Rabia S. Management of albinism: French guidelines for diagnosis and care. J Eur Acad Dermatol Venereol 2021; 35:1449-1459. [PMID: 34042219 DOI: 10.1111/jdv.17275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Albinism is a worldwide genetic disorder caused by mutations in at least 20 genes, identified to date, that affect melanin production or transport in the skin, hair and eyes. Patients present with variable degrees of diffuse muco-cutaneous and adnexal hypopigmentation, as well as ocular features including nystagmus, misrouting of optic nerves and foveal hypoplasia. Less often, albinism is associated with blood, immunological, pulmonary, digestive and/or neurological anomalies. Clinical and molecular characterizations are essential in preventing potential complications. Disease-causing mutations remain unknown for about 25% of patients with albinism. These guidelines have been developed for the diagnosis and management of syndromic and non-syndromic forms of albinism, based on a systematic review of the scientific literature. These guidelines comprise clinical and molecular characterization, diagnosis, therapeutic approach and management.
Collapse
Affiliation(s)
- E Moreno-Artero
- Department of Dermatology, Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), Hôpital Universitaire Necker- Enfants Malades, Assistance Publique - Hôpitaux de Paris-Centre (AP-HP5), Paris, France
| | - F Morice-Picard
- Pediatric Dermatology Unit, National Centre for Rare Skin Disorders, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - D Bremond-Gignac
- Department of Ophthalmology, Reference Centre for Rare Ocular Diseases (OPHTARA), Hôpital Necker-Enfants Malades, APHP5, Paris, France.,Université de Paris-Centre, Paris, France
| | - I Drumare-Bouvet
- Service d'exploration de la vision et neuro-ophtalmologie, CHRU de Lille, Lille, France
| | | | - S Leclerc-Mercier
- Department of Pathology, Hôpital Necker-Enfants Malades, APHP5, Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), Université de Paris-Centre, Paris, France
| | - H Dufresne
- Department of Dermatology, Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), Hôpital Universitaire Necker- Enfants Malades, Assistance Publique - Hôpitaux de Paris-Centre (AP-HP5), Paris, France.,Service Social Pédiatrique, Hôpital Necker-Enfants Malades, APHP5, Université de Paris-Centre, Paris, France
| | - J Kaplan
- Laboratory of Genetics in Ophthalmology, Imagine Institute, Paris, France
| | - B Jouanne
- French Association for Albinism (Genespoir), Rennes, France
| | - B Arveiler
- Molecular Genetics Laboratory, CHU de Bordeaux, Bordeaux, France.,INSERM U1211, Maladies Rares, Génétique et Métabolisme, Bordeaux, France
| | - A Taieb
- Pediatric Dermatology Unit, National Centre for Rare Skin Disorders, Hôpital Pellegrin-Enfants, CHU de Bordeaux, Bordeaux, France
| | - S Hadj-Rabia
- Department of Dermatology, Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), Hôpital Universitaire Necker- Enfants Malades, Assistance Publique - Hôpitaux de Paris-Centre (AP-HP5), Paris, France.,Université de Paris-Centre, Paris, France
| |
Collapse
|
5
|
Pennamen P, Le L, Tingaud-Sequeira A, Fiore M, Bauters A, Van Duong Béatrice N, Coste V, Bordet JC, Plaisant C, Diallo M, Michaud V, Trimouille A, Lacombe D, Lasseaux E, Delevoye C, Picard FM, Delobel B, Marks MS, Arveiler B. BLOC1S5 pathogenic variants cause a new type of Hermansky-Pudlak syndrome. Genet Med 2020; 22:1613-1622. [PMID: 32565547 DOI: 10.1038/s41436-020-0867-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Hermansky-Pudlak syndrome (HPS) is characterized by oculocutaneous albinism, excessive bleeding, and often additional symptoms. Variants in ten different genes have been involved in HPS. However, some patients lack variants in these genes. We aimed to identify new genes involved in nonsyndromic or syndromic forms of albinism. METHODS Two hundred thirty albinism patients lacking a molecular diagnosis of albinism were screened for pathogenic variants in candidate genes with known links to pigmentation or HPS pathophysiology. RESULTS We identified two unrelated patients with distinct homozygous variants of the BLOC1S5 gene. Patients had mild oculocutaneous albinism, moderate bleeding diathesis, platelet aggregation deficit, and a dramatically decreased number of platelet dense granules, all signs compatible with HPS. Functional tests performed on platelets of one patient displayed an absence of the obligate multisubunit complex BLOC-1, showing that the variant disrupts BLOC1S5 function and impairs BLOC-1 assembly. Expression of the patient-derived BLOC1S5 deletion in nonpigmented murine Bloc1s5-/- melan-mu melanocytes failed to rescue pigmentation, the assembly of a functional BLOC-1 complex, and melanosome cargo trafficking, unlike the wild-type allele. CONCLUSION Mutation of BLOC1S5 is disease-causing, and we propose that BLOC1S5 is the gene for a new form of Hermansky-Pudlak syndrome, HPS-11.
Collapse
Affiliation(s)
- Perrine Pennamen
- Rare Diseases, Genetics and Metabolism, INSERM U1211, University of Bordeaux, Bordeaux, France.,Molecular Genetics Laboratory, Bordeaux University Hospital, Bordeaux, France
| | - Linh Le
- Dept. of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA.,Department of Pathology, Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Angèle Tingaud-Sequeira
- Rare Diseases, Genetics and Metabolism, INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Mathieu Fiore
- Laboratoire d'Hématologie, CHU de Bordeaux, Bordeaux, France.,Reference Center for Platelet Disorders, CHU de Bordeaux, Pessac, France
| | - Anne Bauters
- Hémostase et Transfusion CHU Lille, Lille, France
| | | | | | | | - Claudio Plaisant
- Molecular Genetics Laboratory, Bordeaux University Hospital, Bordeaux, France
| | - Modibo Diallo
- Rare Diseases, Genetics and Metabolism, INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Vincent Michaud
- Molecular Genetics Laboratory, Bordeaux University Hospital, Bordeaux, France
| | - Aurélien Trimouille
- Rare Diseases, Genetics and Metabolism, INSERM U1211, University of Bordeaux, Bordeaux, France.,Molecular Genetics Laboratory, Bordeaux University Hospital, Bordeaux, France
| | - Didier Lacombe
- Rare Diseases, Genetics and Metabolism, INSERM U1211, University of Bordeaux, Bordeaux, France.,Molecular Genetics Laboratory, Bordeaux University Hospital, Bordeaux, France
| | - Eulalie Lasseaux
- Molecular Genetics Laboratory, Bordeaux University Hospital, Bordeaux, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | | | - Bruno Delobel
- Centre de Génétique Chromosomique, GHICL, Hôpital Saint Vincent de Paul, Lille, France
| | - Michael S Marks
- Dept. of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA.,Department of Pathology, Laboratory Medicine and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benoit Arveiler
- Rare Diseases, Genetics and Metabolism, INSERM U1211, University of Bordeaux, Bordeaux, France. .,Molecular Genetics Laboratory, Bordeaux University Hospital, Bordeaux, France.
| |
Collapse
|
6
|
Monfermé S, Lasseaux E, Duncombe-Poulet C, Hamel C, Defoort-Dhellemmes S, Drumare I, Zanlonghi X, Dollfus H, Perdomo Y, Bonneau D, Korobelnik JF, Plaisant C, Michaud V, Pennamen P, Rooryck-Thambo C, Morice-Picard F, Paya C, Arveiler B. Mild form of oculocutaneous albinism type 1: phenotypic analysis of compound heterozygous patients with the R402Q variant of the TYR gene. Br J Ophthalmol 2018; 103:1239-1247. [PMID: 30472657 DOI: 10.1136/bjophthalmol-2018-312729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/23/2018] [Accepted: 11/08/2018] [Indexed: 11/03/2022]
Abstract
AIM Oculocutaneous albinism type 1 (OCA1) is due to TYR mutations. c.1205G>A/p.Arg402Gln (R402Q) is a thermosensitive variant of the TYR gene that has been reported to be responsible for mild forms of OCA1. The aim of our study was to define the phenotype associated with this variant. METHODS In our retrospective series, among 268 patients diagnosed with OCA1, 122 (45.5%) harboured one pathogenic variant of TYR, and the R402Q variant ensured to be in trans by segregation analysis in 69 patients (25.7%), constituting the 'R402Q-OCA1' group. 146 patients harboured two pathogenic variants of the TYR gene other than R402Q. Clinical records were available for 119 of them, constituting the 'Classical-OCA1' group. RESULTS Most R402Q-OCA1 patients presented with white or yellow-white hair at birth (71.43%), blond hair later (46.97%), a light phototype but with residual pigmentation (69.64%), and blue eyes (76.56%). Their pigmentation was significantly higher than in the classical-OCA1 group. All patients from the R402Q-OCA1 group presented with ocular features of albinism. However the prevalence of photophobia (78.13%) and iris transillumination (83.87%) and the severity scores of iris transillumination, retinal hypopigmentation and foveal hypoplasia were lower in the R402Q-OCA1 group. Visual acuity was higher in the R402Q-OCA1 group (0.38±0.21 logarithm of the minimum angle of resolution vs 0.76±0.24). Investigations concerning a possible additive effect of the c.575C>A/p.Ser192 (S192Y) variant of TYR in cis with R402Q, suggested by others, showed no significant impact on the phenotype. CONCLUSION The R402Q variant leads to variable but generally mild forms of albinism whose less typical presentation may lead to underdiagnosis.
Collapse
Affiliation(s)
| | - Eulalie Lasseaux
- Service de génétique médicale, CHU de Bordeaux, Bordeaux, France
| | | | - Christian Hamel
- Service d'ophtalmologie, Equipe maladies sensorielles génétiques, CHU de Montpellier, Montpellier, France
| | | | - Isabelle Drumare
- Service d'exploration de la vision et neuro-ophtalmologie, CHRU de Lille, Lille, France
| | | | - Hélène Dollfus
- Centre des affections rares en génétique ophtalmologique, CHU de Strasbourg, Strasbourg, France
| | - Yaurama Perdomo
- Centre des affections rares en génétique ophtalmologique, CHU de Strasbourg, Strasbourg, France
| | | | | | - Claudio Plaisant
- Service de génétique médicale, CHU de Bordeaux, Bordeaux, France
| | - Vincent Michaud
- Service de génétique médicale, CHU de Bordeaux, Bordeaux, France
| | - Perrine Pennamen
- Service de génétique médicale, CHU de Bordeaux, Bordeaux, France.,INSERM U1211, Maladies Rares, Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Caroline Rooryck-Thambo
- Service de génétique médicale, CHU de Bordeaux, Bordeaux, France.,INSERM U1211, Maladies Rares, Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Fanny Morice-Picard
- Service de dermatologie, Unité de dermato-pédiatrie du CHU de Bordeaux, Bordeaux, France
| | - Clement Paya
- Centre d'ophtalmologie du Palais Gallien, Bordeaux, France
| | - Benoit Arveiler
- Service de génétique médicale, CHU de Bordeaux, Bordeaux, France.,INSERM U1211, Maladies Rares, Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
7
|
Wawrocka A, Krawczynski MR. The genetics of aniridia - simple things become complicated. J Appl Genet 2018; 59:151-159. [PMID: 29460221 PMCID: PMC5895662 DOI: 10.1007/s13353-017-0426-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/21/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022]
Abstract
Aniridia is a rare, panocular disorder characterized by a variable degree of hypoplasia or the absence of iris tissue associated with additional ocular abnormalities. It is inherited in an autosomal dominant manner, with high penetrance and variable expression even within the same family. In most cases the disease is caused by haploinsufficiency truncating mutations in the PAX6 gene; however, in up to 30% of aniridia patients, disease results from chromosomal rearrangements at the 11p13 region. The aim of this review is to present the clinical and genetic aspects of the disease. Furthermore, we present a molecular diagnostic strategy in the aniridia patients. Recent improvement in the genetic diagnostic approach will precisely diagnosis aniridia patients, which is essential especially for children with aniridia in order to determine the risk of developing a Wilms tumor or neurodevelopmental disorder. Finally, based on the previous studies we describe the current knowledge and latest research findings in the topic of pathogenesis of aniridia and possible future treatment.
Collapse
Affiliation(s)
- Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland.
| | - Maciej R Krawczynski
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
8
|
Lasseaux E, Plaisant C, Michaud V, Pennamen P, Trimouille A, Gaston L, Monfermé S, Lacombe D, Rooryck C, Morice-Picard F, Arveiler B. Molecular characterization of a series of 990 index patients with albinism. Pigment Cell Melanoma Res 2018; 31:466-474. [PMID: 29345414 DOI: 10.1111/pcmr.12688] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/07/2018] [Indexed: 01/11/2023]
Abstract
Albinism is a clinically and genetically heterogeneous disease characterized by variable degrees of hypopigmentation and by nystagmus, foveal hypoplasia, and chiasmatic misrouting of the optic nerves. The wide phenotypic heterogeneity impedes the establishment of phenotype-genotype correlations. To obtain a precise diagnosis, we screened the 19 known albinism genes in 990 index patients using targeted next-generation sequencing (NGS) and high-resolution comparative genomic hybridization. A molecular diagnosis was obtained in 72.32% of patients. A total of 243 new pathogenic variants were identified. Intragenic rearrangements represented 10.8% of all pathogenic alleles. NGS panel analysis allowed establishing a diagnosis for the rarest forms of the disease, which could not be diagnosed otherwise. Because of the clinical overlap between the different forms of the disease, diagnosis nowadays clearly relies on molecular grounds.
Collapse
Affiliation(s)
- Eulalie Lasseaux
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Claudio Plaisant
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Vincent Michaud
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Perrine Pennamen
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France.,INSERM U1211, Maladies Rares, Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Aurelien Trimouille
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France.,INSERM U1211, Maladies Rares, Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Laetitia Gaston
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | | | - Didier Lacombe
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France.,INSERM U1211, Maladies Rares, Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | - Caroline Rooryck
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France.,INSERM U1211, Maladies Rares, Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| | | | - Benoît Arveiler
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France.,INSERM U1211, Maladies Rares, Génétique et Métabolisme, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
Qiu B, Ma T, Peng C, Zheng X, Yang J. Identification of Five Novel Variants in Chinese Oculocutaneous Albinism by Targeted Next-Generation Sequencing. Genet Test Mol Biomarkers 2018; 22:252-258. [PMID: 29437493 DOI: 10.1089/gtmb.2017.0211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The diagnosis of oculocutaneous albinism (OCA) is established using clinical signs and symptoms. OCA is, however, a highly genetically heterogeneous disease with mutations identified in at least nineteen unique genes, many of which produce overlapping phenotypic traits. Thus, differentiating genetic OCA subtypes for diagnoses and genetic counseling is challenging, based on clinical presentation alone, and would benefit from a comprehensive molecular diagnostic. AIM To develop and validate a more comprehensive, targeted, next-generation-sequencing-based diagnostic for the identification of OCA-causing variants. MATERIALS AND METHODS The genomic DNA samples from 28 OCA probands were analyzed by targeted next-generation sequencing (NGS), and the candidate variants were confirmed through Sanger sequencing. RESULTS We observed mutations in the TYR, OCA2, and SLC45A2 genes in 25/28 (89%) patients with OCA. We identified 38 pathogenic variants among these three genes, including 5 novel variants: c.1970G>T (p.Gly657Val), c.1669A>C (p.Thr557Pro), c.2339-2A>C, and c.1349C>G (p.Thr450Arg) in OCA2; c.459_470delTTTTGCTGCCGA (p.Ala155_Phe158del) in SLC45A2. CONCLUSION Our findings expand the mutational spectrum of OCA in the Chinese population, and the assay we developed should be broadly useful as a molecular diagnostic, and as an aid for genetic counseling for OCA patients.
Collapse
Affiliation(s)
- Biyuan Qiu
- 1 Medical Technology College, Chengdu University of Traditional Chinese Medicine of China , Chengdu, Sichuan, P.R. China
| | - Tao Ma
- 2 Prenatal Diagnosis Center, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital , Chengdu, Sichuan, P.R. China .,3 Department of Gynecology & Obstetrics, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital , Chengdu, Sichuan, P.R. China
| | - Chunyan Peng
- 4 School of Medicine, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China
| | - Xiaoqin Zheng
- 1 Medical Technology College, Chengdu University of Traditional Chinese Medicine of China , Chengdu, Sichuan, P.R. China
| | - Jiyun Yang
- 2 Prenatal Diagnosis Center, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital , Chengdu, Sichuan, P.R. China .,4 School of Medicine, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China .,5 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Hospital of the University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital , Chengdu, Sichuan, P.R. China
| |
Collapse
|
10
|
Michaud V, Lasseaux E, Plaisant C, Verloes A, Perdomo-Trujillo Y, Hamel C, Elcioglu NH, Leroy B, Kaplan J, Jouk PS, Lacombe D, Fergelot P, Morice-Picard F, Arveiler B. Clinico-molecular analysis of eleven patients with Hermansky-Pudlak type 5 syndrome, a mild form of HPS. Pigment Cell Melanoma Res 2017. [PMID: 28640947 DOI: 10.1111/pcmr.12608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hermansky-Pudlak syndrome (HPS), first described in 1959, is a rare form of syndromic oculocutaneous albinism associated with bleeding diathesis and in some cases pulmonary fibrosis and granulomatous colitis. All 10 HPS types are caused by defects in vesicle trafficking of lysosome-related organelles (LRO) proteins. The HPS5 protein associates with HPS3 and HPS6 to form the biogenesis of lysosome-related organelles complex-2 (BLOC-2). Here, we report the clinical and genetic data of 11 patients with HPS-5 analyzed in our laboratory. We report 11 new pathogenic variants. The 11 patients present with ocular features that are typical for albinism, with mild hypopigmentation, and with no other major complication, apart from a tendency to bleed. HPS-5 therefore appears as a mild form of HPS, which is often clinically undistinguishable from mild oculocutaneous or ocular forms of albinism. Molecular analysis is therefore required to establish the diagnosis of this mild HPS form, which has consequences in terms of prognosis and of clinical management of the patients.
Collapse
Affiliation(s)
- Vincent Michaud
- Service Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | | | | | - Alain Verloes
- Département de Génétique, Hôpital Robert Debré, Paris, France
| | | | - Christian Hamel
- Service d'Ophtalmologie, CHU de Montpellier, Montpellier, France
| | - Nursel H Elcioglu
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul, Turkey.,Eastern Mediterranean University Medical School, Cyprus, Turkey
| | - Bart Leroy
- Center for Medical Genetics, Ghent University Hospital, Gent, Belgium
| | - Josseline Kaplan
- Laboratoire Génétique Moléculaire, Hôpital Necker-Enfants Malades, Paris, France
| | - Pierre-Simon Jouk
- Service Génétique Clinique, CHU de Grenoble Site La Tronche, Hôpital Couple Enfant, Grenoble, France
| | - Didier Lacombe
- Service Génétique Médicale, CHU de Bordeaux, Bordeaux, France.,Unité INSERM U1211, Maladies Rares: Génétique et Métabolisme, Bordeaux, France
| | - Patricia Fergelot
- Service Génétique Médicale, CHU de Bordeaux, Bordeaux, France.,Unité INSERM U1211, Maladies Rares: Génétique et Métabolisme, Bordeaux, France
| | - Fanny Morice-Picard
- Service Génétique Médicale, CHU de Bordeaux, Bordeaux, France.,Service de Dermatologie Pédiatrique, Centre de Référence Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Benoit Arveiler
- Service Génétique Médicale, CHU de Bordeaux, Bordeaux, France.,Unité INSERM U1211, Maladies Rares: Génétique et Métabolisme, Bordeaux, France
| |
Collapse
|
11
|
Arveiler B, Lasseaux E, Morice-Picard F. [Clinical and genetic aspects of albinism]. Presse Med 2017; 46:648-654. [PMID: 28734636 DOI: 10.1016/j.lpm.2017.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 01/09/2023] Open
Abstract
Albinism is a genetic disease affecting 1/17,000 person worldwide. It constitutes the second cause of congenital loss of visual acuity after optic atrophy. Albinism is heterogeneous both at the clinical and genetic levels. It is characterized by ocular development anomalies and by a variable degree of hypopigmentation. Clinically, three forms of the disease are described: oculocutaneous, ocular and syndromic (Hermansky-Pudlak syndrome, Chediak-Higashi syndrome). Nineteen genes involved in the different types of albinism have been described so far. The broad phenotypic variability between the different forms but also within a particular form renders the establishment of phenotype-genotype correlations impossible. A genetic test exploring all 19 genes is necessary to establish the diagnosis and to distinguish between syndromic and non-syndromic forms. We present the creation of an albinism-dedicated Day Hospital at the University Hospital of Bordeaux.
Collapse
Affiliation(s)
- Benoit Arveiler
- CHU de Bordeaux, service de génétique médicale, 33076 Bordeaux, France; Laboratoire maladies rares, génétique et métabolisme, Inserm U1211, 33076 Bordeaux, France.
| | - Eulalie Lasseaux
- CHU de Bordeaux, service de génétique médicale, 33076 Bordeaux, France
| | | |
Collapse
|
12
|
Gao J, D'Souza L, Wetherby K, Antolik C, Reeves M, Adams DR, Tumminia S, Wang X. Retrospective analysis in oculocutaneous albinism patients for the 2.7 kb deletion in the OCA2 gene revealed a co-segregation of the controversial variant, p.R305W. Cell Biosci 2017; 7:22. [PMID: 28451379 PMCID: PMC5406851 DOI: 10.1186/s13578-017-0149-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/22/2017] [Indexed: 12/03/2022] Open
Abstract
Background Oculocutaneous albinism (OCA) is an autosomal recessive disorder. A significant portion of OCA patients has been found with a single pathogenic variant either in the TYR or the OCA2 gene. Diagnostic sequencing of the TYR and OCA2 genes is routinely used for molecular diagnosis of OCA subtypes. To study the possibility that genomic abnormalities with single or multiple exon involvement may account for a portion of the potential missing pathogenic variants (the second), we retrospectively analyzed the TYR gene by long range PCR and analyzed the target 2.7 kb deletion in the OCA2 gene spanning exon 7 in OCA patients with a single pathogenic variant in the target genes. Results In the 108 patients analyzed, we found that one patient was heterozygous for the 2.7 kb OCA2 gene deletion and this patient was positive with one pathogenic variant and one possibly pathogenic variant [c.1103C>T (p.Ala368Val) + c.913C>T (p.R305W)]. Further analysis of maternal DNA, and two additional OCA DNA homozygous for the 2.7 kb deletion, revealed that the phenotypically normal mother is heterozygous of the 2.7 kb deletion and homozygous of the p.R305W. The two previously reported patients with homozygous of the 2.7 kb deletion are also homozygous of p.R305W. Conclusions Among the reported pathogenic variants, the pathogenicity of the p.R305W has been discussed intensively in literature. Our results indicate that p.R305W is unlikely a pathogenic variant. The possibility of linkage disequilibrium between p.R305W with the 2.7 kb deletion in OCA2 gene is also suggested. Electronic supplementary material The online version of this article (doi:10.1186/s13578-017-0149-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jackson Gao
- DNA Diagnostic Laboratory, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, 10 Center Drive, MSC 1860, Bethesda, 20892 Maryland USA
| | - Leera D'Souza
- DNA Diagnostic Laboratory, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, 10 Center Drive, MSC 1860, Bethesda, 20892 Maryland USA
| | - Keith Wetherby
- DNA Diagnostic Laboratory, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, 10 Center Drive, MSC 1860, Bethesda, 20892 Maryland USA
| | - Christian Antolik
- DNA Diagnostic Laboratory, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, 10 Center Drive, MSC 1860, Bethesda, 20892 Maryland USA
| | - Melissa Reeves
- DNA Diagnostic Laboratory, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, 10 Center Drive, MSC 1860, Bethesda, 20892 Maryland USA
| | - David R Adams
- National Human Genome Research Institute, Bethesda, Maryland USA
| | - Santa Tumminia
- National Eye Institute, National Institutes of Health, Bethesda, Maryland USA
| | - Xinjing Wang
- DNA Diagnostic Laboratory, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, 10 Center Drive, MSC 1860, Bethesda, 20892 Maryland USA
| |
Collapse
|
13
|
Blanco-Kelly F, Palomares M, Vallespín E, Villaverde C, Martín-Arenas R, Vélez-Monsalve C, Lorda-Sánchez I, Nevado J, Trujillo-Tiebas MJ, Lapunzina P, Ayuso C, Corton M. Improving molecular diagnosis of aniridia and WAGR syndrome using customized targeted array-based CGH. PLoS One 2017; 12:e0172363. [PMID: 28231309 PMCID: PMC5322952 DOI: 10.1371/journal.pone.0172363] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/04/2017] [Indexed: 11/18/2022] Open
Abstract
Chromosomal deletions at 11p13 are a frequent cause of congenital Aniridia, a rare pan-ocular genetic disease, and of WAGR syndrome, accounting up to 30% of cases. First-tier genetic testing for newborn with aniridia, to detect 11p13 rearrangements, includes Multiplex Ligation-dependent Probe Amplification (MLPA) and karyotyping. However, neither of these approaches allow obtaining a complete picture of the high complexity of chromosomal deletions and breakpoints in aniridia. Here, we report the development and validation of a customized targeted array-based comparative genomic hybridization, so called WAGR-array, for comprehensive high-resolution analysis of CNV in the WAGR locus. Our approach increased the detection rate in a Spanish cohort of 38 patients with aniridia, WAGR syndrome and other related ocular malformations, allowing to characterize four undiagnosed aniridia cases, and to confirm MLPA findings in four additional patients. For all patients, breakpoints were accurately established and a contiguous deletion syndrome, involving a large number of genes, was identified in three patients. Moreover, we identified novel microdeletions affecting 3' PAX6 regulatory regions in three families with isolated aniridia. This tool represents a good strategy for the genetic diagnosis of aniridia and associated syndromes, allowing for a more accurate CNVs detection, as well as a better delineation of breakpoints. Our results underline the clinical importance of performing exhaustive and accurate analysis of chromosomal rearrangements for patients with aniridia, especially newborns and those without defects in PAX6 after diagnostic screening.
Collapse
Affiliation(s)
- Fiona Blanco-Kelly
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - María Palomares
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Elena Vallespín
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Cristina Villaverde
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Rubén Martín-Arenas
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Camilo Vélez-Monsalve
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Isabel Lorda-Sánchez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Julián Nevado
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - María José Trujillo-Tiebas
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Pablo Lapunzina
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- Institute of Medical & Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- * E-mail: (CA); (MC)
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital- Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
- * E-mail: (CA); (MC)
| |
Collapse
|
14
|
Complete loss of function of the ubiquitin ligase HERC2 causes a severe neurodevelopmental phenotype. Eur J Hum Genet 2016; 25:52-58. [PMID: 27759030 DOI: 10.1038/ejhg.2016.139] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/28/2016] [Accepted: 09/13/2016] [Indexed: 02/06/2023] Open
Abstract
The ubiquitin-proteasome pathway is involved in the pathogenesis of several neurogenetic diseases. We describe a Mauritanian patient harboring a homozygous deletion restricted to two contiguous genes HERC2 and OCA2 and presenting with severe developmental abnormalities. The deletion causes the complete loss of HERC2 protein function, an E3-ubiquitin ligase. HERC2 is known to target XPA and BRCA1 for degradation and a mechanism whereby it is involved in DNA repair and cell cycle regulation. We showed that loss of HERC2 function leads to the accumulation of XPA and BRCA1 in the patient's fibroblasts and generates decreased sensitivity to apoptosis and increased level of DNA repair. Our data describe for the first time the phenotypic consequences, both at the clinical and cellular levels, of a complete loss of HERC2 function in a patient. They strongly suggest that profound ubiquitin ligase - associated dysfunction is responsible for the severe phenotype in this patient, and that dysfunction of this pathway may be involved in other patients with similar neurodevelopmental diseases.
Collapse
|
15
|
Clinical evaluation and molecular screening of a large consecutive series of albino patients. J Hum Genet 2016; 62:277-290. [PMID: 27734839 DOI: 10.1038/jhg.2016.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 12/26/2022]
Abstract
Oculocutaneous albinism (OCA) is characterized by hypopigmentation of the skin, hair and eye, and by ophthalmologic abnormalities caused by a deficiency in melanin biosynthesis. In this study we recruited 321 albino patients and screened them for the genes known to cause oculocutaneous albinism (OCA1-4 and OCA6) and ocular albinism (OA1). Our purpose was to detect mutations and genetic frequencies of the main causative genes, offering to albino patients an exhaustive diagnostic assessment within a multidisciplinary approach including ophthalmological, dermatological, audiological and genetic evaluations. We report 70 novel mutations and the frequencies of the major causative OCA genes that are as follows: TYR (44%), OCA2 (17%), TYRP1 (1%), SLC45A2 (7%) and SLC24A5 (<0.5%). An additional 5% of patients had GPR143 mutations. In 19% of cases, a second reliable mutation was not detected, whereas 7% of our patients remain still molecularly undiagnosed. This comprehensive study of a consecutive series of OCA/OA1 patients allowed us to perform a clinical evaluation of the different OCA forms.
Collapse
|
16
|
Uncovering Adaptation from Sequence Data: Lessons from Genome Resequencing of Four Cattle Breeds. Genetics 2016; 203:433-50. [PMID: 27017625 DOI: 10.1534/genetics.115.181594] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/03/2016] [Indexed: 01/25/2023] Open
Abstract
Detecting the molecular basis of adaptation is one of the major questions in population genetics. With the advance in sequencing technologies, nearly complete interrogation of genome-wide polymorphisms in multiple populations is becoming feasible in some species, with the expectation that it will extend quickly to new ones. Here, we investigate the advantages of sequencing for the detection of adaptive loci in multiple populations, exploiting a recently published data set in cattle (Bos taurus). We used two different approaches to detect statistically significant signals of positive selection: a within-population approach aimed at identifying hard selective sweeps and a population-differentiation approach that can capture other selection events such as soft or incomplete sweeps. We show that the two methods are complementary in that they indeed capture different kinds of selection signatures. Our study confirmed some of the well-known adaptive loci in cattle (e.g., MC1R, KIT, GHR, PLAG1, NCAPG/LCORL) and detected some new ones (e.g., ARL15, PRLR, CYP19A1, PPM1L). Compared to genome scans based on medium- or high-density SNP data, we found that sequencing offered an increased detection power and a higher resolution in the localization of selection signatures. In several cases, we could even pinpoint the underlying causal adaptive mutation or at least a very small number of possible candidates (e.g., MC1R, PLAG1). Our results on these candidates suggest that a vast majority of adaptive mutations are likely to be regulatory rather than protein-coding variants.
Collapse
|
17
|
Amelanism in the corn snake is associated with the insertion of an LTR-retrotransposon in the OCA2 gene. Sci Rep 2015; 5:17118. [PMID: 26597053 PMCID: PMC4657000 DOI: 10.1038/srep17118] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/26/2015] [Indexed: 12/21/2022] Open
Abstract
The corn snake (Pantherophis guttatus) is a new model species particularly appropriate for investigating the processes generating colours in reptiles because numerous colour and pattern mutants have been isolated in the last five decades. Using our captive-bred colony of corn snakes, transcriptomic and genomic next-generation sequencing, exome assembly, and genotyping of SNPs in multiple families, we delimit the genomic interval bearing the causal mutation of amelanism, the oldest colour variant observed in that species. Proceeding with sequencing the candidate gene OCA2 in the uncovered genomic interval, we identify that the insertion of an LTR-retrotransposon in its 11th intron results in a considerable truncation of the p protein and likely constitutes the causal mutation of amelanism in corn snakes. As amelanistic snakes exhibit white, instead of black, borders around an otherwise normal pattern of dorsal orange saddles and lateral blotches, our results indicate that melanocytes lacking melanin are able to participate to the normal patterning of other colours in the skin. In combination with research in the zebrafish, this work opens the perspective of using corn snake colour and pattern variants to investigate the generative processes of skin colour patterning shared among major vertebrate lineages.
Collapse
|
18
|
Pilliod J, Moutton S, Lavie J, Maurat E, Hubert C, Bellance N, Anheim M, Forlani S, Mochel F, N'Guyen K, Thauvin-Robinet C, Verny C, Milea D, Lesca G, Koenig M, Rodriguez D, Houcinat N, Van-Gils J, Durand CM, Guichet A, Barth M, Bonneau D, Convers P, Maillart E, Guyant-Marechal L, Hannequin D, Fromager G, Afenjar A, Chantot-Bastaraud S, Valence S, Charles P, Berquin P, Rooryck C, Bouron J, Brice A, Lacombe D, Rossignol R, Stevanin G, Benard G, Burglen L, Durr A, Goizet C, Coupry I. New practical definitions for the diagnosis of autosomal recessive spastic ataxia of Charlevoix-Saguenay. Ann Neurol 2015; 78:871-86. [PMID: 26288984 DOI: 10.1002/ana.24509] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in the SACS gene. SACS encodes sacsin, a protein whose function remains unknown, despite the description of numerous protein domains and the recent focus on its potential role in the regulation of mitochondrial physiology. This study aimed to identify new mutations in a large population of ataxic patients and to functionally analyze their cellular effects in the mitochondrial compartment. METHODS A total of 321 index patients with spastic ataxia selected from the SPATAX network were analyzed by direct sequencing of the SACS gene, and 156 patients from the ATAXIC project presenting with congenital ataxia were investigated either by targeted or whole exome sequencing. For functional analyses, primary cultures of fibroblasts were obtained from 11 patients carrying either mono- or biallelic variants, including 1 case harboring a large deletion encompassing the entire SACS gene. RESULTS We identified biallelic SACS variants in 33 patients from SPATAX, and in 5 nonprogressive ataxia patients from ATAXIC. Moreover, a drastic and recurrent alteration of the mitochondrial network was observed in 10 of the 11 patients tested. INTERPRETATION Our results permit extension of the clinical and mutational spectrum of ARSACS patients. Moreover, we suggest that the observed mitochondrial network anomalies could be used as a trait biomarker for the diagnosis of ARSACS when SACS molecular results are difficult to interpret (ie, missense variants and heterozygous truncating variant). Based on our findings, we propose new diagnostic definitions for ARSACS using clinical, genetic, and cellular criteria.
Collapse
Affiliation(s)
- Julie Pilliod
- Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Sébastien Moutton
- Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Bordeaux, France.,Medical Genetics Service, Pellegrin University Hospital Center, Bordeaux, France
| | - Julie Lavie
- Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Elise Maurat
- Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Christophe Hubert
- Functional Genomics Center, University of Bordeaux, Bordeaux, France
| | - Nadège Bellance
- Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Mathieu Anheim
- Neurology Service, Strasbourg University Hospitals, Strasbourg, France.,Molecular Cell Biology Genetics Institute, INSERM U964/CNRS UMR7104, University of Strasbourg, Illkirch-Graffenstaden, France.,Strasbourg Federation of Translational Medicine, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Sylvie Forlani
- Genetics Service, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Fanny Mochel
- Genetics Service, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France.,Brain and Spinal Cord Institute, INSERM U1127, CNRS UMR7225, Sorbonne Universities-Pierre and Marie Curie University, Paris, France
| | - Karine N'Guyen
- Department of Medical Genetics, Timone Hospital, Marseille, France
| | | | - Christophe Verny
- Nantes Angers le Mans University and Neurology Service, CNRS UMR6214, INSERM U1083, University Hospital Center, Angers, France
| | - Dan Milea
- Ophthalmology Service, Angers University Hospital Center, Angers, France and Singapore National Eye Centre, Singapore Eye Research Institute, Duke-National University of Singapore, Singapore
| | - Gaëtan Lesca
- Genetics Service, Lyon University Hospital Center, Lyon, France
| | - Michel Koenig
- Molecular Genetics Laboratory, INSERM U827, Montpellier Regional University Hospital Center, Montpellier, France
| | - Diana Rodriguez
- Rare Diseases Reference Center "Defects and Congenital Diseases of the Cerebellum," Armand Trousseau Hospital, Public Hospital Network of Paris, Paris, France.,Robert Debré Hospital, INSERM U1141, Paris, France.,Genetics Service, Armand Trousseau Hospital, Public Hospital Network of Paris, Paris, France
| | - Nada Houcinat
- Medical Genetics Service, Pellegrin University Hospital Center, Bordeaux, France
| | - Julien Van-Gils
- Medical Genetics Service, Pellegrin University Hospital Center, Bordeaux, France
| | - Christelle M Durand
- Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Agnès Guichet
- Neuropediatrics Service, Armand Trousseau Hospital, Public Hospital Network of Paris, Sorbonne Universities-Pierre and Marie Curie University, Paris, France
| | - Magalie Barth
- Neuropediatrics Service, Armand Trousseau Hospital, Public Hospital Network of Paris, Sorbonne Universities-Pierre and Marie Curie University, Paris, France
| | - Dominique Bonneau
- Neuropediatrics Service, Armand Trousseau Hospital, Public Hospital Network of Paris, Sorbonne Universities-Pierre and Marie Curie University, Paris, France
| | - Philippe Convers
- Nantes Angers le Mans University and Department of Biochemistry and Genetics, University Hospital Center, Angers, France
| | - Elisabeth Maillart
- Clinical Neurophysiology Service, Saint-Étienne University Hospital Center, Saint-Étienne, France
| | - Lucie Guyant-Marechal
- Neurology Service, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Didier Hannequin
- Neurology Service, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | | | - Alexandra Afenjar
- Rare Diseases Reference Center "Defects and Congenital Diseases of the Cerebellum," Armand Trousseau Hospital, Public Hospital Network of Paris, Paris, France.,Neurologist, Caen, France
| | - Sandra Chantot-Bastaraud
- Rare Diseases Reference Center "Defects and Congenital Diseases of the Cerebellum," Armand Trousseau Hospital, Public Hospital Network of Paris, Paris, France.,Neurologist, Caen, France
| | - Stéphanie Valence
- Rare Diseases Reference Center "Defects and Congenital Diseases of the Cerebellum," Armand Trousseau Hospital, Public Hospital Network of Paris, Paris, France.,Genetics Service, Armand Trousseau Hospital, Public Hospital Network of Paris, Paris, France
| | - Perrine Charles
- Genetics Service, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Patrick Berquin
- Amiens University Hospital Center, Pediatric Neurology Activity Center, Amiens, France
| | - Caroline Rooryck
- Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Bordeaux, France.,Medical Genetics Service, Pellegrin University Hospital Center, Bordeaux, France
| | - Julie Bouron
- Medical Genetics Service, Pellegrin University Hospital Center, Bordeaux, France
| | - Alexis Brice
- Genetics Service, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France.,Brain and Spinal Cord Institute, INSERM U1127, CNRS UMR7225, Sorbonne Universities-Pierre and Marie Curie University, Paris, France
| | - Didier Lacombe
- Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Bordeaux, France.,Medical Genetics Service, Pellegrin University Hospital Center, Bordeaux, France
| | - Rodrigue Rossignol
- Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Giovanni Stevanin
- Genetics Service, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France.,Brain and Spinal Cord Institute, INSERM U1127, CNRS UMR7225, Sorbonne Universities-Pierre and Marie Curie University, Paris, France.,Laboratory of Neurogenetics, Practical School of Higher Studies, Paris, France
| | - Giovanni Benard
- Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| | - Lydie Burglen
- Rare Diseases Reference Center "Defects and Congenital Diseases of the Cerebellum," Armand Trousseau Hospital, Public Hospital Network of Paris, Paris, France.,Robert Debré Hospital, INSERM U1141, Paris, France.,Neurologist, Caen, France
| | - Alexandra Durr
- Genetics Service, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France.,Brain and Spinal Cord Institute, INSERM U1127, CNRS UMR7225, Sorbonne Universities-Pierre and Marie Curie University, Paris, France
| | - Cyril Goizet
- Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Bordeaux, France.,Medical Genetics Service, Pellegrin University Hospital Center, Bordeaux, France
| | - Isabelle Coupry
- Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Bordeaux, France
| |
Collapse
|
19
|
Visser M, Kayser M, Grosveld F, Palstra RJ. Genetic variation in regulatory DNA elements: the case of OCA2 transcriptional regulation. Pigment Cell Melanoma Res 2014; 27:169-77. [PMID: 24387780 DOI: 10.1111/pcmr.12210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/20/2013] [Indexed: 12/16/2022]
Abstract
Mutations within the OCA2 gene or the complete absence of the OCA2 protein leads to oculocutaneous albinism type 2. The OCA2 protein plays a central role in melanosome biogenesis, and it is a strong determinant of the eumelanin content in melanocytes. Transcript levels of the OCA2 gene are strongly correlated with pigmentation intensities. Recent studies demonstrated that the transcriptional level of OCA2 is to a large extent determined by the noncoding SNP rs12913832 located 21.5 kb upstream of the OCA2 gene promoter. In this review, we discuss current hypotheses and the available data on the mechanism of OCA2 transcriptional regulation and how this is influenced by genetic variation. Finally, we will explore how future epigenetic studies can be used to advance our insight into the functional biology that connects genetic variation to human pigmentation.
Collapse
Affiliation(s)
- Mijke Visser
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
20
|
Clinical utility gene card for: Oculocutaneous albinism. Eur J Hum Genet 2014; 22:ejhg2013307. [PMID: 24518832 DOI: 10.1038/ejhg.2013.307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 11/21/2013] [Accepted: 12/12/2013] [Indexed: 11/08/2022] Open
|