1
|
Feugere L, Silva De Freitas C, Bates A, Storey KB, Beltran-Alvarez P, Wollenberg Valero KC. Social context prevents heat hormetic effects against mutagens during fish development. FEBS Lett 2025. [PMID: 40265659 DOI: 10.1002/1873-3468.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Since stress can be transmitted to congeners via social metabolites, it is paramount to understand how the social context of abiotic stress influences aquatic organisms' responses to global changes. Here, we integrated the transcriptomic and phenotypic responses of zebrafish embryos to a UV damage/repair assay following scenarios of heat stress, its social context and their combination. Heat stress preceding UV exposure had a hormetic effect through the cellular stress response and DNA repair, rescuing and/or protecting embryos from UV damage. However, experiencing heat stress within a social context negated this molecular hormetic effect and lowered larval fitness. We discuss the molecular basis of interindividual chemical transmission within animal groups as another layer of complexity to organisms' responses to environmental stressors.
Collapse
Affiliation(s)
- Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull, UK
| | | | - Adam Bates
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull, UK
| | | | - Pedro Beltran-Alvarez
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston upon Hull, UK
| | - Katharina C Wollenberg Valero
- Department of Biological and Marine Sciences, University of Hull, Kingston upon Hull, UK
- School of Biology and Environmental Science, University College Dublin, Ireland
- Conway Institute, University College Dublin, Ireland
| |
Collapse
|
2
|
Yaylacıoğlu Tuncay F, Talim B, Dinçer PR. Mimicking TGFBI Hot-Spot Mutation Did Not Result in Any Deposit Formation in the Zebrafish Cornea. Curr Eye Res 2024; 49:458-466. [PMID: 38164916 DOI: 10.1080/02713683.2023.2298904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Mutations in transforming growth factor beta-induced (TGFBI) protein are associated with a group of corneal dystrophies (CDs), classified as TGFBI-associated CDs, characterized by deposits in the cornea. Mouse models were not proper in several aspects for modelling human disease. The goal of this study was to generate zebrafish mutants to investigate the corneal phenotype and to decide whether zebrafish could be a potential model for TGFBI-associated CDs. METHODS The conserved arginine residue, codon 117, in zebrafish tgfbi gene was targeted with Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 method. Cas9 VQR variant was used with two target-specific sgRNAs to generate mutations. The presence of mutations was evaluated by T7 Endonuclease Enzyme (T7EI) assay and the type of the mutations were evaluated by Sanger sequencing. The mutant zebrafish at 3 months and 1 year of age were investigated under the microscope for corneal opacity and eye sections were evaluated histopathologically with hematoxylin-eosin, masson-trichrome and congo red stains for corneal deposits. RESULTS We achieved indel variation at the target sequence that resulted in p.Ser115_Arg117delinsLeu (c. 347_353delinsT) by nonhomology mediated repair in F1. This zebrafish mutation had the potential to mimic two disease-causing mutations reported in human cases previously: R124L and R124L + del125-126. Mutant zebrafish did not show any corneal opacity or corneal deposits at 3 months and 1 year of age. CONCLUSION This study generated the first zebrafish model mimicking the R124 hot spot mutation in TGFBI-associated CDs. However, evaluations even at 1 year of age did not reveal any deposits in the cornea histopathologically. This study increased the cautions for modelling TGFBI-associated CDs in zebrafish in addition to differences in the corneal structure between zebrafish and humans.
Collapse
Affiliation(s)
- Fulya Yaylacıoğlu Tuncay
- Medical Biology, Gülhane Medical Faculty, University of Health Sciences, Ankara, Turkey
- Medical Biology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Beril Talim
- Pathology Unit, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | |
Collapse
|
3
|
Wagatsuma T, Suzuki E, Shiotsu M, Sogo A, Nishito Y, Ando H, Hashimoto H, Petris MJ, Kinoshita M, Kambe T. Pigmentation and TYRP1 expression are mediated by zinc through the early secretory pathway-resident ZNT proteins. Commun Biol 2023; 6:403. [PMID: 37072620 PMCID: PMC10113262 DOI: 10.1038/s42003-023-04640-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2023] [Indexed: 04/20/2023] Open
Abstract
Tyrosinase (TYR) and tyrosinase-related proteins 1 and 2 (TYRP1 and TYRP2) are essential for pigmentation. They are generally classified as type-3 copper proteins, with binuclear copper active sites. Although there is experimental evidence for a copper cofactor in TYR, delivered via the copper transporter, ATP7A, the presence of copper in TYRP1 and TYRP2 has not been demonstrated. Here, we report that the expression and function of TYRP1 requires zinc, mediated by ZNT5-ZNT6 heterodimers (ZNT5-6) or ZNT7-ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in hypopigmentation in medaka fish and human melanoma cells, and is accompanied by immature melanosomes and reduced melanin content, as observed in TYRP1 dysfunction. The requirement of ZNT5-6 and ZNT7 for TYRP1 expression is conserved in human, mouse, and chicken orthologs. Our results provide novel insights into the pigmentation process and address questions regarding metalation in tyrosinase protein family.
Collapse
Affiliation(s)
- Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Eisuke Suzuki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Miku Shiotsu
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Akiko Sogo
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yukina Nishito
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Ando
- Department of Applied Chemistry and Biotechnology, Okayama University of Science, Okayama, 700-0005, Japan
| | - Hisashi Hashimoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Michael J Petris
- Departments of Ophthalmology, University of Missouri, Columbia, MO, 65211, USA
- Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
4
|
Sun D, Qi X, Wen H, Li C, Li J, Chen J, Tao Z, Zhu M, Zhang X, Li Y. The genetic basis and potential molecular mechanism of yellow-albino northern snakehead ( Channa argus). Open Biol 2023; 13:220235. [PMID: 36789536 PMCID: PMC9929503 DOI: 10.1098/rsob.220235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Body colour is an important economic trait for commercial fishes. Recently, a new colour morph displaying market-favoured yellow skin (termed as yellow-mutant, YM) of northern snakehead (Channa argus) was discovered in China. We confirmed that YM snakehead is an albino with complete loss of melanin in the skin and eyes by histological and ultrastructural observations, and inherited as a recessive Mendelian trait. By applying genomic analysis approaches, in combination with gene knockdown and rescue experiments, we suggested a non-sense mutation in slc45a2 (c.383G > A) is the causation for the YM snakehead. Notably, significantly higher levels of key melanogenesis genes (tyr, tyrp1, dct and pmel) and phospho-MITF protein were detected in YM snakehead than those in wild-type individuals, and the underlying mechanism was further investigated by comparative transcriptomic analysis. Results revealed that differential expressed genes involved in pathways like MAPK, WNT and calcium signalling were significantly induced in YM snakehead, which might account for the increased amount of melanogenesis elements, and presumably be stimulated by fibroblast-derived melanogenic factors in a paracrine manner. Our study clarified the genetic basis of colour variation in C. argus and provided the preliminary clue indicating the potential involvement of fibroblasts in pigmentation in fish.
Collapse
Affiliation(s)
- Donglei Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Jianlong Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jiwei Chen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Zexin Tao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Mingxin Zhu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
5
|
Brown AR, Comai K, Mannino D, McCullough H, Donekal Y, Meyers HC, Graves CW, Seidel HS, The BIO306W Consortium. A community-science approach identifies genetic variants associated with three color morphs in ball pythons (Python regius). PLoS One 2022; 17:e0276376. [PMID: 36260636 PMCID: PMC9581371 DOI: 10.1371/journal.pone.0276376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Color morphs in ball pythons (Python regius) provide a unique and largely untapped resource for understanding the genetics of coloration in reptiles. Here we use a community-science approach to investigate the genetics of three color morphs affecting production of the pigment melanin. These morphs-Albino, Lavender Albino, and Ultramel-show a loss of melanin in the skin and eyes, ranging from severe (Albino) to moderate (Lavender Albino) to mild (Ultramel). To identify genetic variants causing each morph, we recruited shed skins of pet ball pythons via social media, extracted DNA from the skins, and searched for putative loss-of-function variants in homologs of genes controlling melanin production in other vertebrates. We report that the Albino morph is associated with missense and non-coding variants in the gene TYR. The Lavender Albino morph is associated with a deletion in the gene OCA2. The Ultramel morph is associated with a missense variant and a putative deletion in the gene TYRP1. Our study is one of the first to identify genetic variants associated with color morphs in ball pythons and shows that pet samples recruited from the community can provide a resource for genetic studies in this species.
Collapse
Affiliation(s)
- Autumn R. Brown
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Kaylee Comai
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Dominic Mannino
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Haily McCullough
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Yamini Donekal
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Hunter C. Meyers
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Chiron W. Graves
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
- * E-mail: (CWG); (HSS)
| | - Hannah S. Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
- * E-mail: (CWG); (HSS)
| | - The BIO306W Consortium
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| |
Collapse
|
6
|
Jiang B, Wang L, Luo M, Fu J, Zhu W, Liu W, Dong Z. Transcriptome analysis of skin color variation during and after overwintering of Malaysian red tilapia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:669-682. [PMID: 35419737 DOI: 10.1007/s10695-022-01073-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The commercial value of red tilapia is hampered by variations in skin color during overwintering. In this study, three types of skin of red tilapia, including the skin remained pink color during and after overwintering (P), the skin changed from pink color to black color during overwintering and remained black color after overwintering (P-B), and the skin changed from pink color to black color during overwintering but recovered to pink color when the temperature rose after overwintering (P-B-P), were used to analyze their molecular mechanisms of color variation. The transcriptome results revealed that the P, P-B, and P-B-P libraries had 43, 42, and 43 million clean reads, respectively. The top 10 abundance mRNAs and specific mRNAs (specificity measure SPM > 0.9) were screened. After comparing intergroup gene expression levels, there were 2528, 1924, and 1939 differentially expressed genes (DEGs) between P-B-P and P-B, P-B-P and P, and P-B and P, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of color-related mRNAs showed that a number of DEGs, including tyrp1, tyr, pmel, mitf, mc1r, asip, tat, hpdb, and foxd3, might play a potential role in pigmentation. Additionally, the co-expression patterns of genes were detected within the pigment-related pathways by the PPI network from P-B vs. P group. Furthermore, DEGs from the apoptosis and autophagy pathways, such as baxα, beclin1, and atg7, might be involved in the fading of red tilapia melanocytes. The findings will aid in understanding the molecular mechanism underlying skin color variation in red tilapia during and after overwintering as well as lay a foundation for future research aimed at improving red tilapia skin color characteristics.
Collapse
Affiliation(s)
- Bingjie Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi, 214081, Jiangsu, China
| | - Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi, 214081, Jiangsu, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi, 214081, Jiangsu, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi, 214081, Jiangsu, China
| | - Wei Liu
- AGCU ScienTech Incorporation, Wuxi, 214174, Jiangsu, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, No. 9 Shanshui East Road, Wuxi, 214081, Jiangsu, China.
| |
Collapse
|
7
|
Roy K, Podhorec P, Dvorak P, Mraz J. Understanding Nutrition and Metabolism of Threatened, Data-Poor Rheophilic Fishes in Context of Riverine Stocking Success- Barbel as a Model for Major European Drainages? BIOLOGY 2021; 10:1245. [PMID: 34943160 PMCID: PMC8698400 DOI: 10.3390/biology10121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Large-bodied, river-migrating, rheophilic fishes (cyprinids) such as barbel Barbus barbus, nase Chondrostoma nasus, asp Leuciscus aspius, and vimba bream Vimba vimba are threatened in major European drainages. This represents the subject of our present study. Their hatchery nutrition prior to river-release is mostly on a hit-and-trial or carp-based diet basis. The study demonstrates an alternative approach to decide optimum nutrition for these conservation-priority and nutritionally data-poor fishes. The study revealed barbel as a central representative species in terms of wild body composition among other native rheophilic cyprinids considered (asp, nase, vimba bream). Taking barbel as a model, the study shows that barbel or rheophilic cyprinids may have carnivorous-like metabolism and higher requirements of S-containing, aromatic, branched-chain amino acids (AAs) than carps. Besides, there are important interactions of AAs and fatty acids (FAs) biosynthesis to consider. Only proper feeding of nutritionally well-selected diets may contribute to river stocking mandates such as steepest growth trajectory (≈less time in captivity), ideal size-at-release, body fitness (≈blend-in with wild conspecifics, predator refuge), better gastrointestinal condition, maximized body reserves of functional nutrients, and retention efficiencies (≈uncompromised physiology). Considering important physiological functions and how AA-FA interactions shape them, hatchery-raised fishes on casually chosen diets may have high chances of physiological, morphological, and behavioral deficits (≈low post-stocking survivability). Based on the observations, optimum nutrient requirements of juvenile (0+ to 1+ age) barbels are suggested. Future efforts may consider barbels as a nutrition model for conservation aquaculture of threatened and data poor rheophilic cyprinids of the region.
Collapse
Affiliation(s)
| | | | | | - Jan Mraz
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (K.R.); (P.P.); (P.D.)
| |
Collapse
|
8
|
McCluskey BM, Liang Y, Lewis VM, Patterson LB, Parichy DM. Pigment pattern morphospace of Danio fishes: evolutionary diversification and mutational effects. Biol Open 2021; 10:271991. [PMID: 34463758 PMCID: PMC8487636 DOI: 10.1242/bio.058814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
Molecular and cellular mechanisms underlying variation in adult form remain largely unknown. Adult pigment patterns of fishes in the genus Danio, which includes zebrafish, Danio rerio, consist of horizontal stripes, vertical bars, spots and uniform patterns, and provide an outstanding opportunity to identify causes of species level variation in a neural crest derived trait. Understanding pigment pattern variation requires quantitative approaches to assess phenotypes, yet such methods have been mostly lacking for pigment patterns. We introduce metrics derived from information theory that describe patterns and pattern variation in Danio fishes. We find that these metrics used singly and in multivariate combinations are suitable for distinguishing general pattern types, and can reveal even subtle phenotypic differences attributable to mutations. Our study provides new tools for analyzing pigment pattern in Danio and potentially other groups, and sets the stage for future analyses of pattern morphospace and its mechanistic underpinnings. Summary: A multidimensional morphospace for pigment patterns yields quantitative insights into the evolution and genetics of diverse pigment patterns across zebrafish and related species.
Collapse
Affiliation(s)
| | - Yipeng Liang
- Department of Biology, University of Virginia, Charlottesville, USA
| | - Victor M Lewis
- Department of Biology, University of Virginia, Charlottesville, USA
| | | | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, USA.,Biology Department, Rhode Island College, Providence, USA.,Department of Cell Biology, University of Virginia, Charlottesville, USA
| |
Collapse
|
9
|
Bian C, Li R, Wen Z, Ge W, Shi Q. Phylogenetic Analysis of Core Melanin Synthesis Genes Provides Novel Insights Into the Molecular Basis of Albinism in Fish. Front Genet 2021; 12:707228. [PMID: 34422008 PMCID: PMC8371935 DOI: 10.3389/fgene.2021.707228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Melanin is the most prevalent pigment in animals. Its synthesis involves a series of functional genes. Particularly, teleosts have more copies of these genes related to the melanin synthesis than tetrapods. Despite the increasing number of available vertebrate genomes, a few systematically genomic studies were reported to identify and compare these core genes for the melanin synthesis. Here, we performed a comparative genomic analysis on several core genes, including tyrosinase genes (tyr, tyrp1, and tyrp2), premelanosome protein (pmel), microphthalmia-associated transcription factor (mitf), and solute carrier family 24 member 5 (slc24a5), based on 90 representative vertebrate genomes. Gene number and mutation identification suggest that loss-of-function mutations in these core genes may interact to generate an albinism phenotype. We found nonsense mutations in tyrp1a and pmelb of an albino golden-line barbel fish, in pmelb of an albino deep-sea snailfish (Pseudoliparis swirei), in slc24a5 of cave-restricted Mexican tetra (Astyanax mexicanus, cavefish population), and in mitf of a transparent icefish (Protosalanx hyalocranius). Convergent evolution may explain this phenomenon since nonsense mutations in these core genes for melanin synthesis have been identified across diverse albino fishes. These newly identified nonsense mutations and gene loss will provide molecular guidance for ornamental fish breeding, further enhancing our in-depth understanding of human skin coloration.
Collapse
Affiliation(s)
- Chao Bian
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruihan Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengyong Wen
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Ge
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
A globin-family protein, Cytoglobin 1, is involved in the development of neural crest-derived tissues and organs in zebrafish. Dev Biol 2021; 472:1-17. [PMID: 33358912 DOI: 10.1016/j.ydbio.2020.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022]
Abstract
The zebrafish is an excellent model animal that is amenable to forward genetics approaches. To uncover unknown developmental regulatory mechanisms in vertebrates, we conducted chemical mutagenesis screening and identified a novel mutation, kanazutsi (kzt). This mutation is recessive, and its homozygotes are embryonic lethal. Mutant embryos suffered from a variety of morphological defects, such as head flattening, pericardial edema, circulation defects, disrupted patterns of melanophore distribution, dwarf eyes, a defective jaw, and extensive apoptosis in the head, which indicates that the main affected tissues are derived from neural crest cells (NCCs). The expression of tissue-specific markers in kzt mutants showed that the early specification of NCCs was normal, but their later differentiation was severely affected. The mutation was mapped to chromosome 3 by linkage analyses, near cytoglobin 1 (cygb1), the product of which is a globin-family respiratory protein. cygb1 expression was activated during somitogenesis in somites and cranial NCCs in wild-type embryos but was significantly downregulated in mutant embryos, despite the normal primary structure of the gene product. The kzt mutation was phenocopied by cygb1 knockdown with low-dose morpholino oligos and was partially rescued by cygb1 overexpression. Both severe knockdown and null mutation of cygb1, established by the CRISPR/Cas9 technique, resulted in far more severe defects at early stages. Thus, it is highly likely that the downregulation of cygb1 is responsible for many, if not all, of the phenotypes of the kzt mutation. These results reveal a requirement for globin family proteins in vertebrate embryos, particularly in the differentiation and subsequent development of NCCs.
Collapse
|
11
|
Madelaine R, Ngo KJ, Skariah G, Mourrain P. Genetic deciphering of the antagonistic activities of the melanin-concentrating hormone and melanocortin pathways in skin pigmentation. PLoS Genet 2020; 16:e1009244. [PMID: 33301440 PMCID: PMC7755275 DOI: 10.1371/journal.pgen.1009244] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/22/2020] [Accepted: 10/30/2020] [Indexed: 01/18/2023] Open
Abstract
The genetic origin of human skin pigmentation remains an open question in biology. Several skin disorders and diseases originate from mutations in conserved pigmentation genes, including albinism, vitiligo, and melanoma. Teleosts possess the capacity to modify their pigmentation to adapt to their environmental background to avoid predators. This background adaptation occurs through melanosome aggregation (white background) or dispersion (black background) in melanocytes. These mechanisms are largely regulated by melanin-concentrating hormone (MCH) and α-melanocyte–stimulating hormone (α-MSH), two hypothalamic neuropeptides also involved in mammalian skin pigmentation. Despite evidence that the exogenous application of MCH peptides induces melanosome aggregation, it is not known if the MCH system is physiologically responsible for background adaptation. In zebrafish, we identify that MCH neurons target the pituitary gland-blood vessel portal and that endogenous MCH peptide expression regulates melanin concentration for background adaptation. We demonstrate that this effect is mediated by MCH receptor 2 (Mchr2) but not Mchr1a/b. mchr2 knock-out fish cannot adapt to a white background, providing the first genetic demonstration that MCH signaling is physiologically required to control skin pigmentation. mchr2 phenotype can be rescued in adult fish by knocking-out pomc, the gene coding for the precursor of α-MSH, demonstrating the relevance of the antagonistic activity between MCH and α-MSH in the control of melanosome organization. Interestingly, MCH receptor is also expressed in human melanocytes, thus a similar antagonistic activity regulating skin pigmentation may be conserved during evolution, and the dysregulation of these pathways is significant to our understanding of human skin disorders and cancers. Melanocytes produce melanin, a natural skin pigment, for body coloration which helps to protect and camouflage an organism and to attract mates. Melanocytes are ubiquitous pigment cells in vertebrates and the genes underlying their development are well conserved, making fishes that possess the ability to modify their pigmentation, biologically relevant and successful models for human skin disorders. Many human skin diseases including albinism, vitiligo, and melanoma are derived from mutations in conserved pigmentation genes. However, much of the conserved molecular mechanisms behind these diseases and human pigmentation remain unknown. For instance, melanin concentrating hormone (MCH) was originally identified as a peptide that when injected, could make fish paler by promoting melanin aggregation but no mutants demonstrating an endogenous function for MCH in pigmentation have been reported. Here, we use zebrafish mutants of MCH and the MCH receptor to determine their specific genetic function in pigmentation. Additionally, we demonstrate that MCH has an antagonistic pigmentation function to the melanocortin system, where MCH expression promotes lighter pigmentation and melanocortin activity promotes darkening. Thus, we find that the balance between the MCH and melanocortin system activities are likely required for skin pigmentation and dysregulation of these pathways could underlie adverse human skin conditions.
Collapse
Affiliation(s)
- Romain Madelaine
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Keri J. Ngo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Gemini Skariah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, United States of America
- INSERM 1024, Ecole Normale Supérieure, Paris, France
- * E-mail:
| |
Collapse
|
12
|
Bian C, Chen W, Ruan Z, Hu Z, Huang Y, Lv Y, Xu T, Li J, Shi Q, Ge W. Genome and Transcriptome Sequencing of casper and roy Zebrafish Mutants Provides Novel Genetic Clues for Iridophore Loss. Int J Mol Sci 2020; 21:ijms21072385. [PMID: 32235607 PMCID: PMC7177266 DOI: 10.3390/ijms21072385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
casper has been a widely used transparent mutant of zebrafish. It possesses a combined loss of reflective iridophores and light-absorbing melanophores, which gives rise to its almost transparent trunk throughout larval and adult stages. Nevertheless, genomic causal mutations of this transparent phenotype are poorly defined. To identify the potential genetic basis of this fascinating morphological phenotype, we constructed genome maps by performing genome sequencing of 28 zebrafish individuals including wild-type AB strain, roy orbison (roy), and casper mutants. A total of 4.3 million high-quality and high-confidence homozygous single nucleotide polymorphisms (SNPs) were detected in the present study. We also identified a 6.0-Mb linkage disequilibrium block specifically in both roy and casper that was composed of 39 functional genes, of which the mpv17 gene was potentially involved in the regulation of iridophore formation and maintenance. This is the first report of high-confidence genomic mutations in the mpv17 gene of roy and casper that potentially leads to defective splicing as one major molecular clue for the iridophore loss. Additionally, comparative transcriptomic analyses of skin tissues from the AB, roy and casper groups revealed detailed transcriptional changes of several core genes that may be involved in melanophore and iridophore degeneration. In summary, our updated genome and transcriptome sequencing of the casper and roy mutants provides novel genetic clues for the iridophore loss. These new genomic variation maps will offer a solid genetic basis for expanding the zebrafish mutant database and in-depth investigation into pigmentation of animals.
Collapse
Affiliation(s)
- Chao Bian
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Weiting Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
- School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Zhe Hu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
| | - Yu Huang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Yunyun Lv
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Tengfei Xu
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; (Z.R.); (Y.H.); (Y.L.); (T.X.); (J.L.)
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
- Correspondence: (Q.S.); (W.G.); Tel.: +86-185-6627-9826 (Q.S.); +853-8822-4998 (W.G.)
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China; (C.B.); (W.C.); (Z.H.)
- Correspondence: (Q.S.); (W.G.); Tel.: +86-185-6627-9826 (Q.S.); +853-8822-4998 (W.G.)
| |
Collapse
|
13
|
Liang Y, Gerwin J, Meyer A, Kratochwil CF. Developmental and Cellular Basis of Vertical Bar Color Patterns in the East African Cichlid Fish Haplochromis latifasciatus. Front Cell Dev Biol 2020; 8:62. [PMID: 32117987 PMCID: PMC7026194 DOI: 10.3389/fcell.2020.00062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
The East African adaptive radiations of cichlid fishes are renowned for their diversity in coloration. Yet, the developmental basis of pigment pattern formation remains largely unknown. One of the most common melanic patterns in cichlid fishes are vertical bar patterns. Here we describe the ontogeny of this conspicuous pattern in the Lake Kyoga species Haplochromis latifasciatus. Beginning with the larval stages we tracked the formation of this stereotypic color pattern and discovered that its macroscopic appearance is largely explained by an increase in melanophore density and accumulation of melanin during the first 3 weeks post-fertilization. The embryonal analysis is complemented with cytological quantifications of pigment cells in adult scales and the dermis beneath the scales. In adults, melanic bars are characterized by a two to threefold higher density of melanophores than in the intervening yellow interbars. We found no strong support for differences in other pigment cell types such as xanthophores. Quantitative PCRs for twelve known pigmentation genes showed that expression of melanin synthesis genes tyr and tyrp1a is increased five to sixfold in melanic bars, while xanthophore and iridophore marker genes are not differentially expressed. In summary, we provide novel insights on how vertical bars, one of the most widespread vertebrate color patterns, are formed through dynamic control of melanophore density, melanin synthesis and melanosome dispersal.
Collapse
Affiliation(s)
- Yipeng Liang
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jan Gerwin
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudius F Kratochwil
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
14
|
Generation of a white-albino phenotype from cobalt blue and yellow-albino rainbow trout (Oncorhynchus mykiss): Inheritance pattern and chromatophores analysis. PLoS One 2020. [PMID: 31986190 DOI: 10.1371/journal.pone.0214034.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Albinism is the most common color variation described in fish and is characterized by a white or yellow phenotype according to the species. In rainbow trout Oncorhynchus mykiss, aside from yellow-albino phenotypes, cobalt blue variants with autosomal, recessive inheritance have also been reported. In this study, we investigated the inheritance pattern and chromatophores distribution/abundance of cobalt blue trouts obtained from a local fish farm. Based on crosses with wild-type and dominant yellow-albino lines, we could infer that cobalt blue are dominant over wild-type and co-dominant in relation to yellow-albino phenotype, resulting in a fourth phenotype: the white-albino. Analysis of chromatophores revealed that cobalt blue trouts present melanophores, as the wild-type, and a reduced number of xanthophores. As regards to the white-albino phenotype, they were not only devoid of melanophores but also presented a reduced number of xanthophores. Cobalt blue and white-albino trouts also presented reduced body weight and a smaller pituitary gland compared to wild-type and yellow-albino phenotypes. The transcription levels of tshb and trh were up regulated in cobalt blue compared to wild type, suggesting the involvement of thyroid hormone in the expression of blue color. These phenotypes represent useful models for research on body pigmentation in salmonids and on the mechanisms behind endocrine control of color patterning.
Collapse
|
15
|
Hattori RS, Yoshinaga TT, Butzge AJ, Hattori-Ihara S, Tsukamoto RY, Takahashi NS, Tabata YA. Generation of a white-albino phenotype from cobalt blue and yellow-albino rainbow trout (Oncorhynchus mykiss): Inheritance pattern and chromatophores analysis. PLoS One 2020; 15:e0214034. [PMID: 31986190 PMCID: PMC6984684 DOI: 10.1371/journal.pone.0214034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
Albinism is the most common color variation described in fish and is characterized by a white or yellow phenotype according to the species. In rainbow trout Oncorhynchus mykiss, aside from yellow-albino phenotypes, cobalt blue variants with autosomal, recessive inheritance have also been reported. In this study, we investigated the inheritance pattern and chromatophores distribution/abundance of cobalt blue trouts obtained from a local fish farm. Based on crosses with wild-type and dominant yellow-albino lines, we could infer that cobalt blue are dominant over wild-type and co-dominant in relation to yellow-albino phenotype, resulting in a fourth phenotype: the white-albino. Analysis of chromatophores revealed that cobalt blue trouts present melanophores, as the wild-type, and a reduced number of xanthophores. As regards to the white-albino phenotype, they were not only devoid of melanophores but also presented a reduced number of xanthophores. Cobalt blue and white-albino trouts also presented reduced body weight and a smaller pituitary gland compared to wild-type and yellow-albino phenotypes. The transcription levels of tshb and trh were up regulated in cobalt blue compared to wild type, suggesting the involvement of thyroid hormone in the expression of blue color. These phenotypes represent useful models for research on body pigmentation in salmonids and on the mechanisms behind endocrine control of color patterning.
Collapse
Affiliation(s)
- Ricardo Shohei Hattori
- Salmonid Experimental Station at Campos do Jordão, Unidade de Pesquisa e Desenvolvimento-Campos do Jordão, Agência Paulista de Tecnologia dos Agronegócios, Secretaria de Agricultura, São Paulo, Brazil
- * E-mail:
| | - Tulio Teruo Yoshinaga
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Arno Juliano Butzge
- Graduate Program in Biological Sciences (Genetics), Institute of Biosciences of Botucatu - São Paulo State University, Botucatu, São Paulo, Brazil
| | - Shoko Hattori-Ihara
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | - Neuza Sumico Takahashi
- Sao Paulo Fisheries Institute, Agência Paulista de Tecnologia dos Agronegócios, Secretaria de Agricultura, Sao Paulo, Brazil
| | - Yara Aiko Tabata
- Salmonid Experimental Station at Campos do Jordão, Unidade de Pesquisa e Desenvolvimento-Campos do Jordão, Agência Paulista de Tecnologia dos Agronegócios, Secretaria de Agricultura, São Paulo, Brazil
| |
Collapse
|
16
|
Kottler VA, Feron R, Nanda I, Klopp C, Du K, Kneitz S, Helmprobst F, Lamatsch DK, Lopez-Roques C, Lluch J, Journot L, Parrinello H, Guiguen Y, Schartl M. Independent Origin of XY and ZW Sex Determination Mechanisms in Mosquitofish Sister Species. Genetics 2020; 214:193-209. [PMID: 31704715 PMCID: PMC6944411 DOI: 10.1534/genetics.119.302698] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Fish are known for the outstanding variety of their sex determination mechanisms and sex chromosome systems. The western (Gambusia affinis) and eastern mosquitofish (G. holbrooki) are sister species for which different sex determination mechanisms have been described: ZZ/ZW for G. affinis and XX/XY for G. holbrooki Here, we carried out restriction-site associated DNA (RAD-) and pool sequencing (Pool-seq) to characterize the sex chromosomes of both species. We found that the ZW chromosomes of G. affinis females and the XY chromosomes of G. holbrooki males correspond to different linkage groups, and thus evolved independently from separate autosomes. In interspecific hybrids, the Y chromosome is dominant over the W chromosome, and X is dominant over Z. In G. holbrooki, we identified a candidate region for the Y-linked melanic pigmentation locus, a rare male phenotype that constitutes a potentially sexually antagonistic trait and is associated with other such characteristics, e.g., large body size and aggressive behavior. We developed a SNP-based marker in the Y-linked allele of GIPC PDZ domain containing family member 1 (gipc1), which was linked to melanism in all tested G. holbrooki populations. This locus represents an example for a color locus that is located in close proximity to a putative sex determiner, and most likely substantially contributed to the evolution of the Y.
Collapse
Affiliation(s)
- Verena A Kottler
- Physiological Chemistry, Biocenter, University of Wuerzburg, 97074, Germany
| | - Romain Feron
- INRA, UR1037 Fish Physiology and Genomics, 35000 Rennes, France
- University of Lausanne and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Indrajit Nanda
- Institute for Human Genetics, Biocenter, University of Wuerzburg, 97074, Germany
| | - Christophe Klopp
- Sigenae, Mathématiques et Informatique Appliquées de Toulouse, INRA, 31326 Castanet Tolosan, France
| | - Kang Du
- Physiological Chemistry, Biocenter, University of Wuerzburg, 97074, Germany
| | - Susanne Kneitz
- Physiological Chemistry, Biocenter, University of Wuerzburg, 97074, Germany
| | | | - Dunja K Lamatsch
- University of Innsbruck, Research Department for Limnology, Mondsee, 5310 Mondsee, Austria
| | | | - Jerôme Lluch
- INRA, US 1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France
| | - Laurent Journot
- Montpellier GenomiX (MGX), University Montpellier, CNRS, INSERM, 34094 France
| | - Hugues Parrinello
- Montpellier GenomiX (MGX), University Montpellier, CNRS, INSERM, 34094 France
| | - Yann Guiguen
- INRA, UR1037 Fish Physiology and Genomics, 35000 Rennes, France
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Wuerzburg, 97074, Germany
- Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074, Germany
- Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
17
|
Hsu CH, Liou GG, Jiang YJ. Nicastrin Deficiency Induces Tyrosinase-Dependent Depigmentation and Skin Inflammation. J Invest Dermatol 2019; 140:404-414.e13. [PMID: 31437444 DOI: 10.1016/j.jid.2019.07.702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
Abstract
Skin depigmentation diseases, such as vitiligo, are pigmentation disorders that often destroy melanocytes. However, their pathological mechanisms remain unclear, and therefore, promising treatments or prevention has been lacking. Here, we demonstrate that a zebrafish insertional mutant showing a significant reduction of nicastrin transcript possesses melanosome maturation defect, Tyrosinase-dependent mitochondrial swelling, and melanophore cell death. The depigmentation phenotypes are proven to be a result of γ-secretase inactivation. Furthermore, live imaging demonstrates that macrophages are recruited to and can phagocytose melanophore debris. Thus, we characterize a potential zebrafish depigmentation disease model, a nicastrinhi1384 mutant, which can be used for further treatment or drug development of diseases related to skin depigmentation and/or inflammation.
Collapse
Affiliation(s)
- Chia-Hao Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Gunn-Guang Liou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung, Taiwan; Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan; Department of Life Science, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
18
|
Sarasamma S, Lai YH, Liang ST, Liu K, Hsiao CD. The Power of Fish Models to Elucidate Skin Cancer Pathogenesis and Impact the Discovery of New Therapeutic Opportunities. Int J Mol Sci 2018; 19:E3929. [PMID: 30544544 PMCID: PMC6321611 DOI: 10.3390/ijms19123929] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 01/21/2023] Open
Abstract
Animal models play important roles in investigating the pathobiology of cancer, identifying relevant pathways, and developing novel therapeutic tools. Despite rapid progress in the understanding of disease mechanisms and technological advancement in drug discovery, negative trial outcomes are the most frequent incidences during a Phase III trial. Skin cancer is a potential life-threatening disease in humans and might be medically futile when tumors metastasize. This explains the low success rate of melanoma therapy amongst other malignancies. In the past decades, a number of skin cancer models in fish that showed a parallel development to the disease in humans have provided important insights into the fundamental biology of skin cancer and future treatment methods. With the diversity and breadth of advanced molecular genetic tools available in fish biology, fish skin cancer models will continue to be refined and expanded to keep pace with the rapid development of skin cancer research. This review begins with a brief introduction of molecular characteristics of skin cancers, followed by an overview of teleost models that have been used in the last decades in melanoma research. Next, we will detail the importance of the zebrafish (Danio rerio) animal model and other emerging fish models including platyfish (Xiphophorus sp.), and medaka (Oryzias latipes) in future cutaneous malignancy studies. The last part of this review provides the recent development and genome editing applications of skin cancer models in zebrafish and the progress in small molecule screening.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan.
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Taiwan Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
19
|
Lajis AFB. A Zebrafish Embryo as an Animal Model for the Treatment of Hyperpigmentation in Cosmetic Dermatology Medicine. ACTA ACUST UNITED AC 2018; 54:medicina54030035. [PMID: 30344266 PMCID: PMC6122095 DOI: 10.3390/medicina54030035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/18/2022]
Abstract
For years, clinical studies involving human volunteers and several known pre-clinical in vivo models (i.e., mice, guinea pigs) have demonstrated their reliability in evaluating the effectiveness of a number of depigmenting agents. Although these models have great advantages, they also suffer from several drawbacks, especially involving ethical issues regarding experimentation. At present, a new depigmenting model using zebrafish has been proposed and demonstrated. The application of this model for screening and studying the depigmenting activity of many bioactive compounds has been given great attention in genetics, medicinal chemistry and even the cosmetic industry. Depigmenting studies using this model have been recognized as noteworthy approaches to investigating the antimelanogenic activity of bioactive compounds in vivo. This article details the current knowledge of zebrafish pigmentation and its reliability as a model for the screening and development of depigmenting agents. Several methods to quantify the antimelanogenic activity of bioactive compounds in this model, such as phenotype-based screening, melanin content, tyrosinase inhibitory activity, other related proteins and transcription genes, are reviewed. Depigmenting activity of several bioactive compounds which have been reported towards this model are compared in terms of their molecular structure and possible mode of actions. This includes patented materials with regard to the application of zebrafish as a depigmenting model, in order to give an insight of its intellectual value. At the end of this article, some limitations are highlighted and several recommendations are suggested for improvement of future studies.
Collapse
Affiliation(s)
- Ahmad Firdaus B Lajis
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Laboratory of Molecular Medicine, Institute of Bioscience, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
20
|
Zhang Y, Liu J, Peng L, Ren L, Zhang H, Zou L, Liu W, Xiao Y. Comparative transcriptome analysis of molecular mechanism underlying gray-to-red body color formation in red crucian carp (Carassius auratus, red var.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1387-1398. [PMID: 28676950 DOI: 10.1007/s10695-017-0379-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Red crucian carp (Carassius auratus red var.) is an ornamental fish with vivid red/orange color. It has been found that the adult body color of this strain forms a gray-to-red change. In this study, skin transcriptomes of red crucian carp are first obtained for three different stages of body color development, named by gray-color (GC), color-variation (CV), and red-color (RC) stages, respectively. From the skins of GC, CV, and RC, 103,229; 108,208; and 120,184 transcripts have been identified, respectively. Bioinformatics analysis reveals that 2483, 2967, and 4473 unigenes are differentially expressed between CV and GC, RC and CV, and RC and GC, respectively. A part of the differentially expressed genes (DEGs) are involved in the signaling pathway of pigment synthesis, such as the melanogenesis genes (Mitfa, Pax3a, Foxd3, Mc1r, Asip); tyrosine metabolism genes (Tyr, Dct, Tyrp1, Silva, Tat, Hpda); and pteridine metabolism genes (Gch, Xdh, Ptps, Tc). According to the data of transcriptome and quantitative PCR, the expression of Mitfa and its regulated genes which include the genes of Tyr, Tyrp1, Dct, Tfe3a, and Baxα, decreases with gray-to-red change. It is suggested that Mitfa and some genes, being related to melanin synthesis or melanophore development, are closely related to the gray-to-red body color transformation in the red crucian carp. Furthermore, the DEGs of cell apoptosis and autophagy pathway, such as Tfe3a, Baxα, Hsp70, Beclin1, Lc3, Atg9a, and Atg4a, might be involved in the melanocytes fade away of juvenile fish. These results shed light on the regulation mechanism of gray-to-red body color transformation in red crucian carp, and are helpful to the selective breeding of ornamental fish strains.
Collapse
Affiliation(s)
- Yongqin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jinhui Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Liangyue Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Huiqin Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Lijun Zou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Wenbin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China.
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Yamei Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, Hunan, 410081, China.
- School of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| |
Collapse
|
21
|
Cooper CD. Insights from zebrafish on human pigment cell disease and treatment. Dev Dyn 2017; 246:889-896. [DOI: 10.1002/dvdy.24550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/22/2017] [Accepted: 06/29/2017] [Indexed: 12/24/2022] Open
Affiliation(s)
- Cynthia D. Cooper
- School of Molecular Biosciences; Washington State University Vancouver; Vancouver Washington
| |
Collapse
|
22
|
Li Y, Geng X, Bao L, Elaswad A, Huggins KW, Dunham R, Liu Z. A deletion in the Hermansky–Pudlak syndrome 4 (Hps4) gene appears to be responsible for albinism in channel catfish. Mol Genet Genomics 2017; 292:663-670. [DOI: 10.1007/s00438-017-1302-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/11/2017] [Indexed: 10/20/2022]
|
23
|
Guillot R, Muriach B, Rocha A, Rotllant J, Kelsh RN, Cerdá-Reverter JM. Thyroid Hormones Regulate Zebrafish Melanogenesis in a Gender-Specific Manner. PLoS One 2016; 11:e0166152. [PMID: 27832141 PMCID: PMC5104317 DOI: 10.1371/journal.pone.0166152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
Zebrafish embryos are treated with anti-thyroidal compounds, such as phenylthiourea, to inhibit melanogenesis. However, the mechanism whereby the thyroidal system controls melanin synthesis has not been assessed in detail. In this work, we tested the effect of the administration of diets supplemented with T3 (500μg/g food) on the pigment pattern of adult zebrafish. Oral T3 induced a pronounced skin paling in both adult female and male zebrafish that was reversible upon cessation of treatment. The number of visible melanophores was significantly reduced in treated fish. Accordingly, treatment down-regulated expression of tyrosinase-related protein 1 in both sexes. We also found sexually dimorphic regulation of some melanogenic genes, such as Dct/Tyrp2 that was dramatically up-regulated in females after T3 treatment. Thus, we demonstrated that melanogenesis is reversibly inhibited by thyroid hormones in adult zebrafish and make the discovery of gender-specific differences in the response of melanogenic gene expression. Thus, fish gender is now shown to be an important variable that should be controlled in future studies of fish melanogenesis.
Collapse
Affiliation(s)
- Raúl Guillot
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, (IATS-CSIC), Ribera de Cabanes, Castellón, Spain, 12595
| | - Borja Muriach
- Facultad Ciencias de la Salud, Universidad CEU Cardenal Herrera, Castellón, Spain, 12006
| | - Ana Rocha
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, (IATS-CSIC), Ribera de Cabanes, Castellón, Spain, 12595
| | - Josep Rotllant
- Aquatic Molecular Pathobiology Group, Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas, (IIM-CSIC), Vigo, Spain, 36208
| | - Robert N. Kelsh
- Centre for Regenerative Medicine and Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, Bath, England BA2 7AY
| | - José Miguel Cerdá-Reverter
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas, (IATS-CSIC), Ribera de Cabanes, Castellón, Spain, 12595
- * E-mail:
| |
Collapse
|
24
|
Singh AP, Dinwiddie A, Mahalwar P, Schach U, Linker C, Irion U, Nüsslein-Volhard C. Pigment Cell Progenitors in Zebrafish Remain Multipotent through Metamorphosis. Dev Cell 2016; 38:316-30. [DOI: 10.1016/j.devcel.2016.06.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/24/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022]
|
25
|
Hanovice NJ, Daly CMS, Gross JM. N-Ethylmaleimide-Sensitive Factor b (nsfb) Is Required for Normal Pigmentation of the Zebrafish Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2016; 56:7535-44. [PMID: 26618645 DOI: 10.1167/iovs.15-17704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Despite the number of albinism-causing mutations identified in human patients and animal models, there remain a significant number of cases for which no mutation has been identified, suggesting that our understanding of melanogenesis is incomplete. Previously, we identified two oculocutaneous albinism mutations in zebrafish, au13 and au18. Here, we sought to identify the mutated loci and determine how the affected proteins contribute to normal pigmentation of the retinal pigment epithelium (RPE). METHODS Complementation analyses revealed that au13 and au18 belonged to a single complementation group, suggesting that they affected the same locus. Whole-genome sequencing and single nucleotide polymorphism (SNP) analysis was performed to identify putative mutations, which were confirmed by cDNA sequencing and mRNA rescue. Transmission electron microscopy (TEM) and image quantification were used to identify the cellular basis of hypopigmentation. RESULTS Whole-genome sequencing and SNP mapping identified a nonsense mutation in the N-ethylmaleimide-sensitive factor b (nsfb) gene in au18 mutants. Complementary DNA sequencing confirmed the presence of the mutation (C893T), which truncates the nsfb protein by roughly two-thirds (Y297X). No coding sequence mutations were identified in au13, but quantitative PCR revealed a significant decrease in nsfb expression, and nsfb mRNA injection rescued the hypopigmentation phenotype, suggesting a regulatory mutation. In situ hybridization revealed that nsfb is broadly expressed during embryonic development, including in the RPE. Transmission electron microscopy analyses indicated that average melanosome density and maturity were significantly decreased in nsfb mutants. CONCLUSIONS au18 and au13 contain mutations in nsfb, which encodes a protein that is required for the maturation of melanosomes in zebrafish RPE.
Collapse
|
26
|
Abstract
Colour patterns are prominent features of many animals and have important functions in communication, such as camouflage, kin recognition and mate choice. As targets for natural as well as sexual selection, they are of high evolutionary significance. The molecular mechanisms underlying colour pattern formation in vertebrates are not well understood. Progress in transgenic tools, in vivo imaging and the availability of a large collection of mutants make the zebrafish (Danio rerio) an attractive model to study vertebrate colouration. Zebrafish display golden and blue horizontal stripes that form during metamorphosis as mosaics of yellow xanthophores, silvery or blue iridophores and black melanophores in the hypodermis. Lineage tracing revealed the origin of the adult pigment cells and their individual cellular behaviours during the formation of the striped pattern. Mutant analysis indicated that interactions between all three pigment cell types are required for the formation of the pattern, and a number of cell surface molecules and signalling systems have been identified as mediators of these interactions. The understanding of the mechanisms that underlie colour pattern formation is an important step towards deciphering the genetic basis of variation in evolution.
Collapse
|
27
|
Is pigment patterning in fish skin determined by the Turing mechanism? Trends Genet 2015; 31:88-96. [DOI: 10.1016/j.tig.2014.11.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 11/18/2022]
|