1
|
El Mir J, Nasrallah A, Thézé N, Cario M, Fayyad‐Kazan H, Thiébaud P, Rezvani H. Xenopus as a model system for studying pigmentation and pigmentary disorders. Pigment Cell Melanoma Res 2025; 38:e13178. [PMID: 38849973 PMCID: PMC11681847 DOI: 10.1111/pcmr.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024]
Abstract
Human pigmentary disorders encompass a broad spectrum of phenotypic changes arising from disruptions in various stages of melanocyte formation, the melanogenesis process, or the transfer of pigment from melanocytes to keratinocytes. A large number of pigmentation genes associated with pigmentary disorders have been identified, many of them awaiting in vivo confirmation. A more comprehensive understanding of the molecular basis of pigmentary disorders requires a vertebrate animal model where changes in pigmentation are easily observable in vivo and can be combined to genomic modifications and gain/loss-of-function tools. Here we present the amphibian Xenopus with its unique features that fulfill these requirements. Changes in pigmentation are particularly easy to score in Xenopus embryos, allowing whole-organism based phenotypic screening. The development and behavior of Xenopus melanocytes closely mimic those observed in mammals. Interestingly, both Xenopus and mammalian skins exhibit comparable reactions to ultraviolet radiation. This review highlights how Xenopus constitutes an alternative and complementary model to the more commonly used mouse and zebrafish, contributing to the advancement of knowledge in melanocyte cell biology and related diseases.
Collapse
Affiliation(s)
- Joudi El Mir
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Ali Nasrallah
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Nadine Thézé
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Muriel Cario
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
- Aquiderm, University of BordeauxBordeauxFrance
| | - Hussein Fayyad‐Kazan
- Laboratory of Cancer Biology and Molecular ImmunologyLebanese UniversityHadathLebanon
| | - Pierre Thiébaud
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
| | - Hamid‐Reza Rezvani
- University of Bordeaux, Inserm, BRIC, UMR 1312BordeauxFrance
- Aquiderm, University of BordeauxBordeauxFrance
| |
Collapse
|
2
|
Atkinson-Leadbeater K, Bertolesi GE, McFarlane S. Visual input regulates melanophore differentiation. Front Cell Dev Biol 2024; 12:1437613. [PMID: 39228400 PMCID: PMC11368843 DOI: 10.3389/fcell.2024.1437613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Developmental processes continue in organisms in which sensory systems have reached functional maturity, however, little research has focused on the influence of sensory input on cell and tissue development. Here, we explored the influence of visual system activity on the development of skin melanophores in Xenopus laevis. Methods Melanophore number was measured in X. laevis larvae after the manipulation of visual input through eye removal (enucleation) and/or incubation on a white or black substrate at the time when the visual system becomes functional (stage 40). To determine the developmental process impacted by visual input, migration, proliferation and differentiation of melanophores was assessed. Finally, the role of melatonin in driving melanophore differentiation was explored. Results Enucleating, or maintaining stage 40 larvae on a black background, results in a pronounced increase in melanophore number in the perioptic region within 24 h. Time lapse analysis revealed that in enucleated larvae new melanophores appear through gradual increase in pigmentation, suggesting unpigmented cells in the perioptic region differentiate into mature melanophores upon reduced visual input. In support, we observed increased expression of melanization genes tyr, tyrp1, and pmel in the perioptic region of enucleated or black background-reared larvae. Conversely, maintaining larvae in full light suppresses melanophore differentiation. Interestingly, an extra-pineal melatonin signal was found to be sufficient and necessary to promote the transition to differentiated melanophores. Discussion In this study, we found that at the time when the visual system becomes functional, X. laevis larvae possess a population of undifferentiated melanophores that can respond rapidly to changes in the external light environment by undergoing differentiation. Thus, we propose a novel mechanism of environmental influence where external sensory signals influence cell differentiation in a manner that would favor survival.
Collapse
Affiliation(s)
| | - Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Horn K, Shidemantle G, Velasquez I, Ronan E, Blackwood J, Reinke BA, Hua J. Evaluating the interactive effects of artificial light at night and background color on tadpole crypsis, background adaptation efficacy, and growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122056. [PMID: 37343910 DOI: 10.1016/j.envpol.2023.122056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Artificial light at night (ALAN) is a global pollutant of rising concern. While alterations to natural day-night cycles caused by ALAN can affect a variety of traits, the broader fitness and ecological implications of these ALAN-induced shifts remain unclear. This study evaluated the interactive effects of ALAN and background color on traits that have important implications for predator-prey interactions and fitness: crypsis, background adaptation efficacy, and growth. Using three amphibian species as our models, we discovered that: (1) Exposure to ALAN reduced the ability for some species to match their backgrounds (background adaptation efficacy), (2) Crypsis and background adaptation efficacy were enhanced when tadpoles were exposed to dark backgrounds only, emphasizing the importance of environmental context when evaluating the effects of ALAN, (3) ALAN and background color have a combined effect on a common metric of fitness (growth), and (4) Effects of ALAN were not generalizable across amphibian species, supporting calls for more studies that utilize a diversity of species. Notably, to our knowledge, we found the first evidence that ALAN can diminish background adaptation efficacy in an amphibian species (American toad tadpoles). Collectively, our study joins others in highlighting the complex effects of ALAN on wildlife and underscores the challenges of generalizing ALAN's effect across species, emphasizing the need for a greater diversity of species and approaches used in ALAN research.
Collapse
Affiliation(s)
- Kelsey Horn
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA.
| | - Grascen Shidemantle
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA
| | - Isabela Velasquez
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA; Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Emily Ronan
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA
| | - Jurnee Blackwood
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA
| | - Beth A Reinke
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA
| | - Jessica Hua
- Department of Biological Sciences, Binghamton University (SUNY), Binghamton, NY 13902, USA; Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
4
|
Alfakih A, Watt PJ, Nadeau NJ. The physiological cost of colour change: evidence, implications and mitigations. J Exp Biol 2022; 225:275479. [PMID: 35593398 DOI: 10.1242/jeb.210401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals benefit from phenotypic plasticity in changing environments, but this can come at a cost. Colour change, used for camouflage, communication, thermoregulation and UV protection, represents one of the most common plastic traits in nature and is categorised as morphological or physiological depending on the mechanism and speed of the change. Colour change has been assumed to carry physiological costs, but current knowledge has not advanced beyond this basic assumption. The costs of changing colour will shape the evolution of colour change in animals, yet no coherent research has been conducted in this area, leaving a gap in our understanding. Therefore, in this Review, we examine the direct and indirect evidence of the physiological cost of colour change from the cellular to the population level, in animals that utilise chromatophores in colour change. Our Review concludes that the physiological costs result from either one or a combination of the processes of (i) production, (ii) translocation and (iii) maintenance of pigments within the colour-containing cells (chromatophores). In addition, both types of colour change (morphological and physiological) pose costs as they require energy for hormone production and neural signalling. Moreover, our Review upholds the hypothesis that, if repetitively used, rapid colour change (i.e. seconds-minutes) is more costly than slow colour change (days-weeks) given that rapidly colour-changing animals show mitigations, such as avoiding colour change when possible. We discuss the potential implications of this cost on colour change, behaviour and evolution of colour-changing animals, generating testable hypotheses and emphasising the need for future work to address this gap.
Collapse
Affiliation(s)
- Ateah Alfakih
- Department of Biology, Faculty of Science and Arts, Albaha University, Almakhwah 65553, Saudi Arabia.,Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Penelope J Watt
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Nicola J Nadeau
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
5
|
Bertolesi GE, Debnath N, Malik HR, Man LLH, McFarlane S. Type II Opsins in the Eye, the Pineal Complex and the Skin of Xenopus laevis: Using Changes in Skin Pigmentation as a Readout of Visual and Circadian Activity. Front Neuroanat 2022; 15:784478. [PMID: 35126061 PMCID: PMC8814574 DOI: 10.3389/fnana.2021.784478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
The eye, the pineal complex and the skin are important photosensitive organs. The African clawed frog, Xenopus laevis, senses light from the environment and adjusts skin color accordingly. For example, light reflected from the surface induces camouflage through background adaptation while light from above produces circadian variation in skin pigmentation. During embryogenesis, background adaptation, and circadian skin variation are segregated responses regulated by the secretion of α-melanocyte-stimulating hormone (α-MSH) and melatonin through the photosensitivity of the eye and pineal complex, respectively. Changes in the color of skin pigmentation have been used as a readout of biochemical and physiological processes since the initial purification of pineal melatonin from pigs, and more recently have been employed to better understand the neuroendocrine circuit that regulates background adaptation. The identification of 37 type II opsin genes in the genome of the allotetraploid X. laevis, combined with analysis of their expression in the eye, pineal complex and skin, is contributing to the elucidation of the role of opsins in the different photosensitive organs, but also brings new questions and challenges. In this review, we analyze new findings regarding the anatomical localization and functions of type II opsins in sensing light. The contribution of X. laevis in revealing the neuroendocrine circuits that regulate background adaptation and circadian light variation through changes in skin pigmentation is discussed. Finally, the presence of opsins in X. laevis skin melanophores is presented and compared with the secretory melanocytes of birds and mammals.
Collapse
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
6
|
The effects of corticosterone and background colour on tadpole physiological plasticity. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100872. [PMID: 34224981 DOI: 10.1016/j.cbd.2021.100872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Corticosterone (CORT)-mediated adaptive plasticity improves animal fitness in stressful environments. Although it brings ecological benefits, the cost potentially constrains its expression and evolution. Revealing the factors affecting plasticity costs is of great ecological and evolutionary significance. Evidence indicates that both CORT and background colour can induce metabolic changes in animals, which in turn determine phenotypic plasticity. However, whether and/or how CORT and background colour jointly act on plastic responses has not been studied. Here, this question has been investigated in amphibian tadpoles (Microhyla fissipes) exposed to CORT at different background colours (white or black) using integrated morphological, histological, and transcriptomic analyses. The results showed that CORT exposure increased relative tail length, immune function, and metabolic maintenance (i.e., transcription of substrate catabolism and oxidative phosphorylation) at the expense of reduction in growth rate and skin melanin level. The black background also increased relative tail length and metabolic maintenance (i.e., transcription of oxidative phosphorylation) at the cost of reduction in growth rate, but increased skin melanin level. The expression of critical pigmentation genes indicated that black background activated a distinct and opposite pigmentation regulating route to CORT. Although there was no interactive effect of background colour and CORT on phenotypic and metabolic variations, their additive effects further impact the trade-off between somatic growth, metabolic maintenance, and pigmentation in terms of resource allocation. In conclusion, the individual and additive effects of background colour and CORT exposure on tadpole plasticity were revealed. These results likely provide new insights into the environmental adaptation of animals.
Collapse
|
7
|
Bertolesi GE, McFarlane S. Melanin-concentrating hormone like and somatolactin. A teleost-specific hypothalamic-hypophyseal axis system linking physiological and morphological pigmentation. Pigment Cell Melanoma Res 2020; 34:564-574. [PMID: 32898924 DOI: 10.1111/pcmr.12924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022]
Abstract
Plastic adaptation to match the skin colour to the surrounding is key to survival. Two biological responses in skin colour are associated with background adaptation. A fast "physiological response" that aggregates/disperses the pigment organelles of skin chromatophores, and a slow "morphological response" that alters the type and/or density of pigment cells in the skin. Both responses are linked by unknown mechanisms. In this review, we discuss the role in skin colour regulation of two molecules that form part of a hypothalamic-hypophyseal pathway unique to teleosts, melanin-concentrating hormone "like" (MCHL) (previously known as MCH), and somatolactin. MCHL neurons project to the neurohypophysis and to the pars intermedia pituitary, where they interact with somatolactin-expressing cells. With a white background MCHL is released into the circulation to induce rapid melanosome aggregation and skin lightening. Somatolactin is also a fish-specific peptide whose expression and secretion are altered in organisms adapted chronically to white/black backgrounds, and that regulates morphological pigmentation. We discuss the evidence for a model whereby in teleosts, MCHL and somatolactin provide the previously unknown link between physiological and morphological pigmentation.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Zhu W, Liu L, Wang X, Gao X, Jiang J, Wang B. Transcriptomics reveals the molecular processes of light-induced rapid darkening of the non-obligate cave dweller Oreolalax rhodostigmatus (Megophryidae, Anura) and their genetic basis of pigmentation strategy. BMC Genomics 2018; 19:422. [PMID: 29855256 PMCID: PMC5984452 DOI: 10.1186/s12864-018-4790-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/14/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vertebrates use different pigmentation strategies to adapt to various environments. A large amount of research has been done on disclosing the mechanisms of pigmentation strategies in vertebrates either under light, or, living in constant darkness. However, less attention has been paid to non-obligate, darkness dwellers. Red-spotted toothed toads Oreolalax rhodostigmatus (Megophryidae; Anura) from the karst mountainous region of southwestern China are non-obligate cave dwellers. Most tadpoles of the species possess transparent skin as they inhabit the dark karst caves. But remarkably, the transparent tadpoles can darken just within 15 h once exposed to light. Obviously, it is very significant to reveal molecular mechanisms of the unexpected rapid-darkening phenomenon. RESULTS We compared the transcriptomes of O. rhodostigmatus tadpoles with different durations of light exposure to investigate the cellular processes and potential regulation signals for their light-induced rapid darkening. Genes involved in melanogenesis (i.e. TYR, TYRP1 and DCT) and melanocyte proliferation, as well as their transcriptional factor (MITF), showed light-induced transcription, suggesting a dominating role of morphological color change (MCC) in this process. Transcription of genes related to growth factor, MAPK and PI3K-Akt pathways increased with time of light exposure, suggesting that light could induce significant growth signal, which might facilitate the rapid skin darkening. Most importantly, an in-frame deletion of four residues was identified in O. rhodostigmatus melanocortin-1 receptor (MC1R), a critical receptor in MCC. This deletion results in a more negatively charged ligand pocket with three stereo-tandem aspartate residues. Such structural changes likely decrease the constitutive activity of MC1R, but increase its ligands-dependent activity, thus coordinating pigment regression and rapid melanogenesis in the dark and light, respectively. CONCLUSION Our study suggested that rapid MCC was responsible for the light-induced rapid darkening of O. rhodostigmatus tadpoles. Genetic mutations of MC1R in them could explain how these non-obligate cave dwellers coordinate pigment regression and robust melanogenesis in darkness and light, respectively. To our knowledge, this is the first study that reports the association between pigmentation phenotype adaptation and MC1R mutations in amphibians and/or in non-obligate cave dwellers.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Lusha Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xungang Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Bin Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
9
|
Bertolesi GE, McFarlane S. Seeing the light to change colour: An evolutionary perspective on the role of melanopsin in neuroendocrine circuits regulating light-mediated skin pigmentation. Pigment Cell Melanoma Res 2018; 31:354-373. [PMID: 29239123 DOI: 10.1111/pcmr.12678] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022]
Abstract
Melanopsin photopigments, Opn4x and Opn4m, were evolutionary selected to "see the light" in systems that regulate skin colour change. In this review, we analyse the roles of melanopsins, and how critical evolutionary developments, including the requirement for thermoregulation and ultraviolet protection, the emergence of a background adaptation mechanism in land-dwelling amphibian ancestors and the loss of a photosensitive pineal gland in mammals, may have helped sculpt the mechanisms that regulate light-controlled skin pigmentation. These mechanisms include melanopsin in skin pigment cells directly inducing skin darkening for thermoregulation/ultraviolet protection; melanopsin-expressing eye cells controlling neuroendocrine circuits to mediate background adaptation in amphibians in response to surface-reflected light; and pineal gland secretion of melatonin phased to environmental illuminance to regulate circadian and seasonal variation in skin colour, a process initiated by melanopsin-expressing eye cells in mammals, and by as yet unknown non-visual opsins in the pineal gland of non-mammals.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Bertolesi GE, Song YN, Atkinson-Leadbeater K, Yang JLJ, McFarlane S. Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation. Pigment Cell Melanoma Res 2017; 30:413-423. [PMID: 28371026 DOI: 10.1111/pcmr.12589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/20/2017] [Indexed: 01/03/2023]
Abstract
Lower vertebrates use rapid light-regulated changes in skin colour for camouflage (background adaptation) or during circadian variation in irradiance levels. Two neuroendocrine systems, the eye/alpha-melanocyte-stimulating hormone (α-MSH) and the pineal complex/melatonin circuits, regulate the process through their respective dispersion and aggregation of pigment granules (melanosomes) in skin melanophores. During development, Xenopus laevis tadpoles raised on a black background or in the dark perceive less light sensed by the eye and darken in response to increased α-MSH secretion. As embryogenesis proceeds, the pineal complex/melatonin circuit becomes the dominant regulator in the dark and induces lightening of the skin of larvae. The eye/α-MSH circuit continues to mediate darkening of embryos on a black background, but we propose the circuit is shut down in complete darkness in part by melatonin acting on receptors expressed by pituitary cells to inhibit the expression of pomc, the precursor of α-MSH.
Collapse
Affiliation(s)
- Gabriel E Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Yi N Song
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | | | - Jung-Lynn J Yang
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|