1
|
Guo Q, Zhang Y, Zhang J, Tian X, Zhou Y, Wang Y, He M, Chen L, Zeng J, Tang C, Li Q, He Z, Ma B, Jiang C, Zhao H. Melanin concentrating hormone-sleep pressure loop regulates melanin degradation through both autophagic degradation and lysosomal hydrolysis in zebrafish. J Biol Chem 2025; 301:108486. [PMID: 40209955 DOI: 10.1016/j.jbc.2025.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Melanin-concentrating hormone (MCH) is a cyclic peptide initially isolated from salmon and later found to be conserved in mammals. It plays a role in regulating melanin changes and rhythmic behaviors such as sleep and feeding, though its relationship with these processes is not fully understood. Our preliminary research revealed significant differences in melanin degradation in zebrafish under varying light conditions, suggesting a link to MCH. This study aims to explore MCH's role in lighting-induced changes in rhythmic behavior patterns and melanin of zebrafish. Using the zebrafish model, we evaluated MCH expression under different lighting conditions and analyzed the effects of arousal-promoting and sleep-inducing agents. We also investigated the impact of exogenous MCH and its inhibitors on melanin degradation, behavioral changes, and differences in MCH expression to uncover potential regulatory relationships between MCH, sleep pressure, and melanin. In-depth research using flow cytometry, acridine orange staining, LysoTracker Red staining, and quantitative real-time PCR analysis of autophagy- and apoptosis-related genes showed that melanin degradation regulation depends on MCH expression levels. Sleep pressure can intervene in MCH's effects, forming a regulatory loop to jointly regulate melanin degradation. The influence of the MCH-sleep pressure loop on melanin degradation is closely tied to autophagic and lysosomal pathways. Our findings reveal a mutually regulatory loop in zebrafish between MCH and sleep pressure, affecting melanin degradation through these pathways.
Collapse
Affiliation(s)
- Qingquan Guo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Yudong Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Jianhua Zhang
- N.O.D Topia (GuangZhou) Biotechnology Co., Ltd, Guangzhou, Guangdong, China
| | - Xiaoyu Tian
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong Key Laboratory for translational Cancer research of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yawen Zhou
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yaxin Wang
- Guangzhou Sun-Hi Biotechnology Co., Ltd, Guangzhou, Guangdong, China
| | - Mingjie He
- Guangzhou Sun-Hi Biotechnology Co., Ltd, Guangzhou, Guangdong, China
| | - Lu Chen
- Guangzhou Sun-Hi Biotechnology Co., Ltd, Guangzhou, Guangdong, China
| | - Jiaqi Zeng
- Guangzhou Sun-Hi Biotechnology Co., Ltd, Guangzhou, Guangdong, China
| | - Chuanjin Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Qiuru Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhenming He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Bingji Ma
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Chenyang Jiang
- Medical Research Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Haishan Zhao
- Medical Research Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China.
| |
Collapse
|
2
|
Bell SE, Xie YR, Maciejewski MF, Rubakhin SS, Romanova EV, Bell AM, Sweedler JV. Single-Cell Peptide Profiling to Distinguish Stickleback Ecotypes with Divergent Breeding Behavior. J Proteome Res 2025; 24:1596-1605. [PMID: 39792146 PMCID: PMC11971027 DOI: 10.1021/acs.jproteome.4c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Variation in parenting behavior is widespread across the animal kingdom, both within and between species. There are two ecotypes of the three-spined stickleback fish (Gasterosteus aculeatus) that exhibit dramatic differences in their paternal behavior. Males of the common ecotype are highly attentive fathers, tending to young from eggs to fry, while males of the white ecotype desert offspring as eggs. As the pituitary is a key regulator in the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-gonadal (HPG) axis between the brain and body, its peptides may influence parenting behaviors. Here, we utilized matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) for high-throughput peptide analysis in single cells of pituitaries from both three-spined stickleback ecotypes. Peptide mass fingerprinting was performed using an in silico generated peptide library to identify detected prohormones. Differential analysis revealed POMC-derived peptides, MCH-derived peptides, and oxytocin as significantly different between the two ecotypes, with higher oxytocin levels in the common ecotype. Interestingly, these subtle chemical differences were not captured by Leiden clustering of the cellular phenotypes. These results call for further investigation of the neurochemical basis for parenting in sticklebacks.
Collapse
Affiliation(s)
- Sara E. Bell
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
| | - Yuxuan Richard Xie
- Department of Bioengineering and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
| | - Meghan F. Maciejewski
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
| | - Stanislav S. Rubakhin
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
| | - Elena V. Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
| | - Alison M. Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
- Department of Bioengineering and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
| |
Collapse
|
3
|
Xie Y, Xiao K, Cai T, Shi X, Zhou L, Du H, Yang J, Hu G. Neuropeptides and hormones in hypothalamus-pituitary axis of Chinese sturgeon (Acipenser sinensis). Gen Comp Endocrinol 2023; 330:114135. [PMID: 36181879 DOI: 10.1016/j.ygcen.2022.114135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/25/2022] [Accepted: 09/25/2022] [Indexed: 12/14/2022]
Abstract
The hypothalamus and pituitary serve as important neuroendocrine center, which is able to secrete a variety of neuropeptides and hormones to participate in the regulation of reproduction, growth, stress and feeding in fish. Chinese sturgeon is a basal vertebrate lineage fish with a special evolutionary status, but the information on its neuroendocrine system is relatively scarce. Using the transcriptome data on the hypothalamus-pituitary axis of Chinese sturgeon as reference, we found out 46 hypothalamus neuropeptide genes, which were involved in regulation of reproduction, growth, stress and feeding. The results of sequence alignment showed that the neuroendocrine system of Chinese sturgeon evolves slowly, which confirms that Chinese sturgeon is a species with a slow phenotypic evolution rate. In addition, we also isolated six pituitary hormones genes from Chinese sturgeon, including reproductive hormones: follicle-stimulating homone (FSH) and luteinizing hormone (LH), growth-related hormones: growth hormone (GH)/prolactin (PRL)/somatolactin (SL), and stress-related hormone gene: proopiomelanocortin (POMC). Similar to teleost, immunostaining localization analysis in Chinese sturgeon pituitary showed that LH and FSH were located in the pituitary proximal pars distalis, SL was located in the pituitary rostral pars distalis, and POMC was located in the pituitary pars intermedia and pituitary rostral pars distalis. This study will give a contribution to enrich our information on the neuroendocrine system in Chinese sturgeon.
Collapse
Affiliation(s)
- Yunyi Xie
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Kan Xiao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Tianyi Cai
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Xuetao Shi
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Lingling Zhou
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Hejun Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Jing Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Guangfu Hu
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
4
|
Alfakih A, Watt PJ, Nadeau NJ. The physiological cost of colour change: evidence, implications and mitigations. J Exp Biol 2022; 225:275479. [PMID: 35593398 DOI: 10.1242/jeb.210401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals benefit from phenotypic plasticity in changing environments, but this can come at a cost. Colour change, used for camouflage, communication, thermoregulation and UV protection, represents one of the most common plastic traits in nature and is categorised as morphological or physiological depending on the mechanism and speed of the change. Colour change has been assumed to carry physiological costs, but current knowledge has not advanced beyond this basic assumption. The costs of changing colour will shape the evolution of colour change in animals, yet no coherent research has been conducted in this area, leaving a gap in our understanding. Therefore, in this Review, we examine the direct and indirect evidence of the physiological cost of colour change from the cellular to the population level, in animals that utilise chromatophores in colour change. Our Review concludes that the physiological costs result from either one or a combination of the processes of (i) production, (ii) translocation and (iii) maintenance of pigments within the colour-containing cells (chromatophores). In addition, both types of colour change (morphological and physiological) pose costs as they require energy for hormone production and neural signalling. Moreover, our Review upholds the hypothesis that, if repetitively used, rapid colour change (i.e. seconds-minutes) is more costly than slow colour change (days-weeks) given that rapidly colour-changing animals show mitigations, such as avoiding colour change when possible. We discuss the potential implications of this cost on colour change, behaviour and evolution of colour-changing animals, generating testable hypotheses and emphasising the need for future work to address this gap.
Collapse
Affiliation(s)
- Ateah Alfakih
- Department of Biology, Faculty of Science and Arts, Albaha University, Almakhwah 65553, Saudi Arabia.,Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Penelope J Watt
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Nicola J Nadeau
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
5
|
Akat E, Yenmiş M, Pombal MA, Molist P, Megías M, Arman S, Veselỳ M, Anderson R, Ayaz D. Comparison of Vertebrate Skin Structure at Class Level: A Review. Anat Rec (Hoboken) 2022; 305:3543-3608. [DOI: 10.1002/ar.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Esra Akat
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Melodi Yenmiş
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Manuel A. Pombal
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Pilar Molist
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Manuel Megías
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Sezgi Arman
- Sakarya University, Faculty of Science and Letters, Biology Department Sakarya Turkey
| | - Milan Veselỳ
- Palacky University, Faculty of Science, Department of Zoology Olomouc Czechia
| | - Rodolfo Anderson
- Departamento de Zoologia, Instituto de Biociências Universidade Estadual Paulista São Paulo Brazil
| | - Dinçer Ayaz
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| |
Collapse
|
6
|
Bertolesi GE, Debnath N, Malik HR, Man LLH, McFarlane S. Type II Opsins in the Eye, the Pineal Complex and the Skin of Xenopus laevis: Using Changes in Skin Pigmentation as a Readout of Visual and Circadian Activity. Front Neuroanat 2022; 15:784478. [PMID: 35126061 PMCID: PMC8814574 DOI: 10.3389/fnana.2021.784478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
The eye, the pineal complex and the skin are important photosensitive organs. The African clawed frog, Xenopus laevis, senses light from the environment and adjusts skin color accordingly. For example, light reflected from the surface induces camouflage through background adaptation while light from above produces circadian variation in skin pigmentation. During embryogenesis, background adaptation, and circadian skin variation are segregated responses regulated by the secretion of α-melanocyte-stimulating hormone (α-MSH) and melatonin through the photosensitivity of the eye and pineal complex, respectively. Changes in the color of skin pigmentation have been used as a readout of biochemical and physiological processes since the initial purification of pineal melatonin from pigs, and more recently have been employed to better understand the neuroendocrine circuit that regulates background adaptation. The identification of 37 type II opsin genes in the genome of the allotetraploid X. laevis, combined with analysis of their expression in the eye, pineal complex and skin, is contributing to the elucidation of the role of opsins in the different photosensitive organs, but also brings new questions and challenges. In this review, we analyze new findings regarding the anatomical localization and functions of type II opsins in sensing light. The contribution of X. laevis in revealing the neuroendocrine circuits that regulate background adaptation and circadian light variation through changes in skin pigmentation is discussed. Finally, the presence of opsins in X. laevis skin melanophores is presented and compared with the secretory melanocytes of birds and mammals.
Collapse
Affiliation(s)
- Gabriel E. Bertolesi
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
7
|
Shi X, Ye C, Qin X, Zhou L, Xia C, Cai T, Xie Y, Yin Z, Hu G. Novel Pituitary Actions of TAC4 Gene Products in Teleost. Int J Mol Sci 2021; 22:ijms222312893. [PMID: 34884698 PMCID: PMC8657723 DOI: 10.3390/ijms222312893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Tachykinin 4 (TAC4) is the latest member of the tachykinin family involved in several physiological functions in mammals. However, little information is available about TAC4 in teleost. In the present study, we firstly isolated TAC4 and six neurokinin receptors (NKRs) from grass carp brain and pituitary. Sequence analysis showed that grass carp TAC4 could encode two mature peptides (namely hemokinin 1 (HK1) and hemokinin 2 (HK2)), in which HK2 retained the typical FXGLM motif in C-terminal of tachyinin, while HK1 contained a mutant VFGLM motif. The ligand-receptor selectivity showed that HK2 could activate all 6 NKRs but with the highest activity for the neurokinin receptor 2 (NK2R). Interestingly, HK1 displayed a very weak activation for each NKR isoform. In grass carp pituitary cells, HK2 could induce prolactin (PRL), somatolactin α (SLα), urotensin 1 (UTS1), neuromedin-B 1 (NMB1), cocaine- and amphetamine-regulated transcript 2 (CART2) mRNA expression mediated by NK2R and neurokinin receptor 3 (NK3R) via activation cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), phospholipase C (PLC)/inositol 1,4,5-triphosphate (IP3)/protein kinase C (PKC) and calcium2+ (Ca2+)/calmodulin (CaM)/calmodulin kinase-II (CaMK II) cascades. However, the corresponding stimulatory effects triggered by HK1 were found to be notably weaker. Furthermore, based on the structural base for HK1, our data suggested that a phenylalanine (F) to valine (V) substitution in the signature motif of HK1 might have contributed to its weak agonistic actions on NKRs and pituitary genes regulation.
Collapse
Affiliation(s)
- Xuetao Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
| | - Cheng Ye
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
| | - Xiangfeng Qin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
| | - Lingling Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
| | - Chuanhui Xia
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
| | - Tianyi Cai
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
| | - Yunyi Xie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (Z.Y.); (G.H.)
| | - Guangfu Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.S.); (C.Y.); (X.Q.); (L.Z.); (C.X.); (T.C.); (Y.X.)
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (Z.Y.); (G.H.)
| |
Collapse
|
8
|
Yang T, Kasagi S, Takahashi A, Mizusawa K. Effects of background color and feeding status on the expression of genes associated with body color regulation in the goldfish Carassius auratus. Gen Comp Endocrinol 2021; 312:113860. [PMID: 34302844 DOI: 10.1016/j.ygcen.2021.113860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Alpha-melanocyte-stimulating hormone (α-MSH), a peptide derived from proopiomelanocortin (POMC), and melanin-concentrating hormone (MCH), act as neuromodulators and regulate food intake in vertebrates. In teleosts, these peptides are also involved competitively in body color regulation; α-MSH induces a dark body color, while MCH induces a pale body color. Similarly, members of the growth hormone (GH) family, somatolactin (SL) and prolactin (PRL), which are involved in the regulation of energy metabolism, are also associated with body color regulation in teleosts. Since these hormones are involved in both body color regulation and energy metabolism, it is possible that feeding status can affect body color. Here, we examined the effects of fasting on the response of goldfish body coloration to changes in background color. Goldfish were acclimated for one week in tanks with a white or black background under conditions of periodic feeding or fasting. The results showed that body color and expression levels of pmch1 and pomc were affected by background color, irrespective of feeding status. Expression levels of sla were higher in fish maintained in tanks with a black background than in tanks with a white background, and higher in the fasted fish compared to the fed fish. However, the pattern of slb expression was almost the opposite of that observed in sla expression. The expression levels of gh and prl in the pituitary, and pmch2a and pmch2b in the brain, were not affected by background color. These results suggest that MCH, α-MSH, SLα, and SLβ might be involved in body color regulation and that they are affected by background color in goldfish. The results also suggest that feeding status may affect body color regulation via SLα and SLβ, although these effects might be limited compared to the effect of background color.
Collapse
Affiliation(s)
- Tingshu Yang
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Satoshi Kasagi
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Akiyoshi Takahashi
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Kanta Mizusawa
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.
| |
Collapse
|
9
|
Yamashita J, Nishiike Y, Fleming T, Kayo D, Okubo K. Estrogen mediates sex differences in preoptic neuropeptide and pituitary hormone production in medaka. Commun Biol 2021; 4:948. [PMID: 34373576 PMCID: PMC8352984 DOI: 10.1038/s42003-021-02476-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/22/2021] [Indexed: 11/21/2022] Open
Abstract
The preoptic area (POA) is one of the most evolutionarily conserved regions of the vertebrate brain and contains subsets of neuropeptide-expressing neurons. Here we found in the teleost medaka that two neuropeptides belonging to the secretin family, pituitary adenylate cyclase-activating polypeptide (Pacap) and vasoactive intestinal peptide (Vip), exhibit opposite patterns of sexually dimorphic expression in the same population of POA neurons that project to the anterior pituitary: Pacap is male-biased, whereas Vip is female-biased. Estrogen secreted by the ovary in adulthood was found to attenuate Pacap expression and, conversely, stimulate Vip expression in the female POA, thereby establishing and maintaining their opposite sexual dimorphism. Pituitary organ culture experiments demonstrated that both Pacap and Vip can markedly alter the expression of various anterior pituitary hormones. Collectively, these findings show that males and females use alternative preoptic neuropeptides to regulate anterior pituitary hormones as a result of their different estrogen milieu.
Collapse
Affiliation(s)
- Junpei Yamashita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yuji Nishiike
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Thomas Fleming
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Daichi Kayo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan.
| |
Collapse
|