1
|
Bosun A, Albu-Kalinovic R, Neda-Stepan O, Bosun I, Farcas SS, Enatescu VR, Andreescu NI. Dopaminergic Epistases in Schizophrenia. Brain Sci 2024; 14:1089. [PMID: 39595853 PMCID: PMC11592377 DOI: 10.3390/brainsci14111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The dopaminergic theory, the oldest and most comprehensively analyzed neurotransmitter theory of schizophrenia, remains a focal point of research. Methods: This systematic review examines the association between combinations of 14 dopaminergic genes and the risk of schizophrenia. The selected genes include dopamine receptors (DRD1-5), metabolizing enzymes (COMT, MAOA, MAOB, DBH), synthesizing enzymes (TH, DDC), and dopamine transporters (DAT, VMAT1, and VMAT2). Results: Recurring functional patterns show combinations with either hyperdopaminergic effects in limbic and striatal regions or high striatal and low prefrontal dopamine levels. The protective statuses of certain alleles or genotypes are often maintained in epistatic effects; however, exceptions exist. This complexity could explain the inconsistent results in previous genetic studies. Investigating individual alleles may be insufficient due to the heterozygous advantage observed in some studies. Conclusions: Schizophrenia may not be a monolithic disease, but rather a sum of different phenotypes which respond uniquely to different treatment and prevention approaches.
Collapse
Affiliation(s)
- Adela Bosun
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (R.A.-K.); (O.N.-S.)
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania;
| | - Raluka Albu-Kalinovic
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (R.A.-K.); (O.N.-S.)
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania;
| | - Oana Neda-Stepan
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (R.A.-K.); (O.N.-S.)
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania;
- Department of Neurosciences, Discipline of Psychiatry, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Ileana Bosun
- Department of Ophthalmology, Clinical Hospital “Cai Ferate”, 300173 Timisoara, Romania;
| | - Simona Sorina Farcas
- Department of Microscopic Morphology, Discipline of Genetics, Genomic Medicine Centre, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Virgil-Radu Enatescu
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania;
- Department of Neurosciences, Discipline of Psychiatry, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Nicoleta Ioana Andreescu
- Department of Microscopic Morphology, Discipline of Genetics, Genomic Medicine Centre, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Regional Center of Medical Genetics Timis, Clinical Emergency Hospital for Children “Louis Turcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
| |
Collapse
|
2
|
Kogure M, Kanahara N, Miyazawa A, Shiko Y, Otsuka I, Matsuyama K, Takase M, Kimura M, Kimura H, Ota K, Idemoto K, Tamura M, Oda Y, Yoshida T, Okazaki S, Yamasaki F, Nakata Y, Watanabe Y, Niitsu T, Hishimoto A, Iyo M. Association of SLC6A3 variants with treatment-resistant schizophrenia: a genetic association study of dopamine-related genes in schizophrenia. Front Psychiatry 2024; 14:1334335. [PMID: 38476817 PMCID: PMC10929739 DOI: 10.3389/fpsyt.2023.1334335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 03/14/2024] Open
Abstract
Background Most genetic analyses that have attempted to identify a locus or loci that can distinguish patients with treatment-resistant schizophrenia (TRS) from those who respond to treatment (non-TRS) have failed. However, evidence from multiple studies suggests that patients with schizophrenia who respond well to antipsychotic medication have a higher dopamine (DA) state in brain synaptic clefts whereas patients with TRS do not show enhanced DA synthesis/release pathways. Patients and methods To examine the contribution (if any) of genetics to TRS, we conducted a genetic association analysis of DA-related genes in schizophrenia patients (TRS, n = 435; non-TRS, n = 539) and healthy controls (HC: n = 489). Results The distributions of the genotypes of rs3756450 and the 40-bp variable number tandem repeat on SLC6A3 differed between the TRS and non-TRS groups. Regarding rs3756450, the TRS group showed a significantly higher ratio of the A allele, whereas the non-TRS group predominantly had the G allele. The analysis of the combination of COMT and SLC6A3 yielded a significantly higher ratio of the putative low-DA type (i.e., high COMT activity + high SLC6A3 activity) in the TRS group compared to the two other groups. Patients with the low-DA type accounted for the minority of the non-TRS group and exhibited milder psychopathology. Conclusion The overall results suggest that (i) SLC6A3 could be involved in responsiveness to antipsychotic medication and (ii) genetic variants modulating brain DA levels may be related to the classification of TRS and non-TRS.
Collapse
Affiliation(s)
- Masanobu Kogure
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Center for Forensic Mental Health, Chiba University, Chiba, Japan
| | - Atsuhiro Miyazawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
| | - Yuki Shiko
- Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koichi Matsuyama
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Douwa-kai Chiba Hospital, Funabashi, Japan
| | | | - Makoto Kimura
- Chiba Psychiatric Medical Center, Chiba, Japan
- Department of Psychiatry, Kameda Medical Center, Kamogawa, Japan
| | - Hiroshi Kimura
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Gakuji-kai Kimura Hospital, Chiba, Japan
- Department of Psychiatry, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Kiyomitsu Ota
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
- Choshi-kokoro Clinic, Choshi, Japan
| | - Keita Idemoto
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
| | - Masaki Tamura
- Doujin-kai Kisarazu Hospital, Kisarazu, Japan
- Department of Cognitive Behavioral Psychology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Fumiaki Yamasaki
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Tomihisa Niitsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
3
|
Bolin PK, Nielsen EM, Nielsen DA, De La Garza R. Promoter region variant C-824T in the TH gene modulates the subjective effects of cocaine. Am J Addict 2023; 32:506-509. [PMID: 37337750 DOI: 10.1111/ajad.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND AND OBJECTIVES This study examined how a promoter variant of TH (rs10770141) affects subjective effects of cocaine in 65 nontreatment-seeking individuals with cocaine dependence. METHODS Participants received cocaine/saline intravenously, and TH genotypes were evaluated. RESULTS Homozygous individuals for the minor T allele reported greater "good" and "bad" subjective effects to cocaine than those with the major C allele. DISCUSSION AND CONCLUSIONS TH rs10770141 modulates subjective effects of cocaine in participants with cocaine dependence. SCIENTIFIC SIGNIFICANCE These results are among the first to indicate that homozygosity of the T allele of rs10770141 modulates greater sensitivity to cocaine.
Collapse
Affiliation(s)
- Peter K Bolin
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ellen M Nielsen
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - David A Nielsen
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Richard De La Garza
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
Ghanbarzehi A, Sepehrinezhad A, Hashemi N, Karimi M, Shahbazi A. Disclosing common biological signatures and predicting new therapeutic targets in schizophrenia and obsessive-compulsive disorder by integrated bioinformatics analysis. BMC Psychiatry 2023; 23:40. [PMID: 36641432 PMCID: PMC9840830 DOI: 10.1186/s12888-023-04543-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Schizophrenia (SCZ) is a severe mental illness mainly characterized by a number of psychiatric symptoms. Obsessive-compulsive disorder (OCD) is a long-lasting and devastating mental disorder. SCZ has high co-occurrence with OCD resulting in the emergence of a concept entitled "schizo-obsessive disorder" as a new specific clinical entity with more severe psychiatric symptoms. Many studies have been done on SCZ and OCD, but the common pathogenesis between them is not clear yet. Therefore, this study aimed to identify shared genetic basis, potential biomarkers and therapeutic targets between these two disorders. Gene sets were extracted from the Geneweaver and Harmonizome databases for each disorder. Interestingly, the combination of both sets revealed 89 common genes between SCZ and OCD, the most important of which were BDNF, SLC6A4, GAD1, HTR2A, GRIN2B, DRD2, SLC6A3, COMT, TH and DLG4. Then, we conducted a comprehensive bioinformatics analysis of the common genes. Receptor activity as the molecular functions, neuron projection and synapse as the cellular components as well as serotonergic synapse, dopaminergic synapse and alcoholism as the pathways were the most significant commonalities in enrichment analyses. In addition, transcription factor (TFs) analysis predicted significant TFs such as HMGA1, MAPK14, HINFP and TEAD2. Hsa-miR-3121-3p and hsa-miR-495-3p were the most important microRNAs (miRNAs) associated with both disorders. Finally, our study predicted 19 existing drugs (importantly, Haloperidol, Fluoxetine and Melatonin) that may have a potential influence on this co-occurrence. To summarize, this study may help us to better understand and handle the co-occurrence of SCZ and OCD by identifying potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Abdolhakim Ghanbarzehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Hashemi
- Department of Biotechnology, Bangalore University, Bangalore, Karnataka, India
| | - Minoo Karimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Oishi K, Niitsu T, Kanahara N, Sato Y, Iwayama Y, Toyota T, Hashimoto T, Sasaki T, Takase M, Shiina A, Yoshikawa T, Iyo M. Genetic risks of schizophrenia identified in a matched case-control study. Eur Arch Psychiatry Clin Neurosci 2021; 271:775-781. [PMID: 32623490 DOI: 10.1007/s00406-020-01158-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/24/2020] [Indexed: 11/25/2022]
Abstract
It has been suggested that dopaminergic neurotransmission plays important roles for the psychotic symptoms and probably etiology of schizophrenia. In our recent preliminary study, we demonstrated that the specific allele combinations of dopamine-related functional single nucleotide polymorphisms (SNPs), rs10770141, rs4680, and rs1800497 could indicate risks for schizophrenia. The present validation study involved a total of 2542 individuals who were age- and sex-matched in a propensity score matching analysis, and the results supported the statistical significances of the proposed genetic risks described in our previous reports. The estimated odds ratios were 1.24 (95% CI 1.06-1.45, p < 0.001) for rs4680, 1.73 (95% CI 1.47-2.02, p < 0.0001) for rs1800497, and 1.79 (95% CI 1.35-2.36, p < 0.0001) for rs10770141. A significant relationship was also revealed among these three polymorphisms and schizophrenia, with corresponding coefficients (p < 0.0001). In this study, we also present a new scoring model for the identification of individuals with the disease risks. Using the cut-off value of 2, our model exhibited sensitivity for almost two-thirds of all of the schizophrenia patients: odds ratio 1.87, 95% CI 1.59-2.19, p < 0.0001. In conclusion, we identified significant associations of dopamine-related genetic combinations with schizophrenia. These findings suggest that some types of dopaminergic neurotransmission play important roles for development of schizophrenia, and this type of approach may also be applicable for other multifactorial diseases, providing a potent new risk predictor.
Collapse
Affiliation(s)
- Kengo Oishi
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan.
| | - Tomihisa Niitsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Tasuku Hashimoto
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Tsuyoshi Sasaki
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
- Department of Child Psychiatry, Chiba University Hospital, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Masayuki Takase
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Akihiro Shiina
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba, 260-8670, Japan
| |
Collapse
|
6
|
Liu JL, Li SQ, Zhu F, Zhang YX, Wu YN, Yang JS, Zhang B, Yan CX. Tyrosine Hydroxylase Gene Polymorphisms Contribute to Opioid Dependence and Addiction by Affecting Promoter Region Function. Neuromolecular Med 2020; 22:391-400. [PMID: 32232669 DOI: 10.1007/s12017-020-08597-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/18/2020] [Indexed: 12/25/2022]
Abstract
Mounting evidence shows that drug dependence involves the complex interplay between genetics and the environment. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine (DA) synthesis, which plays an essential role in the development of drug addiction. Noradrenergic dysfunction due to abnormalities TH expression has been implicated in the pathogenesis of drug addiction. We profiled thirteen single-nucleotide polymorphisms (SNPs) and one VNTR (TCAT repeat, UniSTS:240,639) in 512 cases and 600 healthy Chinese subjects to evaluate the relationship between common variants within the TH gene and opioids dependence (OD) in the Chinese Han population. The single-marker analysis determined that rs10770141 (p < 0.001, OR 1.739, 95% CI 1.302 - 2.323) and rs10770140 (p = 0.002, OR 1.536, 95% CI 1.164 - 2.026) are risk variants for OD. The haplotype-association analyses determined that A-C-C-C was a risk factor (p = 0.006, OR 1.662, 95% CI 1.241 - 2.225) for OD. We also observed a significant association between (TACT)9/9 and the duration of transition from the first time using opioids to the development of opioid dependence (DTFUD) (p = 0.002, OR 2.153, 95% CI 1.319 - 3.513). Taken together, this study suggests that TH gene polymorphisms may contribute to the risk of OD in the Chinese Han population.
Collapse
Affiliation(s)
- Jun-Lin Liu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shao-Qing Li
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feng Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.,Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yu-Xiang Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ya-Nan Wu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jing-Si Yang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Bao Zhang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Chun-Xia Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
7
|
Oishi K, Niitsu T, Kanahara N, Hashimoto T, Komatsu H, Sasaki T, Takase M, Sato Y, Iyo M. Genetic combination risk for schizophrenia. Schizophr Res 2020; 215:473-474. [PMID: 31477374 DOI: 10.1016/j.schres.2019.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Kengo Oishi
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan.
| | - Tomihisa Niitsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Tasuku Hashimoto
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Hideki Komatsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Tsuyoshi Sasaki
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan; Department of Child Psychiatry, Chiba University Hospital, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Masayuki Takase
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-0016, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan; Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan; Department of Child Psychiatry, Chiba University Hospital, 1-8-1 Inohana, Chuou-ku, Chiba, Chiba 260-8670, Japan
| |
Collapse
|
8
|
Dopamine D1, but not D2, signaling protects mental representations from distracting bottom-up influences. Neuroimage 2020; 204:116243. [DOI: 10.1016/j.neuroimage.2019.116243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
|
9
|
Schlüter C, Arning L, Fraenz C, Friedrich P, Pinnow M, Güntürkün O, Beste C, Ocklenburg S, Genc E. Genetic variation in dopamine availability modulates the self-reported level of action control in a sex-dependent manner. Soc Cogn Affect Neurosci 2019; 14:759-768. [PMID: 31269206 PMCID: PMC6778824 DOI: 10.1093/scan/nsz049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/27/2019] [Accepted: 06/17/2019] [Indexed: 11/14/2022] Open
Abstract
Although procrastination is a widespread phenomenon with significant influence on our personal and professional life, its genetic foundation is somewhat unknown. An important factor that influences our ability to tackle specific goals directly instead of putting them off is our ability to initiate cognitive, motivational and emotional control mechanisms, so-called metacontrol. These metacontrol mechanisms have been frequently related to dopaminergic signaling. To gain deeper insight into the genetic components of procrastination, we examined whether genetically induced differences in the dopaminergic system are associated with interindividual differences in trait-like procrastination, measured as decision-related action control (AOD). Analyzing the data of 278 healthy adults, we found a sex-dependent effect of TH genotype on AOD. Interestingly, only in women, T-allele carriers showed lower AOD values and were therefore more likely to procrastinate. Additionally, we investigated whether differences in the morphology and functional connectivity of the amygdala that were previously associated with AOD happen to be related to differences in the TH genotype and thus to differences in the dopaminergic system. However, there was no significant amygdala volume or connectivity difference between the TH genotype groups. Therefore, this study is the first to suggest that genetic, anatomical and functional differences affect trait-like procrastination independently.
Collapse
Affiliation(s)
- Caroline Schlüter
- Department of Psychology, Biopsychology, Ruhr University Bochum, Bochum, NRW 44801, Germany
| | - Larissa Arning
- Department of Human Genetics, Ruhr University Bochum, Bochum, NRW 44801, Germany
| | - Christoph Fraenz
- Department of Psychology, Biopsychology, Ruhr University Bochum, Bochum, NRW 44801, Germany
| | - Patrick Friedrich
- Department of Psychology, Biopsychology, Ruhr University Bochum, Bochum, NRW 44801, Germany
| | - Marlies Pinnow
- Department of Psychology, Biopsychology, Ruhr University Bochum, Bochum, NRW 44801, Germany
| | - Onur Güntürkün
- Department of Psychology, Biopsychology, Ruhr University Bochum, Bochum, NRW 44801, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dresden University of Technology, Dresden, Saxony 01062, Germany.,Faculty of Psychology, School of Science, Dresden University of Technology, Saxony 01062, Germany
| | - Sebastian Ocklenburg
- Department of Psychology, Biopsychology, Ruhr University Bochum, Bochum, NRW 44801, Germany
| | - Erhan Genc
- Department of Psychology, Biopsychology, Ruhr University Bochum, Bochum, NRW 44801, Germany
| |
Collapse
|
10
|
Bensmann W, Zink N, Arning L, Beste C, Stock AK. The Presynaptic Regulation of Dopamine and Norepinephrine Synthesis Has Dissociable Effects on Different Kinds of Cognitive Conflicts. Mol Neurobiol 2019; 56:8087-8100. [PMID: 31183808 DOI: 10.1007/s12035-019-01664-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
Goal-directed behavior requires the ability to resolve subliminally or consciously induced response conflicts, both of which may benefit from catecholamine-induced increases in gain control. We investigated the effects of presynaptic differences in dopamine and norepinephrine synthesis with the help of the tyrosine hydroxylase (TH) rs10770141 and the dopamine-β-hydroxylase (DBH) rs1611115, rs6271, and rs1611122 polymorphisms. Conscious and subliminal response conflicts were induced with flanker and prime distractors in (n = 207) healthy young participants while neurophysiological data (EEG) was recorded. The results demonstrated that the increased presynaptic catecholamine synthesis associated with the TH rs10770141 TT genotype improves cognitive control in case of consciously perceived (flanker) conflicts, but not in case of subliminally processed (prime) conflicts. Only norepinephrine seemed to also modulate subliminal conflict processing, as evidenced by better performance of the DBH rs1611122 CC genotype in case of high subliminal conflict load. Better performance was linked to larger conflict-induced modulations in post-response alpha band power arising from parietal and inferior frontal regions, which likely helps to suppress the processing of distracting information. In summary, presynaptic catecholamine synthesis benefits consciously perceived conflicts by improving the suppression of distracting information following a conflict. Subliminal conflicts were modulated via the same mechanism, but only by norepinephrine.
Collapse
Affiliation(s)
- Wiebke Bensmann
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Larissa Arning
- Department of Human Genetics, Faculty of Medicine, Ruhr-Universität Bochum, Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
11
|
Ohi K, Sumiyoshi C, Fujino H, Yasuda Y, Yamamori H, Fujimoto M, Shiino T, Sumiyoshi T, Hashimoto R. Genetic Overlap between General Cognitive Function and Schizophrenia: A Review of Cognitive GWASs. Int J Mol Sci 2018; 19:E3822. [PMID: 30513630 PMCID: PMC6320986 DOI: 10.3390/ijms19123822] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 11/17/2022] Open
Abstract
General cognitive (intelligence) function is substantially heritable, and is a major determinant of economic and health-related life outcomes. Cognitive impairments and intelligence decline are core features of schizophrenia which are evident before the onset of the illness. Genetic overlaps between cognitive impairments and the vulnerability for the illness have been suggested. Here, we review the literature on recent large-scale genome-wide association studies (GWASs) of general cognitive function and correlations between cognitive function and genetic susceptibility to schizophrenia. In the last decade, large-scale GWASs (n > 30,000) of general cognitive function and schizophrenia have demonstrated that substantial proportions of the heritability of the cognitive function and schizophrenia are explained by a polygenic component consisting of many common genetic variants with small effects. To date, GWASs have identified more than 100 loci linked to general cognitive function and 108 loci linked to schizophrenia. These genetic variants are mostly intronic or intergenic. Genes identified around these genetic variants are densely expressed in brain tissues. Schizophrenia-related genetic risks are consistently correlated with lower general cognitive function (rg = -0.20) and higher educational attainment (rg = 0.08). Cognitive functions are associated with many of the socioeconomic and health-related outcomes. Current treatment strategies largely fail to improve cognitive impairments of schizophrenia. Therefore, further study is needed to understand the molecular mechanisms underlying both cognition and schizophrenia.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Neuropsychiatry, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
- Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan.
| | - Chika Sumiyoshi
- Faculty of Human Development and Culture, Fukushima University, Fukushima 960-1296, Japan.
| | - Haruo Fujino
- Graduate School of Education, Oita University, Oita 870-1192, Japan.
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan.
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan.
| | - Michiko Fujimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | - Tomoko Shiino
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan.
| | - Tomiki Sumiyoshi
- Department of Preventive Interventions for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8553, Japan.
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan.
- Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Oishi K, Kanahara N, Takase M, Oda Y, Nakata Y, Niitsu T, Ishikawa M, Sato Y, Iyo M. Vulnerable combinations of functional dopaminergic polymorphisms to late-onset treatment resistant schizophrenia. PLoS One 2018; 13:e0207133. [PMID: 30408108 PMCID: PMC6224074 DOI: 10.1371/journal.pone.0207133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/25/2018] [Indexed: 11/19/2022] Open
Abstract
Background A significant portion of patients with schizophrenia who respond to initial antipsychotic treatment acquire treatment resistance. One of the possible pathogeneses of treatment-resistant schizophrenia (TRS) is antipsychotic-induced dopamine supersensitivity psychosis (Ai-DSP). Patients with this disease progression might share some genetic vulnerabilities, and thus determining individuals with higher risks of developing Ai-DSP could contribute to preventing iatrogenic development of TRS. Therefore, we decided to examine whether combinations of functional single nucleotide polymorphisms (SNPs) known to affect dopaminergic functions are related to Ai-DSP development. Methods In this case-control study, 357 Japanese participants diagnosed with schizophrenia or schizoaffective disorder were recruited and divided into two groups, those with and without Ai-DSP. As functional SNPs, we examined rs10770141 of the tyrosine hydroxylase gene, rs4680 of the catechol-O-methyltransferase gene, and rs1799732 and rs1800497 of the DRD2 genes, which are known to possess strong directional ties to dopamine synthesis, dopamine degradation and post-synaptic DRD2 prevalence, respectively. Results Among the 357 Japanese patients with schizophrenia or schizoaffective disorder, 130 were classified as Ai-DSP(+) and the other 227 as Ai-DSP(-). Significantly higher proportions of Ai-DSP(+) patients were found to have the SNP combinations of rs10770141/rs4680 (57.9%, OR2.654, 95%CI1.036–6.787, P = 0.048) and rs10770141/rs4680/ rs1800497 (64.3%, OR4.230, 95%CI1.306–13.619, P = 0.029). However, no single SNP was associated with Ai-DSP. Conclusions We preliminarily found that carrying particular combinations of functional SNPs, which are related to relatively higher dopamine synthesis and dopamine degradation and lower naïve DRD2, might indicate vulnerability to development of Ai-DSP. However, further studies are needed to validate the present results.
Collapse
Affiliation(s)
- Kengo Oishi
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chuou-ku, Chiba, Chiba, Japan
- * E-mail:
| | - Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chuou-ku, Chiba, Chiba, Japan
| | - Masayuki Takase
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chuou-ku, Chiba, Chiba, Japan
- Zucker Hillside Hospital, Glen Oaks, NY, United States of America
| | - Yasunori Oda
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chuou-ku, Chiba, Chiba, Japan
| | - Yusuke Nakata
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chuou-ku, Chiba, Chiba, Japan
| | - Tomihisa Niitsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chuou-ku, Chiba, Chiba, Japan
| | - Masatomo Ishikawa
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chuou-ku, Chiba, Chiba, Japan
| | - Yasunori Sato
- Department of Global Clinical Research, Chiba University Graduate School of Medicine, Chuou-ku, Chiba, Chiba, Japan
| | - Masaomi Iyo
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chuou-ku, Chiba, Chiba, Japan
| |
Collapse
|
13
|
Ohi K, Sumiyoshi C, Fujino H, Yasuda Y, Yamamori H, Fujimoto M, Sumiyoshi T, Hashimoto R. A Brief Assessment of Intelligence Decline in Schizophrenia As Represented by the Difference between Current and Premorbid Intellectual Quotient. Front Psychiatry 2017; 8:293. [PMID: 29312019 PMCID: PMC5743746 DOI: 10.3389/fpsyt.2017.00293] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/11/2017] [Indexed: 01/25/2023] Open
Abstract
Patients with schizophrenia elicit several clinical features, such as psychotic symptoms, cognitive impairment, and subtle decline of intelligence. The latter two features become evident around the onset of the illness, although they may exist even before the disease onset in a substantial proportion of cases. Here, we review the literature concerning intelligence decline (ID) during the progression of schizophrenia. ID can be estimated by comparing premorbid and current intellectual quotient (IQ) by means of the Adult Reading Test and Wechsler Adult Intelligence Scale (WAIS), respectively. For the purpose of brief assessment, we have recently developed the WAIS-Short Form, which consists of Similarities and Symbol Search and well reflects functional outcomes. According to the degree of ID, patients were classified into three distinct subgroups; deteriorated, preserved, and compromised groups. Patients who show deteriorated IQ (deteriorated group) elicit ID from a premorbid level (≥10-point difference between current and premorbid IQ), while patients who show preserved or compromised IQ do not show such decline (<10-point difference). Furthermore, the latter patients were divided into patients with preserved and compromised IQ based on an estimated premorbid IQ score >90 or below 90, respectively. We have recently shown the distribution of ID in a large cohort of schizophrenia patients. Consistent with previous studies, approximately 30% of schizophrenia patients had a decline of less than 10 points, i.e., normal intellectual performance. In contrast, approximately 70% of patients showed deterioration of IQ. These results indicate that there is a subgroup of schizophrenia patients who have mild or minimal intellectual deficits, following the onset of the disorder. Therefore, a careful assessment of ID is important in identifying appropriate interventions, including medications, cognitive remediation, and social/community services.
Collapse
Affiliation(s)
- Kazutaka Ohi
- Department of Neuropsychiatry, Kanazawa Medical University, Uchinada, Japan
| | - Chika Sumiyoshi
- Faculty of Human Development and Culture, Fukushima University, Fukushima, Japan
| | - Haruo Fujino
- Graduate School of Education, Oita University, Oita, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Michiko Fujimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomiki Sumiyoshi
- Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ryota Hashimoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Suita, Japan
| |
Collapse
|
14
|
Tavakol S, Musavi SMM, Tavakol B, Hoveizi E, Ai J, Rezayat SM. Noggin Along with a Self-Assembling Peptide Nanofiber Containing Long Motif of Laminin Induces Tyrosine Hydroxylase Gene Expression. Mol Neurobiol 2016; 54:4609-4616. [DOI: 10.1007/s12035-016-0006-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022]
|
15
|
Kamada Y, Hashimoto R, Yamamori H, Yasuda Y, Takehara T, Fujita Y, Hashimoto K, Miyoshi E. Impact of plasma transaminase levels on the peripheral blood glutamate levels and memory functions in healthy subjects. BBA CLINICAL 2016; 5:101-107. [PMID: 27051595 PMCID: PMC4802405 DOI: 10.1016/j.bbacli.2016.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Blood aspartate aminotransferase (AST) and alanine transaminase (ALT) levels are the most frequently reliable biomarkers of liver injury. Although AST and ALT play central roles in glutamate production as transaminases, peripheral blood levels of AST and ALT have been regarded only as liver injury biomarkers. Glutamate is a principal excitatory neurotransmitter, which affects memory functions in the brain. In this study, we investigated the impact of blood transaminase levels on blood glutamate concentration and memory. METHODS Psychiatrically, medically, and neurologically healthy subjects (n = 514, female/male: 268/246) were enrolled in this study through local advertisements. Plasma amino acids (glutamate, glutamine, glycine, d-serine, and l-serine) were measured using a high performance liquid chromatography system. The five indices, verbal memory, visual memory, general memory, attention/concentration, and delayed recall of the Wechsler Memory Scale-Revised were used to measure memory functions. RESULTS Both plasma AST and ALT had a significant positive correlation with plasma glutamate levels. Plasma AST and ALT levels were significantly negatively correlated with four of five memory functions, and plasma glutamate was significantly negatively correlated with three of five memory functions. Multivariate analyses demonstrated that plasma AST, ALT, and glutamate levels were significantly correlated with memory functions even after adjustment for gender and education. CONCLUSIONS As far as we know, this is the first report which could demonstrate the impact of blood transaminase levels on blood glutamate concentration and memory functions in human. These findings are important for the interpretation of obesity-induced metabolic syndrome with elevated transaminases and cognitive dysfunction.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Alanine aminotransferase
- Aspartate aminotransferase
- BBB, blood brain barrier
- GOT, glutamate-oxalacetate transaminase
- GPT, glutamate-pyruvate transaminase
- Gln, glutamine
- Glu, glutamate
- Glutamate
- Gly, glycine
- MSG, monosodium glutamate
- Memory function
- Mets, metabolic syndrome
- NAFL, nonalcoholic fatty liver
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- WMS-R, Wechsler Memory Scale-Revised
Collapse
Affiliation(s)
- Yoshihiro Kamada
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hidenaga Yamamori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuka Yasuda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry & Clinical Investigation, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Catecholaminergic neuronal network dysfunction in the frontal lobe of a genetic mouse model of schizophrenia. Acta Neuropsychiatr 2016; 28:117-23. [PMID: 26333915 DOI: 10.1017/neu.2015.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND The precise aetiology of schizophrenia remains unclear. The neurodevelopmental hypothesis of schizophrenia has been proposed based on the accumulation of genomic or neuroimaging studies. OBJECTIVE In this study, we examined the catecholaminergic neuronal networks in the frontal cortices of disrupted-in-schizophrenia 1 (DISC1) knockout (KO) mice, which are considered to be a useful model of schizophrenia. METHODS Six DISC1 homozygous KO mice and six age-matched littermates were used. The animals' brains were cut into 20-μm-thick slices, which were then immunohistochemically stained using an anti-tyrosine hydroxylase (TH) monoclonal antibody. RESULTS The TH-immunopositive fibres detected in the orbitofrontal cortices of the DISC1 KO mice were significantly shorter than those seen in the wild-type mice. CONCLUSION These neuropathological findings indicate that the hypofrontal symptoms of schizophrenia are associated with higher mental function deficiencies or cognitive dysfunction such as a loss of working memory.
Collapse
|
17
|
Jongkees BJ, Hommel B, Colzato LS. People are different: tyrosine's modulating effect on cognitive control in healthy humans may depend on individual differences related to dopamine function. Front Psychol 2014; 5:1101. [PMID: 25339925 PMCID: PMC4186281 DOI: 10.3389/fpsyg.2014.01101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/11/2014] [Indexed: 01/22/2023] Open
Affiliation(s)
- Bryant J Jongkees
- Institute of Psychological Research and Leiden Institute for Brain and Cognition, Leiden University Leiden, Netherlands
| | - Bernhard Hommel
- Institute of Psychological Research and Leiden Institute for Brain and Cognition, Leiden University Leiden, Netherlands
| | - Lorenza S Colzato
- Institute of Psychological Research and Leiden Institute for Brain and Cognition, Leiden University Leiden, Netherlands
| |
Collapse
|
18
|
A functional polymorphism of the GTP cyclohydrolase 1 gene predicts attention performance. Neurosci Lett 2014; 566:46-9. [PMID: 24561090 DOI: 10.1016/j.neulet.2014.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/24/2014] [Accepted: 02/09/2014] [Indexed: 11/20/2022]
Abstract
Guanosine triphosphate cyclohydrolase 1 (GCH1) is the rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin, a cofactor for aromatic amino acid hydroxylases and nitric oxide synthases. As monoamine neurotransmitters are synthesized by the reactions catalyzed by tyrosine hydroxylase and tryptophan hydroxylase, alterations in the content of tetrahydrobiopterin affect the monoamine levels in the brain. Here, we examined the possible association of a functional single-nucleotide polymorphism (SNP) of the GCH1 gene, rs841 (C+243T), with attentional function as assessed by the Continuous Performance Test-Identical Pairs version (CPT-IP) in healthy individuals. We found that homozygous T/T genotype carriers of rs841 scored lower performance on the CPT-IP test. Our data suggest that alterations in GCH1 activity affect attentional function, especially sustained attention and vigilance.
Collapse
|