1
|
Girard Pepin R, Seyfzadeh F, Williamson D, Gosseries O, Duclos C. Pharmacological therapies for early and long-term recovery in disorders of consciousness: current knowledge and promising avenues. Expert Rev Neurother 2025:1-21. [PMID: 40336212 DOI: 10.1080/14737175.2025.2500757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
INTRODUCTION Disorders of consciousness (DoC) are characterized by impaired arousal and/or awareness, ranging from coma to unresponsive wakefulness syndrome, minimally conscious state, and cognitive motor dissociation. Pharmacological treatment options remain limited, complicated by the heterogeneity of etiologies, such as traumatic brain injury, stroke, and infections. The lack of rigorous clinical trials has led to off-label use of treatments, often without clear mechanistic understanding, posing challenges for effective patient care. AREAS COVERED In this perspective, the authors report on key studies concerning the effectiveness of pharmacological interventions, including dopaminergic and GABAergic agents, antidepressants, statins, and anticonvulsants, in promoting recovery of consciousness in DoC. EXPERT OPINION Robust longitudinal clinical trials are needed, with priority given to early subacute phase intervention. Outcomes should be better defined, considering immediate responses to medication while also increasing the emphasis on long-term quality of life. Unified functional and mechanistic frameworks are needed to guide research and foster collaboration. Furthermore, a shift toward personalized medicine would benefit this heterogeneous population. Moving forward, assessing the efficacy of more unconventional or 'paradoxical' pharmacological options in treatment plans will be essential. The authors also expect an increased use of AI tools to identify factors that best predict treatment responses.
Collapse
Affiliation(s)
- Rosalie Girard Pepin
- Department of Psychiatry and Addictology, Université de Montréal, Montréal, Canada
- Integrated Traumatology Center, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montréal, Canada
| | - Fatemeh Seyfzadeh
- Coma Science Group, GIGA Consciousness, GIGA Institute, University of Liège, Liège, Belgium
- NeuroRehab & Consciousness Clinic, Neurology Department, University Hospital of Liège, Liège, Belgium
- NeuroRecovery Lab, GIGA Consciousness, GIGA Institute, University of Liège, Liège, Belgium
| | - David Williamson
- Integrated Traumatology Center, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montréal, Canada
- Faculty of Pharmacy, Université de Montréal, Montréal, Canada
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, GIGA Institute, University of Liège, Liège, Belgium
- NeuroRehab & Consciousness Clinic, Neurology Department, University Hospital of Liège, Liège, Belgium
| | - Catherine Duclos
- Integrated Traumatology Center, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montréal, Canada
- Department of Anesthesiology and Pain Medicine, Université de Montréal, Montréal, Canada
- Department of Neuroscience, Université de Montréal, Montréal, Canada
| |
Collapse
|
2
|
Barra ME, Solt K, Yu X, Edlow BL. Restoring consciousness with pharmacologic therapy: Mechanisms, targets, and future directions. Neurotherapeutics 2024; 21:e00374. [PMID: 39019729 PMCID: PMC11452330 DOI: 10.1016/j.neurot.2024.e00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 07/19/2024] Open
Abstract
Severe brain injury impairs consciousness by disrupting a broad spectrum of neurotransmitter systems. Emerging evidence suggests that pharmacologic modulation of specific neurotransmitter systems, such as dopamine, promotes recovery of consciousness. Clinical guidelines now endorse the use of amantadine in individuals with traumatic disorders of consciousness (DoC) based on level 1 evidence, and multiple neurostimulants are used off-label in clinical practice, including methylphenidate, modafinil, bromocriptine, levodopa, and zolpidem. However, the relative contributions of monoaminergic, glutamatergic, cholinergic, GABAergic, and orexinergic neurotransmitter systems to recovery of consciousness after severe brain injury are unknown, and personalized approaches to targeted therapy have yet to be developed. This review summarizes the state-of-the-science in the neurochemistry and neurobiology of neurotransmitter systems involved in conscious behaviors, followed by a discussion of how pharmacologic therapies may be used to modulate these neurotransmitter systems and promote recovery of consciousness. We consider pharmacologic modulation of consciousness at the synapse, circuit, and network levels, with a focus on the mesocircuit model that has been proposed to explain the consciousness-promoting effects of various monoaminergic, glutamatergic, and paradoxically, GABAergic therapies. Though fundamental questions remain about neurotransmitter mechanisms, target engagement and optimal therapy selection for individual patients, we propose that pharmacologic therapies hold great promise to promote recovery and improve quality of life for patients with severe brain injuries.
Collapse
Affiliation(s)
- Megan E Barra
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA; Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xin Yu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Marino MH. Pharmacology in Treatment of Patients with Disorders of Consciousness. Phys Med Rehabil Clin N Am 2024; 35:155-165. [PMID: 37993186 DOI: 10.1016/j.pmr.2023.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Pharmacologic treatment of disorders of consciousness remains a critical but challenging task for clinicians. Amantadine has been shown to promote the rate of neurologic recovery for patients with traumatic disorders of consciousness when administered between 4 and 16 weeks, as demonstrated by a well-designed randomized control trial. While there are no large, randomized controlled trials to support the use of other dopaminergic medicines (bromocriptine, levodopa, apomorphine), there is a large body of literature implicating their role in improving alertness and responsiveness in disorders of consciousness. Zolpidem can increase the level of consciousness in a small subset of patients. Zolpidem and intrathecal baclofen likely increase the level of consciousness via the mesocircuit pathway. Psychostimulant medications can be initiated in patients, even without strong evidence to support their use, as long as basic principles of brain injury medicine are followed, and there are systems in place to evaluate therapeutic response.
Collapse
Affiliation(s)
- Michael H Marino
- Moss Rehab, 60 Township Line Road, Elkins Park, PA 19027, USA; Remed Residential Brain Injury Center.
| |
Collapse
|
4
|
Gao Q, Hao J, Kang X, Yuan F, Liu Y, Chen R, Liu X, Li R, Jiang W. EEG dynamics induced by zolpidem forecast consciousness evolution in prolonged disorders of consciousness. Clin Neurophysiol 2023; 153:46-56. [PMID: 37454563 DOI: 10.1016/j.clinph.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To explore whether the EEG dynamics induced by zolpidem can predict consciousness evolution in patients with prolonged disorders of consciousness (PDOC). METHODS We conducted a prospective explorative analysis on thirty-six patients with PDOC and eleven healthy controls. The EEG power spectrum was analyzed and categorized into 'ABCD' patterns at baseline and one hour after zolpidem administration at 10 mg. The clinical outcome was defined as consciousness improvement and no improvement six months after enrollment using the Coma Recovery Scale-Revised (CRS-R) score. RESULTS Zolpidem administration significantly increased the EEG power in the delta & theta bands and decreased EEG power in the beta bands in healthy controls. Further follow-up studies indicated that the increased EEG beta-band power induced by zolpidem can predict an improved consciousness six months after enrollment with an area under the receiver operating characteristic curve (AUC) of 0.829, the sensitivity of 94.38% and an accuracy of 81.48%. CONCLUSIONS Our work revealed that the specific EEG responses to zolpidem can predict consciousness recovery in PDOC patients. SIGNIFICANCE The zolpidem-induced specific EEG responses could potentially predict the recovery of PDOC patients, which may help clinicians and patients' families in their decision-making process.
Collapse
Affiliation(s)
- Qiong Gao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jianmin Hao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaogang Kang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Fang Yuan
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| | - Yu Liu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Rong Chen
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiuyun Liu
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Rui Li
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
5
|
Zheng RZ, Qi ZX, Wang Z, Xu ZY, Wu XH, Mao Y. Clinical Decision on Disorders of Consciousness After Acquired Brain Injury: Stepping Forward. Neurosci Bull 2023; 39:138-162. [PMID: 35804219 PMCID: PMC9849546 DOI: 10.1007/s12264-022-00909-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/10/2022] [Indexed: 01/22/2023] Open
Abstract
Major advances have been made over the past few decades in identifying and managing disorders of consciousness (DOC) in patients with acquired brain injury (ABI), bringing the transformation from a conceptualized definition to a complex clinical scenario worthy of scientific exploration. Given the continuously-evolving framework of precision medicine that integrates valuable behavioral assessment tools, sophisticated neuroimaging, and electrophysiological techniques, a considerably higher diagnostic accuracy rate of DOC may now be reached. During the treatment of patients with DOC, a variety of intervention methods are available, including amantadine and transcranial direct current stimulation, which have both provided class II evidence, zolpidem, which is also of high quality, and non-invasive stimulation, which appears to be more encouraging than pharmacological therapy. However, heterogeneity is profoundly ingrained in study designs, and only rare schemes have been recommended by authoritative institutions. There is still a lack of an effective clinical protocol for managing patients with DOC following ABI. To advance future clinical studies on DOC, we present a comprehensive review of the progress in clinical identification and management as well as some challenges in the pathophysiology of DOC. We propose a preliminary clinical decision protocol, which could serve as an ideal reference tool for many medical institutions.
Collapse
Affiliation(s)
- Rui-Zhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Yu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xue-Hai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Barra ME, Edlow BL, Brophy GM. Pharmacologic Therapies to Promote Recovery of Consciousness. Semin Neurol 2022; 42:335-347. [PMID: 36100228 DOI: 10.1055/s-0042-1755271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Pharmacologic interventions are commonly used to support rehabilitation efforts of patients with disorders of consciousness (DoC). The 2018 practice guidelines recommend amantadine in adults with traumatic DoC to promote functional recovery, though several other stimulants are used off-label in clinical practice and trials, such as methylphenidate, bromocriptine, levodopa, and zolpidem. Differences in the mechanisms of action, adverse effects, pharmacokinetics, and drug-drug interactions should be considered when selecting the best agent for each individual patient. Overall, pharmacologic stimulants may provide a safe and inexpensive pathway to increased functionality and participation in rehabilitation. This article provides a concise summary of scientific evidence supporting the use of pharmacologic therapies to stimulate recovery of consciousness in patients with DoC.
Collapse
Affiliation(s)
- Megan E Barra
- Department of Pharmacy, Massachusetts General Hospital, Boston, Massachusetts.,Department of Neurology, Center for Neurotechnology and Neurorecovery (CNTR), Massachusetts General Hospital, Boston, Massachusetts
| | - Brian L Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery (CNTR), Massachusetts General Hospital, Boston, Massachusetts.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Gretchen M Brophy
- Department of Pharmacotherapy and Outcomes Science and Neurosurgery, Virginia Commonwealth University, Medical College of Virginia, Richmond, Virginia
| |
Collapse
|
7
|
Irzan H, Pozzi M, Chikhladze N, Cebanu S, Tadevosyan A, Calcii C, Tsiskaridze A, Melbourne A, Strazzer S, Modat M, Molteni E. Emerging Treatments for Disorders of Consciousness in Paediatric Age. Brain Sci 2022; 12:198. [PMID: 35203961 PMCID: PMC8870410 DOI: 10.3390/brainsci12020198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
The number of paediatric patients living with a prolonged Disorder of Consciousness (DoC) is growing in high-income countries, thanks to substantial improvement in intensive care. Life expectancy is extending due to the clinical and nursing management achievements of chronic phase needs, including infections. However, long-known pharmacological therapies such as amantadine and zolpidem, as well as novel instrumental approaches using direct current stimulation and, more recently, stem cell transplantation, are applied in the absence of large paediatric clinical trials and rigorous age-balanced and dose-escalated validations. With evidence building up mainly through case reports and observational studies, there is a need for well-designed paediatric clinical trials and specific research on 0-4-year-old children. At such an early age, assessing residual and recovered abilities is most challenging due to the early developmental stage, incompletely learnt motor and cognitive skills, and unreliable communication; treatment options are also less explored in early age. In middle-income countries, the lack of rehabilitation services and professionals focusing on paediatric age hampers the overall good assistance provision. Young and fast-evolving health insurance systems prevent universal access to chronic care in some countries. In low-income countries, rescue networks are often inadequate, and there is a lack of specialised and intensive care, difficulty in providing specific pharmaceuticals, and lower compliance to intensive care hygiene standards. Despite this, paediatric cases with DoC are reported, albeit in fewer numbers than in countries with better-resourced healthcare systems. For patients with a poor prospect of recovery, withdrawal of care is inhomogeneous across countries and still heavily conditioned by treatment costs as well as ethical and cultural factors, rather than reliant on protocols for assessment and standardised treatments. In summary, there is a strong call for multicentric, international, and global health initiatives on DoC to devote resources to the paediatric age, as there is now scope for funders to invest in themes specific to DoC affecting the early years of the life course.
Collapse
Affiliation(s)
- Hassna Irzan
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 7JE, UK
| | - Marco Pozzi
- Scientific Institute IRCCS E. Medea, Acquired Brain Injury Unit, 22040 Bosisio Parini, Italy; (M.P.); (S.S.)
| | - Nino Chikhladze
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia; (N.C.); (A.T.)
| | - Serghei Cebanu
- Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, MD-2004 Chišināu, Moldova; (S.C.); (C.C.)
| | - Artashes Tadevosyan
- Department of Public Health and Healthcare Organization, Yerevan State Medical University, Yerevan 0025, Armenia;
| | - Cornelia Calcii
- Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, MD-2004 Chišināu, Moldova; (S.C.); (C.C.)
| | - Alexander Tsiskaridze
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia; (N.C.); (A.T.)
| | - Andrew Melbourne
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 7JE, UK
| | - Sandra Strazzer
- Scientific Institute IRCCS E. Medea, Acquired Brain Injury Unit, 22040 Bosisio Parini, Italy; (M.P.); (S.S.)
- Rehabilitation Service, “Usratuna” Health and Rehabilitation Centre, Juba, South Sudan
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
| | - Erika Molteni
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
| |
Collapse
|
8
|
Khalili H, Rakhsha A, Ghaedian T, Niakan A, Masoudi N. Application of Brain Perfusion SPECT in the Evaluation of Response to Zolpidem Therapy in Consciousness Disorder Due to Traumatic Brain Injury. Indian J Nucl Med 2021; 35:315-320. [PMID: 33642756 PMCID: PMC7905279 DOI: 10.4103/ijnm.ijnm_97_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/01/2022] Open
Abstract
Background: Traumatic brain injury (TBI) is a critical health problem with various comorbidities and socioeconomic consequences. Tending to increase in recent decades, TBI results in more cases of consciousness disorders including vegetative state (VS)/minimally conscious state (MCS). However, no definite or effective treatment still exists for these conditions. The aim of this article is to study the effects of zolpidem in patients with VS caused by TBI by using brain perfusion single-photon emission computed tomography (SPECT). Materials and Methods: This was a prospective clinical trial on a cohort of patients with VS. We evaluated the TBI database to find VS/MCS patients, between the ages of 20 and 65 years. We received written consent from their family members prior to enrollment and compared their clinical status and brain perfusion SPECT prior and after 2 weeks of zolpidem therapy. Results: Among the 12 patients included in this study, six patients changed to MCS after 2 weeks. Comparison of their motor score, revealed a statistically significant difference (2.08 vs. 3.75, P = 0.007, respectively). None of the quantitative or qualitative brain perfusion parameters showed any differences after zolpidem therapy. However, the perfusion pattern, with focal or multifocal cortical defects, was significantly more prevalent in the responder group (five patients vs. one patient, P = 0.015). Conclusion: Zolpidem therapy may improve consciousness levels and motor function in a considerable portion of VS patients with TBI. This study showed that the presence of focal brain perfusion defect can predict response to zolpidem.
Collapse
Affiliation(s)
- Hosseinali Khalili
- Department of Neurosurgery, Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Rakhsha
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Ghaedian
- Nuclear Medicine and Molecular Imaging Research Center, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Niakan
- Department of Neurosurgery, Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Masoudi
- Nuclear Medicine and Molecular Imaging Research Center, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Kondratieva EA, Kondratev SA, Denisova AA, Ivanova NE, Kondratiev AN. [Results of treatment with intravenous amantadine sulfate (PK-Merz) patients with chronic disorders of consciousness]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 120:102-108. [PMID: 33459549 DOI: 10.17116/jnevro2020120121102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The article presents literature review of the recent publications devoted to the drugs with dopaminergic, antiglutamatergic and GABA-ergic effects in the treatment of patients with vegetative state/areactive wakefulness syndrome (VS/AWS). The authors analyzed their own results of the effects of intravenous form of amantadine sulfate (PK Merz) in 142 VS/AWS patients caused by different etiological factors. Depending on the dominant neurological symptoms, patients were divided into three main groups: areactive type of course (group 1 - 61 patients), predominance of primitive limbic reactions (group 2 - 35 patients) and predominance of extrapyramidal symptoms (group 3 - 46 patients). Therapy results were evaluated one month later by CRS-R scale, which showed that the most distinct positive dynamics was observed in group 3.
Collapse
Affiliation(s)
- E A Kondratieva
- Polenov Neurosurgical Institute branch of Almazov National Medical Research Centre, St. Petersburg, Russia
| | - S A Kondratev
- Polenov Neurosurgical Institute branch of Almazov National Medical Research Centre, St. Petersburg, Russia
| | - A A Denisova
- Admiral Makarov State University of Maritime and Inland Shipping, St. Petersburg, Russia
| | - N E Ivanova
- Polenov Neurosurgical Institute branch of Almazov National Medical Research Centre, St. Petersburg, Russia
| | - A N Kondratiev
- Polenov Neurosurgical Institute branch of Almazov National Medical Research Centre, St. Petersburg, Russia
| |
Collapse
|
10
|
Naro A, Maggio MG, Leo A, Calabrò RS. Multiplex and Multilayer Network EEG Analyses: A Novel Strategy in the Differential Diagnosis of Patients with Chronic Disorders of Consciousness. Int J Neural Syst 2020; 31:2050052. [PMID: 33034532 DOI: 10.1142/s0129065720500525] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The deterioration of specific topological network measures that quantify different features of whole-brain functional network organization can be considered a marker for awareness impairment. Such topological measures reflect the functional interactions of multiple brain structures, which support the integration of different sensorimotor information subtending awareness. However, conventional, single-layer, graph theoretical analysis (GTA)-based approaches cannot always reliably differentiate patients with Disorders of Consciousness (DoC). Using multiplex and multilayer network analyses of frequency-specific and area-specific networks, we investigated functional connectivity during resting-state EEG in 17 patients with Unresponsive Wakefulness Syndrome (UWS) and 15 with Minimally Conscious State (MCS). Multiplex and multilayer network metrics indicated the deterioration and heterogeneity of functional networks and, particularly, the frontal-parietal (FP), as the discriminant between patients with MCS and UWS. These data were not appreciable when considering each individual frequency-specific network. The distinctive properties of multiplex/multilayer network metrics and individual frequency-specific network metrics further suggest the value of integrating the networks as opposed to analyzing frequency-specific network metrics one at a time. The hub vulnerability of these regions was positively correlated with the behavioral responsiveness, thus strengthening the clinically-based differential diagnosis. Therefore, it may be beneficial to adopt both multiplex and multilayer network analyses when expanding the conventional GTA-based analyses in the differential diagnosis of patients with DoC. Multiplex analysis differentiated patients at a group level, whereas the multilayer analysis offered complementary information to differentiate patients with DoC individually. Although further studies are necessary to confirm our preliminary findings, these results contribute to the issue of DoC differential diagnosis and may help in guiding patient-tailored management.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy, Via Palermo, SS 113, Contrada Casazza, 98124 Messina, Italy
| | - Maria Grazia Maggio
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy, Via Palermo, SS 113, Contrada Casazza, 98124 Messina, Italy
| | - Antonino Leo
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy, Via Palermo, SS 113, Contrada Casazza, 98124 Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy, Via Palermo, SS 113, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
11
|
Tang H, Zhu Q, Li W, Qin S, Gong Y, Wang H, Shioda S, Li S, Huang J, Liu B, Fang Y, Liu Y, Wang S, Guo Y, Xia Q, Guo Y, Xu Z. Neurophysiology and Treatment of Disorders of Consciousness Induced by Traumatic Brain Injury: Orexin Signaling as a Potential Therapeutic Target. Curr Pharm Des 2020; 25:4208-4220. [PMID: 31663471 DOI: 10.2174/1381612825666191029101830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) can cause disorders of consciousness (DOC) by impairing the neuronal circuits of the ascending reticular activating system (ARAS) structures, including the hypothalamus, which are responsible for the maintenance of the wakefulness and awareness. However, the effectiveness of drugs targeting ARAS activation is still inadequate, and novel therapeutic modalities are urgently needed. METHODS The goal of this work is to describe the neural loops of wakefulness, and explain how these elements participate in DOC, with emphasis on the identification of potential new therapeutic options for DOC induced by TBI. RESULTS Hypothalamus has been identified as a sleep/wake center, and its anterior and posterior regions have diverse roles in the regulation of the sleep/wake function. In particular, the posterior hypothalamus (PH) possesses several types of neurons, including the orexin neurons in the lateral hypothalamus (LH) with widespread projections to other wakefulness-related regions of the brain. Orexins have been known to affect feeding and appetite, and recently their profound effect on sleep disorders and DOC has been identified. Orexin antagonists are used for the treatment of insomnia, and orexin agonists can be used for narcolepsy. Additionally, several studies demonstrated that the agonists of orexin might be effective in the treatment of DOC, providing novel therapeutic opportunities in this field. CONCLUSION The hypothalamic-centered orexin has been adopted as the point of entry into the system of consciousness control, and modulators of orexin signaling opened several therapeutic opportunities for the treatment of DOC.
Collapse
Affiliation(s)
- Huiling Tang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiumei Zhu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siru Qin
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yinan Gong
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Wang
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Seiji Shioda
- Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| | - Shanshan Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Huang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baohu Liu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Fang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangyang Liu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenjun Wang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongming Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Xia
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
12
|
Effect of Zolpidem in the Aftermath of Traumatic Brain Injury: An MEG Study. Case Rep Neurol Med 2020; 2020:8597062. [PMID: 32257474 PMCID: PMC7109561 DOI: 10.1155/2020/8597062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/02/2020] [Indexed: 11/18/2022] Open
Abstract
In the past two decades, many studies have shown the paradoxical efficacy of zolpidem, a hypnotic used to induce sleep, in transiently alleviating various disorders of consciousness such as traumatic brain injury (TBI), dystonia, and Parkinson's disease. The mechanism of action of this effect of zolpidem is of great research interest. In this case study, we use magnetoencephalography (MEG) to investigate a fully conscious, ex-coma patient who suffered from neurological difficulties for a few years due to traumatic brain injury. For a few years after injury, the patient was under medication with zolpidem that drastically improved his symptoms. MEG recordings taken before and after zolpidem showed a reduction in power in the theta-alpha (4–12 Hz) and lower beta (15–20 Hz) frequency bands. An increase in power after zolpidem intake was found in the higher beta/lower gamma (20–43 Hz) frequency band. Source level functional connectivity measured using weighted-phase lag index showed changes after zolpidem intake. Stronger connectivity between left frontal and temporal brain regions was observed. We report that zolpidem induces a change in MEG resting power and functional connectivity in the patient. MEG is an informative and sensitive tool to detect changes in brain activity for TBI.
Collapse
|
13
|
Thibaut A, Schiff N, Giacino J, Laureys S, Gosseries O. Therapeutic interventions in patients with prolonged disorders of consciousness. Lancet Neurol 2019; 18:600-614. [DOI: 10.1016/s1474-4422(19)30031-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022]
|
14
|
Abstract
PURPOSE OF REVIEW Very few options exist for patients who survive severe traumatic brain injury but fail to fully recover and develop a disorder of consciousness (e.g. vegetative state, minimally conscious state). RECENT FINDINGS Among pharmacological approaches, Amantadine has shown the ability to accelerate functional recovery. Although with very low frequency, Zolpidem has shown the ability to improve the level of consciousness transiently and, possibly, also in a sustained fashion. Among neuromodulatory approaches, transcranial direct current stimulation has been shown to transiently improve behavioral responsiveness, but mostly in minimally conscious patients. New evidence for thalamic deep brain stimulation calls into question its cost/benefit trade-off. SUMMARY The growing understanding of the biology of disorders of consciousness has led to a renaissance in the development of therapeutic interventions for patients with disorders of consciousness. High-quality evidence is emerging for pharmacological (i.e. Amantadine) and neurostimulatory (i.e. transcranial direct current stimulation) interventions, although further studies are needed to delineate preconditions, optimal dosages, and timing of administration. Other exciting new approaches (e.g. low intensity focused ultrasound) still await systematic assessment. A crucial future direction should be the use of neuroimaging measures of functional and structural impairment as a means of tailoring patient-specific interventions.
Collapse
|
15
|
Effects on the diagnosis change and on the disability level for individuals with disorder of consciousness: which predictors? Int Clin Psychopharmacol 2018; 33:163-171. [PMID: 29489493 DOI: 10.1097/yic.0000000000000214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prediction of the functional recovery in patients with disorders of consciousness (DOC) is still complex because of the different numbers of variables that influence the possibility of observing changes in clinical outcome. The aim of the present study is to identify the best set of predictors of the change in DOC diagnosis among different pharmacotherapy and nonpharmacotherapy indicators. This study analyzed data collected in a longitudinal, two-evaluation, multicenter project conducted in 90 centers. We analyzed the predictor effects of physical and cognitive treatments, duration of disease, etiology, age, and sex (nonpharmacological treatments) as well as the use of antiparkinson, psycholeptic, psychoanaleptic, and muscle-relaxant drugs (pharmacological variables). Ordered logistic models, linear regression models with bootstrap estimation, and model averaging procedures were used. The results showed that physical and cognitive treatments [best predictor: odds ratio (OR)=413.3, P<0.001], age (OR=0.964, P<0.001), and use of psycholeptic drugs (negative effect: OR=0.373, P=0.039) were the variables that contributed in general toward a change in diagnosis. Notably, the use of psycholeptic drugs seemed to impede the functional recovery in patients with DOC, so serious reflections on its use will be made.
Collapse
|