1
|
Watanabe Y, Nishioka M, Morikawa R, Takano-Isozaki S, Igeta H, Mori K, Kato T, Someya T. Rare nonsynonymous germline and mosaic de novo variants in Japanese patients with schizophrenia. Psychiatry Clin Neurosci 2025; 79:37-44. [PMID: 39439118 DOI: 10.1111/pcn.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
AIM Whole-exome sequencing (WES) studies have revealed that germline de novo variants (gDNVs) contribute to the genetic etiology of schizophrenia. However, the contribution of mosaic DNVs (mDNVs) to the risk of schizophrenia remains to be elucidated. In the present study, we systematically investigated the gDNVs and mDMVs that contribute to the genetic etiology of schizophrenia in a Japanese population. METHODS We performed deep WES (depth: 460×) of 73 affected offspring and WES (depth: 116×) of 134 parents from 67 families with schizophrenia. Prioritized rare nonsynonymous gDNV and mDNV candidates were validated using Sanger sequencing and ultra-deep targeted amplicon sequencing (depth: 71,375×), respectively. Subsequently, we performed a Gene Ontology analysis of the gDNVs and mDNVs to obtain biological insights. Lastly, we selected DNVs in known risk genes for psychiatric and neurodevelopmental disorders. RESULTS We identified 62 gDNVs and 98 mDNVs. The Gene Ontology analysis of mDNVs implicated actin filament and actin cytoskeleton as candidate biological pathways. There were eight DNVs in known risk genes: splice region gDNVs in AKAP11 and CUL1; a frameshift gDNV in SHANK1; a missense gDNV in SRCAP; missense mDNVs in CTNNB1, GRIN2A, and TSC2; and a nonsense mDNV in ZFHX4. CONCLUSION Our results suggest the potential contributions of rare nonsynonymous gDNVs and mDNVs to the genetic etiology of schizophrenia. This is the first report of the mDNVs in schizophrenia trios, demonstrating their potential relevance to schizophrenia pathology.
Collapse
Affiliation(s)
- Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Psychiatry, Uonuma Kikan Hospital, Niigata, Japan
| | - Masaki Nishioka
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryo Morikawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoko Takano-Isozaki
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hirofumi Igeta
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kanako Mori
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
2
|
Nishioka M, Takayama J, Sakai N, Kazuno AA, Ishiwata M, Ueda J, Hayama T, Fujii K, Someya T, Kuriyama S, Tamiya G, Takata A, Kato T. Deep exome sequencing identifies enrichment of deleterious mosaic variants in neurodevelopmental disorder genes and mitochondrial tRNA regions in bipolar disorder. Mol Psychiatry 2023; 28:4294-4306. [PMID: 37248276 PMCID: PMC10827672 DOI: 10.1038/s41380-023-02096-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
Bipolar disorder (BD) is a global medical issue, afflicting around 1% of the population with manic and depressive episodes. Despite various genetic studies, the genetic architecture and pathogenesis of BD have not been fully resolved. Besides germline variants, postzygotic mosaic variants are proposed as new candidate mechanisms contributing to BD. Here, we performed extensive deep exome sequencing (DES, ~300×) and validation experiments to investigate the roles of mosaic variants in BD with 235 BD cases (194 probands of trios and 41 single cases) and 39 controls. We found an enrichment of developmental disorder (DD) genes in the genes hit by deleterious mosaic variants in BD (P = 0.000552), including a ClinVar-registered pathogenic variant in ARID2. An enrichment of deleterious mosaic variants was also observed for autism spectrum disorder (ASD) genes (P = 0.000428). The proteins coded by the DD/ASD genes with non-synonymous mosaic variants in BD form more protein-protein interaction than expected, suggesting molecular mechanisms shared with DD/ASD but restricted to a subset of cells in BD. We also found significant enrichment of mitochondrial heteroplasmic variants, another class of mosaic variants, in mitochondrial tRNA genes in BD (P = 0.0102). Among them, recurrent m.3243 A > G variants known as causal for mitochondrial diseases were found in two unrelated BD probands with allele fractions of 5-12%, lower than in mitochondrial diseases. Despite the limitation of using peripheral tissues, our DES investigation supports the possible contribution of deleterious mosaic variants in the nuclear genome responsible for severer phenotypes, such as DD/ASD, to the risk of BD and further demonstrates that the same paradigm can be applied to the mitochondrial genome. These results, as well as the enrichment of heteroplasmic mitochondrial tRNA variants in BD, add a new piece to the understanding of the genetic architecture of BD and provide general insights into the pathological roles of mosaic variants in human diseases.
Collapse
Affiliation(s)
- Masaki Nishioka
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
- Department of Molecular Pathology of Mood Disorders, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Jun Takayama
- Department of AI and Innovative Medicine, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi, 980-8573, Japan
- Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Naomi Sakai
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - An-A Kazuno
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mizuho Ishiwata
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Ueda
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Hayama
- Yokohama Mental Clinic Totsuka, 494-8 Kamikurata-cho, Totsuka-ku, Yokohama, 244-0816, Japan
| | - Kumiko Fujii
- Department of Psychiatry, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, Chuo-ku, Niigata, 951-8510, Japan
| | - Shinichi Kuriyama
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi, 980-8573, Japan
- Department of Molecular Epidemiology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Gen Tamiya
- Department of AI and Innovative Medicine, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai, Miyagi, 980-8573, Japan
- Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027, Japan
| | - Atsushi Takata
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
- Department of Molecular Pathology of Mood Disorders, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
3
|
Systematic analysis of exonic germline and postzygotic de novo mutations in bipolar disorder. Nat Commun 2021; 12:3750. [PMID: 34145229 PMCID: PMC8213845 DOI: 10.1038/s41467-021-23453-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Bipolar disorder is a severe mental illness characterized by recurrent manic and depressive episodes. To better understand its genetic architecture, we analyze ultra-rare de novo mutations in 354 trios with bipolar disorder. For germline de novo mutations, we find significant enrichment of loss-of-function mutations in constrained genes (corrected-P = 0.0410) and deleterious mutations in presynaptic active zone genes (FDR = 0.0415). An analysis integrating single-cell RNA-sequencing data identifies a subset of excitatory neurons preferentially expressing the genes hit by deleterious mutations, which are also characterized by high expression of developmental disorder genes. In the analysis of postzygotic mutations, we observe significant enrichment of deleterious ones in developmental disorder genes (P = 0.00135), including the SRCAP gene mutated in two unrelated probands. These data collectively indicate the contributions of both germline and postzygotic mutations to the risk of bipolar disorder, supporting the hypothesis that postzygotic mutations of developmental disorder genes may contribute to bipolar disorder. The significance of rare and de novo variants in bipolar disorder is not well understood. Here, the authors have analyzed whole exome/genome data from trios to identify deleterious de novo variants associated with bipolar disorder.
Collapse
|
4
|
Leija-Salazar M, Pittman A, Mokretar K, Morris H, Schapira AH, Proukakis C. Investigation of Somatic Mutations in Human Brains Targeting Genes Associated With Parkinson's Disease. Front Neurol 2020; 11:570424. [PMID: 33193015 PMCID: PMC7642339 DOI: 10.3389/fneur.2020.570424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Somatic single nucleotide variant (SNV) mutations occur in neurons but their role in synucleinopathies is unknown. Aim: We aimed to identify disease-relevant low-level somatic SNVs in brains from sporadic patients with synucleinopathies and a monozygotic twin carrying LRRK2 G2019S, whose penetrance could be explained by somatic variation. Methods and Results: We included different brain regions from 26 Parkinson's disease (PD), one Incidental Lewy body, three multiple system atrophy cases, and 12 controls. The whole SNCA locus and exons of other genes associated with PD and neurodegeneration were deeply sequenced using molecular barcodes to improve accuracy. We selected 21 variants at 0.33-5% allele frequencies for validation using accurate methods for somatic variant detection. Conclusions: We could not detect disease-relevant somatic SNVs, however we cannot exclude their presence at earlier stages of degeneration. Our results support that coding somatic SNVs in neurodegeneration are rare, but other types of somatic variants may hold pathological consequences in synucleinopathies.
Collapse
Affiliation(s)
- Melissa Leija-Salazar
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Alan Pittman
- Genetics Research Centre, Molecular and Clinical Sciences, St George's University of London, London, United Kingdom
| | - Katya Mokretar
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Huw Morris
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Anthony H. Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
5
|
Thun GA, Derdak S, Castro-Giner F, Apunte-Ramos K, Águeda L, Wjst M, Boland A, Deleuze JF, Kolsum U, Heiss-Neumann MS, Nowinski A, Gorecka D, Hohlfeld JM, Welte T, Brightling CE, Parr DG, Prasse A, Müller-Quernheim J, Greulich T, Stendardo M, Boschetto P, Barta I, Döme B, Gut M, Singh D, Ziegler-Heitbrock L, Gut IG. High degree of polyclonality hinders somatic mutation calling in lung brush samples of COPD cases and controls. Sci Rep 2019; 9:20158. [PMID: 31882973 PMCID: PMC6934450 DOI: 10.1038/s41598-019-56618-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is induced by cigarette smoking and characterized by inflammation of airway tissue. Since smokers with COPD have a higher risk of developing lung cancer than those without, we hypothesized that they carry more mutations in affected tissue. We called somatic mutations in airway brush samples from medium-coverage whole genome sequencing data from healthy never and ex-smokers (n = 8), as well as from ex-smokers with variable degrees of COPD (n = 4). Owing to the limited concordance of resulting calls between the applied tools we built a consensus, a strategy that was validated with high accuracy for cancer data. However, consensus calls showed little promise of representing true positives due to low mappability of corresponding sequence reads and high overlap with positions harbouring known genetic polymorphisms. A targeted re-sequencing approach suggested that only few mutations would survive stringent verification testing and that our data did not allow the inference of any difference in the mutational load of bronchial brush samples between former smoking COPD cases and controls. High polyclonality in airway brush samples renders medium-depth sequencing insufficient to provide the resolution to detect somatic mutations. Deep sequencing data of airway biopsies are needed to tackle the question.
Collapse
Affiliation(s)
- Gian-Andri Thun
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sophia Derdak
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Francesc Castro-Giner
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Katherine Apunte-Ramos
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Lidia Águeda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Matthias Wjst
- Helmholtz-Zentrum München, National Research Centre for Environmental Health, Institute of Lung Biology and Disease, Neuherberg, Germany
- Institute of Medical Statistics, Epidemiology and Medical Informatics, Technical University Munich, Munich, Germany
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Umme Kolsum
- University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Adam Nowinski
- 2nd Department of Respiratory Medicine, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Dorota Gorecka
- 2nd Department of Respiratory Medicine, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Jens M Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center of Lung Research, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center of Lung Research, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center of Lung Research, Hannover, Germany
| | - Christopher E Brightling
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - David G Parr
- Department of Respiratory Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Antje Prasse
- Department of Respiratory Medicine, Hannover Medical School, Member of the German Center of Lung Research, Hannover, Germany
- Department of Pneumology, University Medical Center, Freiburg, Germany
| | | | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University, Marburg, Germany
| | - Mariarita Stendardo
- Department of Medical Sciences, University of Ferrara and University-Hospital of Ferrara, Ferrara, Italy
| | - Piera Boschetto
- Department of Medical Sciences, University of Ferrara and University-Hospital of Ferrara, Ferrara, Italy
| | - Imre Barta
- Department of Pathophysiology, National Koranyi Institute for Pulmonology, Budapest, Hungary
| | - Balázs Döme
- Department of Tumorbiology, National Koranyi Institute for Pulmonology, Budapest, Hungary
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Dave Singh
- University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Ivo G Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
6
|
Kato T. Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry Clin Neurosci 2019; 73:526-540. [PMID: 31021488 DOI: 10.1111/pcn.12852] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022]
Abstract
Biological studies of bipolar disorder initially focused on the mechanism of action for antidepressants and antipsychotic drugs, and the roles of monoamines (e.g., serotonin, dopamine) have been extensively studied. Thereafter, based on the mechanism of action of lithium, intracellular signal transduction systems, including inositol metabolism and intracellular calcium signaling, have drawn attention. Involvement of intracellular calcium signaling has been supported by genetics and cellular studies. Elucidation of the neural circuits affected by calcium signaling abnormalities is critical, and our previous study suggested a role of the paraventricular thalamic nucleus. The genetic vulnerability of mitochondria causes calcium dysregulation and results in the hyperexcitability of serotonergic neurons, which are suggested to be susceptible to oxidative stress. Efficacy of anticonvulsants, animal studies of candidate genes, and studies using induced pluripotent stem cell-derived neurons have suggested a relation between bipolar disorder and the hyperexcitability of neurons. Recent genetic findings suggest the roles of polyunsaturated acids. At the systems level, social rhythm therapy targets circadian rhythm abnormalities, and cognitive behavioral therapy may target emotion/cognition (E/C) imbalance. In the future, pharmacological and psychosocial treatments may be combined and optimized based on the biological basis of each patient, which will realize individualized treatment.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
7
|
Nishioka M, Bundo M, Iwamoto K, Kato T. Somatic mutations in the human brain: implications for psychiatric research. Mol Psychiatry 2019; 24:839-856. [PMID: 30087451 PMCID: PMC6756205 DOI: 10.1038/s41380-018-0129-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/27/2018] [Accepted: 05/25/2018] [Indexed: 01/18/2023]
Abstract
Psychiatric disorders such as schizophrenia and bipolar disorder are caused by complex gene-environment interactions. While recent advances in genomic technologies have enabled the identification of several risk variants for psychiatric conditions, including single-nucleotide variants and copy-number variations, these factors can explain only a portion of the liability to these disorders. Although non-inherited factors had previously been attributed to environmental causes, recent genomic analyses have demonstrated that de novo mutations are among the main non-inherited risk factors for several psychiatric conditions. Somatic mutations in the brain may also explain how stochastic developmental events and environmental insults confer risk for a psychiatric disorder following fertilization. Here, we review evidence regarding somatic mutations in the brains of individuals with and without neuropsychiatric diseases. We further discuss the potential biological mechanisms underlying somatic mutations in the brain as well as the technical issues associated with the detection of somatic mutations in psychiatric research.
Collapse
Affiliation(s)
- Masaki Nishioka
- 0000 0001 2151 536Xgrid.26999.3dDivision for Counseling and Support, The University of Tokyo, Tokyo, Japan
| | - Miki Bundo
- 0000 0001 0660 6749grid.274841.cDepartment of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan ,0000 0004 1754 9200grid.419082.6PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan.
| |
Collapse
|
8
|
Nishioka M, Bundo M, Ueda J, Yoshikawa A, Nishimura F, Sasaki T, Kakiuchi C, Kasai K, Kato T, Iwamoto K. Identification of somatic mutations in monozygotic twins discordant for psychiatric disorders. NPJ SCHIZOPHRENIA 2018; 4:7. [PMID: 29654278 PMCID: PMC5899160 DOI: 10.1038/s41537-018-0049-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 12/30/2022]
Abstract
Monozygotic twins are assumed to have identical genomes. Based on this assumption, phenotypic discordance in monozygotic twins has been previously attributed to environmental factors. However, recent genomic studies have identified characteristic somatic mutations in monozygotic twins discordant for Darier disease, Van der Woude syndrome, and Dravet syndrome. Here, we explored somatic mutations in four pairs of monozygotic twins discordant for schizophrenia or delusional disorder. We analyzed whole exome sequence data obtained from blood samples and identified seven somatic mutations in one twin pair discordant for delusional disorder. All seven of these mutations were validated by independent amplicon sequencing, and five of them were further validated by pyrosequencing. One somatic mutation in the patient with delusional disorder showed a missense variant in ABCC9 with an allele fraction of 7.32%. Although an association between the somatic mutations and phenotypic discordance could not be established conclusively in this study, our results suggest that somatic mutations in monozygotic twins may contribute to the development of psychiatric disorders, and can serve as high-priority candidates for genetic studies. Identical twins are not always identical when it comes to psychiatric disorders—and DNA mutations that arise after birth could explain why. Researchers in Japan led by Tadafumi Kato from the RIKEN Brain Science Institute and
Kazuya Iwamoto from Kumamoto University searched for DNA differences between four pairs of identical twins discordant for schizophrenia or delusional disorder by sequencing the entire protein-coding portion of the genome from the study subjects’ blood. In one sibling pair, they found seven genetic differences, including one in the sister with the delusional disorder that altered the sequence of a protein implicated in sleep and other brain functions. The findings suggest that, alongside epigenetic and environmental differences, acquired mutations can account for discordances in psychiatric illnesses among otherwise genetically identical twins.
Collapse
Affiliation(s)
- Masaki Nishioka
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division for Counseling and Support, The University of Tokyo, Tokyo, Japan
| | - Miki Bundo
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Junko Ueda
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan
| | - Akane Yoshikawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumichika Nishimura
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tsukasa Sasaki
- Department of Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan
| | - Chihiro Kakiuchi
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan.
| | - Kazuya Iwamoto
- Department of Molecular Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|