1
|
Garcia TFM, Desio JAF, de Souza EF, Henkes SFC, Santos LS, de Carvalho Muenho J, Gonçlaves CL, Dos Santos JCC. The silent saboteur: oxidative stress and the path to cognitive dysfunction. Neurodegener Dis Manag 2025:1-28. [PMID: 40424201 DOI: 10.1080/17582024.2025.2510175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
Oxidative stress (OS) plays a central role in age-related cognitive decline and neurodegeneration and is increasingly recognized as a key factor in the pathogenesis of Alzheimer's disease (AD) and Parkinson's disease (PD). Elevated OS biomarkers are detectable from the earliest stages of these disorders. In this critical narrative review, we explore the bioenergetic cascade underlying neurodegeneration, emphasizing pathophysiological alterations, mechanisms, and therapeutic targets. Recent evidence suggests that OS and impaired cellular energy dynamics are both early markers and downstream effects of neuroinflammation, contributing to symptom severity and reduced treatment efficacy. A deeper understanding of these interrelated processes is essential for the development of more effective interventions. Monitoring OS-related metabolites may offer a promising strategy for identifying therapeutic targets and enabling early clinical intervention, ultimately aiming to reduce neuroinflammation and improve patient outcomes in AD and PD.
Collapse
Affiliation(s)
- Tulia Fernanda Meira Garcia
- Multicampi School of Medical Sciences, Federal University of Rio Grande do Norte, Caicó, Rio Grande do Norte, Brazil
| | | | | | | | - Luana Stangherlin Santos
- Department of Cardiology, Complexo Hospitalar de Doenças Cardiopulmonares (CDAN), Luanda, Angola
| | - Julcileia de Carvalho Muenho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Santa Catarina, Angola
| | - Cinara Ludvig Gonçlaves
- Department of Cardiology, Complexo Hospitalar de Doenças Cardiopulmonares (CDAN), Luanda, Angola
| | | |
Collapse
|
2
|
Marković S, Jadranin M, Miladinović Z, Gavrilović A, Avramović N, Takić M, Tasic L, Tešević V, Mandić B. LC-HRMS Lipidomic Fingerprints in Serbian Cohort of Schizophrenia Patients. Int J Mol Sci 2024; 25:10266. [PMID: 39408605 PMCID: PMC11476971 DOI: 10.3390/ijms251910266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 10/20/2024] Open
Abstract
Schizophrenia (SCH) is a major mental illness that causes impaired cognitive function and long-term disability, so the requirements for reliable biomarkers for early diagnosis and therapy of SCH are essential. The objective of this work was an untargeted lipidomic study of serum samples from a Serbian cohort including 30 schizophrenia (SCH) patients and 31 non-psychiatric control (C) individuals by applying liquid chromatography (LC) coupled with high-resolution mass spectrometry (HRMS) and chemometric analyses. Principal component analysis (PCA) of all samples indicated no clear separation between SCH and C groups but indicated clear gender separation in the C group. Multivariate statistical analyses (PCA and orthogonal partial least squares discriminant analysis (OPLS-DA)) of gender-differentiated SCH and C groups established forty-nine differential lipids in the differentiation of male SCH (SCH-M) patients and male controls (C-M), while sixty putative biomarkers were identified in the differentiation of female SCH patients (SCH-F) and female controls (C-F). Lipidomic study of gender-differentiated groups, between SCH-M and C-M and between SCH-F and C-F groups, confirmed that lipids metabolism was altered and the content of the majority of the most affected lipid classes, glycerophospholipids (GP), sphingolipids (SP), glycerolipids (GL) and fatty acids (FA), was decreased compared to controls. From differential lipid metabolites with higher content in both SCH-M and SCH-F patients groups compared to their non-psychiatric controls, there were four common lipid molecules: ceramides Cer 34:2, and Cer 34:1, lysophosphatidylcholine LPC 16:0 and triacylglycerol TG 48:2. Significant alteration of lipids metabolism confirmed the importance of metabolic pathways in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Suzana Marković
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (S.M.); (V.T.)
- University of Belgrade—Faculty of Medicine, Institute of Forensic Medicine, Deligradska 31a, 11000 Belgrade, Serbia
| | - Milka Jadranin
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Zoran Miladinović
- Institute of General and Physical Chemistry, Studentski trg 12–16, 11158 Belgrade, Serbia;
| | - Aleksandra Gavrilović
- Special Hospital for Psychiatric Diseases “Kovin”, Cara Lazara 253, 26220 Kovin, Serbia;
| | - Nataša Avramović
- University of Belgrade—Faculty of Medicine, Institute of Medical Chemistry, Višegradska 26, 11000 Belgrade, Serbia;
| | - Marija Takić
- University of Belgrade—Institute for Medical Research, National Institute of Republic of Serbia, Center of Research Excellence for Nutrition and Metabolism, Group for Nutrition and Metabolism, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Ljubica Tasic
- Institute of Chemistry, Organic Chemistry Department, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970, SP, Brazil;
| | - Vele Tešević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (S.M.); (V.T.)
| | - Boris Mandić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (S.M.); (V.T.)
| |
Collapse
|
3
|
Zu X, Xin J, Xie H, Xu X, Shen Y, Wang J, Tian S, Wen Y, Li H, Yang J, Fang Y. Characteristics of gut microbiota and metabolic phenotype in patients with major depressive disorder based on multi-omics analysis. J Affect Disord 2024; 344:563-576. [PMID: 37863362 DOI: 10.1016/j.jad.2023.10.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/13/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Depression is a chronic, relapsing mental illness, often accompanied by loss of appetite, increased fatigue, insomnia and poor concentration. Here, we performed serum and urine metabolomics and fecal 16S rDNA sequencing studies on 57 unmedicated patients with major depressive disorder (MDD) and 57 healthy controls to characterize the metabolic and flora profile of MDD patients. We observed significant differences in serum and urinary metabolome between MDD patients and healthy individuals. Specifically, glycerophospholipid metabolism, primary bile acid biosynthesis and linoleic acid metabolism were significantly disordered in serum, and aminoacyl-tRNA biosynthesis, arginine biosynthesis, purine metabolism, phenylalanine metabolism, alanine, aspartate and glutamate metabolism, and pyrimidine metabolism were significantly impaired in urine. On this basis, we identified four potential diagnostic biomarkers for carnitine and four fatty acid classes in serum and urine, respectively. In addition, we observed significant disturbances of the gut microbiota in MDD patients. Spearman correlation analysis showed that imbalances in the gut microbiota were associated with metabolic disturbances, suggesting an important role of the gut microbiota in the pathogenesis of MDD. Our study provides a theoretical basis for further understanding of the pathogenesis of depression and for future clinical diagnosis and screening, as well as a basis for targeting the gut flora to optimize its structure for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Xianpeng Zu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiayun Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haisheng Xie
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xike Xu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yunheng Shen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jinxin Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Saisai Tian
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yukun Wen
- Department of Diving and Hyperbaric Medical Research, Naval Medical Center, Naval Medical University, Shanghai 200433, China
| | - Hongxia Li
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, China.
| | - Jishun Yang
- Medical Security Center, Naval Medical Center, Naval Medical University, Shanghai 200433, China.
| | - Yiqun Fang
- Department of Diving and Hyperbaric Medical Research, Naval Medical Center, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
4
|
Jadranin M, Avramović N, Miladinović Z, Gavrilović A, Tasic L, Tešević V, Mandić B. Untargeted Lipidomics Study of Bipolar Disorder Patients in Serbia. Int J Mol Sci 2023; 24:16025. [PMID: 38003221 PMCID: PMC10671390 DOI: 10.3390/ijms242216025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The Lipidomic profiles of serum samples from patients with bipolar disorder (BD) and healthy controls (C) were explored and compared. The sample cohort included 31 BD patients and 31 control individuals. An untargeted lipidomics study applying liquid chromatography (LC) coupled with high-resolution mass spectrometry (HRMS) was conducted to achieve the lipid profiles. Multivariate statistical analyses (principal component analysis and partial least squares discriminant analysis) were performed, and fifty-six differential lipids were confirmed in BD and controls. Our results pointed to alterations in lipid metabolism, including pathways of glycerophospholipids, sphingolipids, glycerolipids, and sterol lipids, in BD patient sera. This study emphasized the role of lipid pathways in BD, and comprehensive research using the LC-HRMS platform is necessary for future application in the diagnosis and improvement of BD treatments.
Collapse
Affiliation(s)
- Milka Jadranin
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia;
| | - Nataša Avramović
- University of Belgrade—Faculty of Medicine, Institute of Medical Chemistry, Višegradska 26, 11000 Belgrade, Serbia
| | - Zoran Miladinović
- Institute of General and Physical Chemistry, Studentski trg 12–16, 11158 Belgrade, Serbia;
| | - Aleksandra Gavrilović
- Special Hospital for Psychiatric Diseases “Kovin”, Cara Lazara 253, 26220 Kovin, Serbia;
| | - Ljubica Tasic
- Institute of Chemistry, Organic Chemistry Department, State University of Campinas, Campinas 13083-970, Sao Paulo, Brazil;
| | - Vele Tešević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia;
| | - Boris Mandić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia;
| |
Collapse
|
5
|
Chaves-Filho AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull 2023; 201:110702. [PMID: 37423295 DOI: 10.1016/j.brainresbull.2023.110702] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties ("brain fog"), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions. Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms. Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
6
|
Toft-Bertelsen TL, Andreassen SN, Rostgaard N, Olsen MH, Norager NH, Capion T, Juhler M, MacAulay N. Distinct Cerebrospinal Fluid Lipid Signature in Patients with Subarachnoid Hemorrhage-Induced Hydrocephalus. Biomedicines 2023; 11:2360. [PMID: 37760800 PMCID: PMC10525923 DOI: 10.3390/biomedicines11092360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Patients with subarachnoid hemorrhage (SAH) may develop posthemorrhagic hydrocephalus (PHH), which is treated with surgical cerebrospinal fluid (CSF) diversion. This diversion is associated with risk of infection and shunt failure. Biomarkers for PHH etiology, CSF dynamics disturbances, and potentially subsequent shunt dependency are therefore in demand. With the recent demonstration of lipid-mediated CSF hypersecretion contributing to PHH, exploration of the CSF lipid signature in relation to brain pathology is of interest. Despite being a relatively new addition to the omic's landscape, lipidomics are increasingly recognized as a tool for biomarker identification, as they provide a comprehensive overview of lipid profiles in biological systems. We here employ an untargeted mass spectroscopy-based platform and reveal the complete lipid profile of cisternal CSF from healthy control subjects and demonstrate its bimodal fluctuation with age. Various classes of lipids, in addition to select individual lipids, were elevated in the ventricular CSF obtained from patients with SAH during placement of an external ventricular drain. The lipidomic signature of the CSF in the patients with SAH suggests dysregulation of the lipids in the CSF in this patient group. Our data thereby reveal possible biomarkers present in a brain pathology with a hemorrhagic event, some of which could be potential future biomarkers for hypersecretion contributing to ventriculomegaly and thus pharmacological targets for pathologies involving disturbed CSF dynamics.
Collapse
Affiliation(s)
| | - Søren Norge Andreassen
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark; (T.L.T.-B.)
| | - Nina Rostgaard
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Markus Harboe Olsen
- Department of Neuroanaesthesiology, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Nicolas H. Norager
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Tenna Capion
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark; (T.L.T.-B.)
| |
Collapse
|
7
|
Udagawa J, Hino K. Plasmalogen in the brain: Effects on cognitive functions and behaviors attributable to its properties. Brain Res Bull 2022; 188:197-202. [PMID: 35970332 DOI: 10.1016/j.brainresbull.2022.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022]
Abstract
Ether phospholipid compositions are altered in the plasma or brain of patients with brain disorders, such as Alzheimer and Parkinson's disease, including those with psychiatric disorders like schizophrenia and bipolar disorders. Notably, plasmenyl ethanolamine has a unique chemical structure, i.e., a vinyl-ether bond at the sn-1 position, which mainly links with polyunsaturated fatty acids (PUFAs) at the sn-2 position. Those characteristic moieties give plasmalogen molecules unique biophysical and chemical properties that modulate membrane trafficking, lipid rafts, intramolecular PUFA moieties, and oxidative states. Previous reports suggested that a deficiency in plasmenyl ethanolamine leads to disturbances of the myelin structure, synaptic neurotransmission and intracellular signaling, apoptosis of neurons, and neuroinflammation, accompanied by cognitive disturbances and aberrant behaviors like hyperactivity in mice. Therefore, this review summarizes the relationship between the biological functions of plasmalogen. We also proposed biophysical properties that alter brain phospholipid compositions related to aberrant behaviors and cognitive dysfunction. Finally, a brief review of possible remedial plasmalogen replacement therapies for neurological, psychiatric, and developmental disorders attributable to disturbed plasmalogen compositions in the organs and cells was conducted.
Collapse
Affiliation(s)
- Jun Udagawa
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan.
| | - Kodai Hino
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
8
|
Guo L, Zhang T, Li R, Cui ZQ, Du J, Yang JB, Xue F, Chen YH, Tan QR, Peng ZW. Alterations in the Plasma Lipidome of Adult Women With Bipolar Disorder: A Mass Spectrometry-Based Lipidomics Research. Front Psychiatry 2022; 13:802710. [PMID: 35386518 PMCID: PMC8978803 DOI: 10.3389/fpsyt.2022.802710] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/07/2022] [Indexed: 01/21/2023] Open
Abstract
Lipidomics has become a pivotal tool in biomarker discovery for the diagnosis of psychiatric illnesses. However, the composition and quantitative analysis of peripheral lipids in female patients with bipolar disorder (BD) have been poorly addressed. In this study, plasma samples from 24 female patients with BD and 30 healthy controls (HCs) were analyzed by comprehensive lipid profiling and quantitative validation based on liquid chromatography-mass spectrometry. Clinical characteristics and a correlation between the level of lipid molecules and clinical symptoms were also observed. We found that the quantitative alterations in several lipid classes, including acylcarnitine, lysophosphatidylethanolamine, GM2, sphingomyelin, GD2, triglyceride, monogalactosyldiacylglycerol, phosphatidylinositol phosphate, phosphatidylinositol 4,5-bisphosphate, phosphatidylethanolamine, phosphatidylserine, and lysophosphatidylinositol, were remarkably upregulated or downregulated in patients with BD and were positively or negatively correlated with the severity of psychotic, affective, or mania symptoms. Meanwhile, the composition of different carbon chain lengths and degrees of fatty acid saturation for these lipid classes in BD were also different from those of HCs. Moreover, 55 lipid molecules with significant differences and correlations with the clinical parameters were observed. Finally, a plasma biomarker set comprising nine lipids was identified, and an area under the curve of 0.994 was obtained between patients with BD and the HCs. In conclusion, this study provides a further understanding of abnormal lipid metabolism in the plasma and suggests that specific lipid species can be used as complementary biomarkers for the diagnosis of BD in women.
Collapse
Affiliation(s)
- Lin Guo
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Ting Zhang
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Rui Li
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Zhi-quan Cui
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Jing Du
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Jia-bin Yang
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yi-Huan Chen
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Qing-rong Tan
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
| | - Zheng-wu Peng
- Department of Psychiatry, Chang'an Hospital, Xi'an, China
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
9
|
Schooneveldt YL, Paul S, Calkin AC, Meikle PJ. Ether Lipids in Obesity: From Cells to Population Studies. Front Physiol 2022; 13:841278. [PMID: 35309067 PMCID: PMC8927733 DOI: 10.3389/fphys.2022.841278] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Ether lipids are a unique class of glycero- and glycerophospho-lipid that carry an ether or vinyl ether linked fatty alcohol at the sn-1 position of the glycerol backbone. These specialised lipids are important endogenous anti-oxidants with additional roles in regulating membrane fluidity and dynamics, intracellular signalling, immunomodulation and cholesterol metabolism. Lipidomic profiling of human population cohorts has identified new associations between reduced circulatory plasmalogen levels, an abundant and biologically active sub-class of ether lipids, with obesity and body-mass index. These findings align with the growing body of work exploring novel roles for ether lipids within adipose tissue. In this regard, ether lipids have now been linked to facilitating lipid droplet formation, regulating thermogenesis and mediating beiging of white adipose tissue in early life. This review will assess recent findings in both population studies and studies using cell and animal models to delineate the functional and protective roles of ether lipids in the setting of obesity. We will also discuss the therapeutic potential of ether lipid supplementation to attenuate diet-induced obesity.
Collapse
Affiliation(s)
- Yvette L. Schooneveldt
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Sudip Paul
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Anna C. Calkin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Anna C. Calkin,
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
- Peter J. Meikle,
| |
Collapse
|
10
|
Zhou CH, Xue F, Shi QQ, Xue SS, Zhang T, Ma XX, Yu LS, Liu C, Wang HN, Peng ZW. The Impact of Electroacupuncture Early Intervention on the Brain Lipidome in a Mouse Model of Post-traumatic Stress Disorder. Front Mol Neurosci 2022; 15:812479. [PMID: 35221914 PMCID: PMC8866946 DOI: 10.3389/fnmol.2022.812479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
The neuroprotective effect of electroacupuncture (EA) treatment has been well studied; growing evidence suggests that changes in lipid composition may be involved in the pathogenesis of post-traumatic stress disorder (PTSD) and may be a target for treatment. However, the influence of early EA intervention on brain lipid composition in patients with PTSD has never been investigated. Using a modified single prolonged stress (mSPS) model in mice, we assessed the anti-PTSD-like effects of early intervention using EA and evaluated changes in lipid composition in the hippocampus and prefrontal cortex (PFC) using a mass spectrometry-based lipidomic approach. mSPS induced changes in lipid composition in the hippocampus, notably in the content of sphingolipids, glycerolipids, and fatty acyls. These lipid changes were more robust than those observed in the PFC. Early intervention with EA after mSPS ameliorated PTSD-like behaviors and partly normalized mSPS-induced lipid changes, notably in the hippocampus. Cumulatively, our data suggest that EA may reverse mSPS-induced PTSD-like behaviors due to region-specific regulation of the brain lipidome, providing new insights into the therapeutic mechanism of EA.
Collapse
Affiliation(s)
- Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, China
| | - Qing-Qing Shi
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shan-Shan Xue
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Tian Zhang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Xin-Xu Ma
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Li-Sheng Yu
- Department of General Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Chuang Liu
- Department of Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi’an, China
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
11
|
Saito K, Hattori K, Hidese S, Sasayama D, Miyakawa T, Matsumura R, Tatsumi M, Yokota Y, Ota M, Hori H, Kunugi H. Profiling of Cerebrospinal Fluid Lipids and Their Relationship with Plasma Lipids in Healthy Humans. Metabolites 2021; 11:metabo11050268. [PMID: 33923144 PMCID: PMC8146161 DOI: 10.3390/metabo11050268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
Lipidomics provides an overview of lipid profiles in biological systems. Although blood is commonly used for lipid profiling, cerebrospinal fluid (CSF) is more suitable for exploring lipid homeostasis in brain diseases. However, whether an individual’s background affects the CSF lipid profile remains unclear, and the association between CSF and plasma lipid profiles in heathy individuals has not yet been defined. Herein, lipidomics approaches were employed to analyze CSF and plasma samples obtained from 114 healthy Japanese subjects. Results showed that the global lipid profiles differed significantly between CSF and plasma, with only 13 of 114 lipids found to be significantly correlated between the two matrices. Additionally, the CSF total protein content was the primary factor associated with CSF lipids. In the CSF, the levels of major lipids, namely, phosphatidylcholines, sphingomyelins, and cholesterolesters, correlated with CSF total protein levels. These findings indicate that CSF lipidomics can be applied to explore changes in lipid homeostasis in patients with brain diseases.
Collapse
Affiliation(s)
- Kosuke Saito
- Division of Medical Safety Science, National Institute of Health Sciences, Kanagawa 210-9501, Japan
- Correspondence: (K.S.); (H.K.); Tel.:+81-44-270-6628 (K.S.); +81-42-346-1714 (H.K.)
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Daimei Sasayama
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Tomoko Miyakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Ryo Matsumura
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Megumi Tatsumi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Yuuki Yokota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Hiroaki Hori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan; (K.H.); (S.H.); (D.S.); (T.M.); (M.T.); (Y.Y.); (M.O.); (H.H.)
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
- Correspondence: (K.S.); (H.K.); Tel.:+81-44-270-6628 (K.S.); +81-42-346-1714 (H.K.)
| |
Collapse
|
12
|
Gwanyanya A, Godsmark CN, Kelly-Laubscher R. Ethanolamine: A Potential Promoiety with Additional Effects in the Brain. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 21:108-117. [PMID: 33319663 DOI: 10.2174/1871527319999201211204645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022]
Abstract
Ethanolamine is a bioactive molecule found in several cells, including those in the central nervous system (CNS). In the brain, ethanolamine and ethanolamine-related molecules have emerged as prodrug moieties that can promote drug movement across the blood-brain barrier. This improvement in the ability to target drugs to the brain may also mean that in the process ethanolamine concentrations in the brain are increased enough for ethanolamine to exert its own neurological ac-tions. Ethanolamine and its associated products have various positive functions ranging from cell signaling to molecular storage, and alterations in their levels have been linked to neurodegenerative conditions such as Alzheimer's disease. This mini-review focuses on the effects of ethanolamine in the CNS and highlights the possible implications of these effects for drug design.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town,. South Africa
| | - Christie Nicole Godsmark
- School of Public Health, College of Medicine and Health, University College Cork, Cork,. Ireland
| | - Roisin Kelly-Laubscher
- Department of Pharmacology and Therapeutics, School of Medicine, College of Medicine and Health, University College Cork, Cork,. Ireland
| |
Collapse
|