1
|
Reynolds D, Mitteer LM, Sigal W, Boyajian L, McKnight H, Bhatti T, States L, Becker S, Adzick NS, Lord K, De Leon DD. Novel Use of Dasiglucagon, a Soluble Glucagon Analog, for the Treatment of Hyperinsulinemic Hypoglycemia Secondary to Suspected Insulinoma: A Case Report. Horm Res Paediatr 2023; 97:187-194. [PMID: 37454652 DOI: 10.1159/000531251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/15/2023] [Indexed: 07/18/2023] Open
Abstract
INTRODUCTION Hyperinsulinemic hypoglycemia is the most common cause of persistent hypoglycemia in children and adults. In adolescents and adults, hyperinsulinemic hypoglycemia is most frequently caused by an insulin-producing tumor. CASE PRESENTATION A 17-year-old, previously healthy male presented with recurrent and severe episodes of hypoglycemia. Diagnostic evaluation was consistent with hyperinsulinemic hypoglycemia, and an insulinoma was suspected. Multiple imaging studies and surgical exploration failed to identify a lesion. Over the course of months, the patient was found to be refractory to conventional medical interventions. CONCLUSION Upon approval from the US Food and Drug Administration and the Institutional Review Board, the patient was treated with dasiglucagon, a novel soluble glucagon analog, under a single-patient Investigational New Drug. The patient has tolerated the medication and has been able to achieve appropriate glycemic control.
Collapse
Affiliation(s)
- Dana Reynolds
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lauren M Mitteer
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA,
| | - Winifred Sigal
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Linda Boyajian
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Heather McKnight
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tricia Bhatti
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lisa States
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Radiology, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan Becker
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - N Scott Adzick
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Surgery, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine Lord
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Diva D De Leon
- Division of Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Congenital Hyperinsulinism Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
De Leon DD, Arnoux JB, Banerjee I, Bergada I, Bhatti T, Conwell LS, Fu J, Flanagan SE, Gillis D, Meissner T, Mohnike K, Pasquini TL, Shah P, Stanley CA, Vella A, Yorifuji T, Thornton PS. International Guidelines for the Diagnosis and Management of Hyperinsulinism. Horm Res Paediatr 2023; 97:279-298. [PMID: 37454648 PMCID: PMC11124746 DOI: 10.1159/000531766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/16/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Hyperinsulinism (HI) due to dysregulation of pancreatic beta-cell insulin secretion is the most common and most severe cause of persistent hypoglycemia in infants and children. In the 65 years since HI in children was first described, there has been a dramatic advancement in the diagnostic tools available, including new genetic techniques and novel radiologic imaging for focal HI; however, there have been almost no new therapeutic modalities since the development of diazoxide. SUMMARY Recent advances in neonatal research and genetics have improved our understanding of the pathophysiology of both transient and persistent forms of neonatal hyperinsulinism. Rapid turnaround of genetic test results combined with advanced radiologic imaging can permit identification and localization of surgically-curable focal lesions in a large proportion of children with congenital forms of HI, but are only available in certain centers in "developed" countries. Diazoxide, the only drug currently approved for treating HI, was recently designated as an "essential medicine" by the World Health Organization but has been approved in only 16% of Latin American countries and remains unavailable in many under-developed areas of the world. Novel treatments for HI are emerging, but they await completion of safety and efficacy trials before being considered for clinical use. KEY MESSAGES This international consensus statement on diagnosis and management of HI was developed in order to assist specialists, general pediatricians, and neonatologists in early recognition and treatment of HI with the ultimate aim of reducing the prevalence of brain injury caused by hypoglycemia. A previous statement on diagnosis and management of HI in Japan was published in 2017. The current document provides an updated guideline for management of infants and children with HI and includes potential accommodations for less-developed regions of the world where resources may be limited.
Collapse
Affiliation(s)
- Diva D. De Leon
- Congenital Hyperinsulinism Center and Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants Malades Hospital, AP-HP, University of Paris-Cité, Paris, France
| | - Indraneel Banerjee
- Paediatric Endocrinology, Royal Manchester Children’s Hospital, University of Manchester, Manchester, UK
| | - Ignacio Bergada
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CONICET – FEI), Division de Endrocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Tricia Bhatti
- Department of Clinical Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Louise S. Conwell
- Australia and Children’s Health Queensland Clinical Unit, Department of Endocrinology and Diabetes, Queensland Children’s Hospital, Children’s Health Queensland, Greater Brisbane Clinical School, Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Junfen Fu
- National Clinical Research Center for Child Health, Department of Endocrinology, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Sarah E. Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - David Gillis
- Hadassah Medical Center, Department of Pediatrics, Ein-Kerem, Jerusalem and Faculty of Medicine, Hebrew-University, Jerusalem, Israel
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Klaus Mohnike
- Department of General Pediatrics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Tai L.S. Pasquini
- Research and Policy Director, Congenital Hyperinsulinism International, Glen Ridge, NJ, USA
| | - Pratik Shah
- Pediatric Endocrinology, The Royal London Children’s Hospital, Queen Mary University of London, London, UK
| | - Charles A. Stanley
- Congenital Hyperinsulinism Center and Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adrian Vella
- Division of Diabetes, Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Tohru Yorifuji
- Pediatric Endocrinology and Metabolism, Children’s Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Paul S. Thornton
- Congenital Hyperinsulinism Center, Cook Children’s Medical Center and Texas Christian University Burnett School of Medicine, Fort Worth, TX, USA
| |
Collapse
|
3
|
Rasmussen AG, Melikian M, Globa E, Detlefsen S, Rasmussen L, Petersen H, Brusgaard K, Rasmussen AH, Mortensen MB, Christesen HT. The difficult management of persistent, non-focal congenital hyperinsulinism: A retrospective review from a single, tertiary center. Pediatr Diabetes 2020; 21:441-455. [PMID: 31997554 DOI: 10.1111/pedi.12989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 11/14/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/OBJECTIVE Congenital hyperinsulinism (CHI) is a rare, heterogeneous disease with transient or persistent hypoglycemia. Histologically, focal, diffuse, and atypical forms of CHI exist, and at least 11 disease-causing genes have been identified. METHODS We retrospectively evaluated the treatment and outcome of a cohort of 40 patients with non-focal, persistent CHI admitted to the International Hyperinsulinism Center, Denmark, from January 2000 to May 2017. RESULTS Twenty-two patients (55%) could not be managed with medical monotherapy (diazoxide or octreotide) and six (15%) patients developed severe potential side effects to medication. Surgery was performed in 17 (43%) patients with resection of 66% to 98% of the pancreas. Surgically treated patients had more frequently KATP -channel gene mutations (surgical treatment 12/17 vs conservative treatment 6/23, P = .013), highly severe disease (15/17 vs 13/23, P = .025) and clinical onset <30 days of age (15/17 vs 10/23, P = .004). At last follow-up at median 5.3 (range: 0.3-31.3) years of age, 31/40 (78%) patients still received medical treatment, including 12/17 (71%) after surgery. One patient developed diabetes after a 98% pancreatic resection. Problematic treatment status was seen in 7/40 (18%). Only 8 (20%) had clinical remission (three spontaneous, five after pancreatic surgery). Neurodevelopmental impairment (n = 12, 30%) was marginally associated with disease severity (P = .059). CONCLUSIONS Persistent, non-focal CHI remains difficult to manage. Neurological impairment in 30% suggests a frequent failure of prompt and adequate treatment. A high rate of problematic treatment status at follow-up demonstrates an urgent need for new medical treatment modalities.
Collapse
Affiliation(s)
- Amalie G Rasmussen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Maria Melikian
- Department of Pediatric Endocrinology, Endrocrine Research Center, Moscow, Russia
| | - Evgenia Globa
- Department of Pediatric Endocrinology, Ukrainian Research Center of Endocrine Surgery, Kyiv, Ukraine
| | - Sönke Detlefsen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,OPAC, Odense Pancreas Center, Odense University Hospital, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Lars Rasmussen
- OPAC, Odense Pancreas Center, Odense University Hospital, Odense, Denmark.,Department of Surgery, Odense University Hospital, Odense, Denmark
| | - Henrik Petersen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Annett H Rasmussen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Michael B Mortensen
- OPAC, Odense Pancreas Center, Odense University Hospital, Odense, Denmark.,Department of Surgery, Odense University Hospital, Odense, Denmark
| | - Henrik T Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,OPAC, Odense Pancreas Center, Odense University Hospital, Odense, Denmark
| |
Collapse
|
4
|
Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, Winther-Sørensen M, Suppli MP, Janah L, Gromada J, Vilstrup H, Knop FK, Holst JJ. The Liver-α-Cell Axis and Type 2 Diabetes. Endocr Rev 2019; 40:1353-1366. [PMID: 30920583 DOI: 10.1210/er.2018-00251] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
Both type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD) strongly associate with increasing body mass index, and together these metabolic diseases affect millions of individuals. In patients with T2D, increased secretion of glucagon (hyperglucagonemia) contributes to diabetic hyperglycemia as proven by the significant lowering of fasting plasma glucose levels following glucagon receptor antagonist administration. Emerging data now indicate that the elevated plasma concentrations of glucagon may also be associated with hepatic steatosis and not necessarily with the presence or absence of T2D. Thus, fatty liver disease, most often secondary to overeating, may result in impaired amino acid turnover, leading to increased plasma concentrations of certain glucagonotropic amino acids (e.g., alanine). This, in turn, causes increased glucagon secretion that may help to restore amino acid turnover and ureagenesis, but it may eventually also lead to increased hepatic glucose production, a hallmark of T2D. Early experimental findings support the hypothesis that hepatic steatosis impairs glucagon's actions on amino acid turnover and ureagenesis. Hepatic steatosis also impairs hepatic insulin sensitivity and clearance that, together with hyperglycemia and hyperaminoacidemia, lead to peripheral hyperinsulinemia; systemic hyperinsulinemia may itself contribute to worsen peripheral insulin resistance. Additionally, obesity is accompanied by an impaired incretin effect, causing meal-related glucose intolerance. Lipid-induced impairment of hepatic sensitivity, not only to insulin but potentially also to glucagon, resulting in both hyperinsulinemia and hyperglucagonemia, may therefore contribute to the development of T2D at least in a subset of individuals with NAFLD.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malte P Suppli
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Lina Janah
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Current and Emerging Agents for the Treatment of Hypoglycemia in Patients with Congenital Hyperinsulinism. Paediatr Drugs 2019; 21:123-136. [PMID: 31218604 DOI: 10.1007/s40272-019-00334-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycmia in neonatles and children. The inappropriate secretion of insulin by the pancreatic β-cells produces recurrent hypoglycemia, which can lead to severe and permanent brain damage. CHI results from mutations in different genes that play a role in the insulin secretion pathway, and each differs in their responsiveness to medical treatment. Currently, the only available approved treatment for hyperinsulinism is diazoxide. Patients unresponsive to diazoxide may benefit from specialized evaluation including genetic testing and 18F-DOPA PET to identify those with focal forms of CHI. The focal forms can be cured by selective pancreatectomy, but the management of diazoxide-unresponsive diffuse CHI is a real therapeutic challenge. Current off-label therapies include intravenous glucagon, octreotide and long-acting somatostatin analogs; however, they are often insufficient, and a 98% pancreatectomy or continuous feeds may be required. For the first time in over 40 years, new drugs are being developed, but none have made it to market yet. In this review, we will discuss current on-label and off-label drugs and review the currently available data on the novel drugs under development.
Collapse
|